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ABSTRACT

Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular
learning paradigm for low-resource languages with no labeled training data. How-
ever, for NLP tasks that involve fine-grained predictions on words and phrases,
the performance of zero-shot cross-lingual transfer learning lags far behind su-
pervised fine-tuning methods. Therefore, it is common to exploit translation and
label projection to further improve the performance by (1) translating training data
that is available in a high-resource language (e.g., English) together with the gold
labels into low-resource languages, and/or (2) translating test data in low-resource
languages to a high-source language to run inference on, then projecting the pre-
dicted span-level labels back onto the original test data. However, state-of-the-art
marker-based label projection methods suffer from translation quality degradation
due to the extra label markers injected in the input to the translation model. In this
work, we explore a new direction that leverages constrained decoding for label
projection to overcome the aforementioned issues. Our new method not only can
preserve the quality of translated texts but also has the versatility of being applica-
ble to both translating training and translating test data strategies. This versatility
is crucial as our experiments reveal that translating test data can lead to a consider-
able boost in performance compared to translating only training data. We evaluate
on two cross-lingual transfer tasks, namely Named Entity Recognition and Event
Argument Extraction, spanning 20 languages. The results demonstrate that our
approach outperforms the state-of-the-art marker-based method by a large margin
and also shows better performance than other label projection methods that rely
on external word alignmen

1 INTRODUCTION

Large language models (LLMs) have demonstrated the potential to perform a variety of NLP tasks
in zero or few-shot learning settings. This is attractive because labeling data is expensive — anno-
tating fine-tuning data across many languages for each task is not feasible. However, for traditional
NLP tasks that involve word/phrase-level predictions, such as named entity recognition or event
extraction, the performance of zero and few-shot learning lags far behind supervised fine-tuning
methods that make use of large amounts of labeled data (Lai et al.| 2023)). Prior work has therefore
trained multilingual models that support cross-lingual transfer from a high-resource language (e.g.,
English), where fine-tuning data is available to many low-resource languages where data may not
be available (e.g., Bambara, which is spoken primarily in Africa). Encoder-based LLMs such as
XLM-RoBERTa (Conneau et al., 2020) or mDeBERTa (He et al., [2021) work surprisingly well for
cross-lingual transfer, yet the performance of models that are fine-tuned on target-language data is
still significantly better (Xue et al.,[2021). Motivated by this observation, we present a new approach
to automatically translate NLP training datasets into many languages that uses constrained decoding
to more accurately translate and project annotated label spans from high to low-resource languages.

Our approach builds on top of EasyProject (Chen et al.|2023a)), a simple, yet effective state-of-the-
art method for label projection, that inserts special markers (see Figure[Ta)) into the source sentences
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Figure 1: The goal of label projection is to automatically construct annotated data in low-resource
language (e.g., Bambara) by translating from annotated data in high-resource language (e.g., En-
glish) while preserving the span-level labels. EasyProject (Left): The source sentence is first in-
jected with marker pairs around entities and then translated to the target language; a span-matching
step is performed to map each span to the corresponding label (i.e., types of entities). This method
has issues related to the translation quality (e.g., the word “France” is not properly translated), due
to the existence of markers in the input to the translation model. CODEC (Right): The source sen-
tence is first translated to the target language, given the source sentence without marker injected,
CODEC then performs constrained decoding to insert markers to the translated sentence.

to mark annotated spans, then runs the modified sentences through a machine translation (MT) sys-
tem, such as NLLB (Costa-jussa et al.,|2022) or Google Translate. A key limitation of EasyProject,
as noted by |Chen et al.|(2023a)), is that inserting special markers into the source sentence then trans-
lating it degrades the translation quality; nevertheless, EasyProject was shown to be more effective
than prior work for label projection that largely relied on word alignment (Yarmohammadi et al.,
2021). To address the problem of translation quality degradation, in this paper, we present a new
approach, Constraint Decoding for Cross-lingual Label Projection (CODEC), for translating training
datasets using a customized constrained decoding algorithm. The training data in the high-resource
language is first translated without markers followed by a second constrained decoding pass to inject
the markers (see Figure[Ib). Since the source sentence does not include markers during the transla-
tion phase, the final translated text quality from CODEC is preserved. The second decoding pass of
CODEC relies on a translation model that is conditioned on the modified input sentence with markers
(thus is noisier) in order to find the appropriate positions for inserting markers. Using a specially
designed constrained decoding algorithm, however, we can retain the high-quality translation while
having the right number of labels projected by enforcing both as constraints during decoding.

In essence, CODEC only explores the search space which contains valid hypotheses, i.e., translated
outputs that conform to (i) the high-quality translation from the first decoding pass without markers’
interference and (ii) having the correct number of markers inserted. A brute-force enumeration of
all possible such hypotheses is intractable, as the number of sequences that would need to be scored
using the translation model is O(n?™), where n is the sequence length and m is the number of la-
beled spans to be projected, as we show in §3| We therefore design a constrained decoding algorithm
based on the branch-and-bound method (Stahlberg & Byrne, [2019), in which a depth-first search is
conducted to identify a lower-bound on the best complete hypothesis, and branches that do not have
any solutions with a better score than the current lower bound are pruned from the search space.
However, even when pruning branches using this bound, decoding time is still prohibitively long.
To speed up decoding, we introduce a new heuristic lower bound, which removes branches more
aggressively. We also introduce a technique to prune unlikely positions for the opening markers in
advance. Putting everything together, compared to exact branch-and-bound search, our proposed
method significantly reduces decoding time with only a slight drop in performance in a few lan-
guages. For example, for the Bambara language, CODEC is about 60 times faster than exact search,
while only losing 0.6 absolute F1, a 1.1% drop in performance.

We conduct extensive experiments to evaluate CODEC on two popular cross-lingual tasks (i.e.,
Named Entity Recognition and Event Argument Extraction), covering 20 language pairs. In our
experiment, CODEC and other label projection baselines are used to project the label from English
datasets to their translated version to augment the data in the target language, which is referred to as
translate-train (Hu et al.| 2020). The results demonstrate that, on average, the model fine-tuned
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on CODEC-augmented data outperforms models fine-tuned on the data produced by other label
projection baselines by a large margin. This reinforces our hypothesis that preserving translation
quality is essential and constrained decoding can improve the accuracy of label projection. More-
over, since CODEC separates two phases of translation and marker insertion, it can also be used to
improve cross-lingual transfer by using machine translation at inference time, sometimes referred to
as translate-test (Artetxe et al., 2023). This approach translates test data from the low-resource lan-
guage to the high-resource language, uses a fully-supervised NLP model to automatically annotate
the translation on the high-resource side, then projects the annotations back to the original language.
Experiments show that, compared to translate-train alone, using CODEC in the translate-test setting
further boosts cross-lingual transfer performance in the Named Entity Recognition task.

2 LABEL PROJECTION AS CONSTRAINED TRANSLATION

In this section, we describe how we formulate Label Projection as a constrained generation problem
before proposing to tackle it by designing a constrained decoding algorithm (detailed in §3)). Given
a source sentence with label spans and its translation in the target language, our goal is to map the
label spans from the source to the target sentence. Formally, let z be the source sentence with m
labeled spans (e.g., m named entities) and 2"* be the same text as = but with m pairs of special
markers (e.g. square brackets) surrounding every label span. In previous work, an MT model will

find the translation y™%"* of the sentence with markers inserted, z™"*:
mark

y = arg max log P, (y|z™*"") (1
y
where 7 is a machine translation (MT) system. However, as previous work has found that inserting
markers degrades translation quality (Chen et al.l [2023a)), we introduce a variant of the approach.
Our approach uses the translation of the source sentence without markers, which will act as a tem-
plate to be injected with markers later to create the annotated sentence in the target language:

tmpl
Y

= arg max log P, (y|z) 2)
y

In general, without the interference of special markers in the input, the translation y*?! is expected
to have higher quality than y™"*, as shown in (Chen et al., 2023a). Let ) be the set of all possible
valid hypotheses with m marker pairs injected into *™?!. In our work, we do not consider the case
of overlapped or nested label spans, thus the size of ) is ("+2m) or O(n?™), where n is the length

2m
(# of tokens) of y*P!.

Our goal is to find the best hypothesis y* from )/, in which all the markers are inserted at correct
positions into y”*P! with each span found in 3* mapped to its corresponding label in z™%"*. We can
cast this task as a constrained translation problem, which enforces two constraints: (i) y* contains
exactly m valid pairs of markers as 2™%"* (i.e., no mismatched brackets) and (ii) the plain text (with
all markers removed) of y* is the exactly the same as y*™P!. Consequently, we can solve this problem
by designing a specialized constrained decoding algorithm, which explores every hypothesis in the
search space ) and finds the one with the highest generative probability:

y* = arg maxlog P (ylz™"";y"""") (3)
yey
log Pr(yla™™; 5" = " log Py (yily<i, 2™*"*; y"™) €
=1

Starting with a translation prefix € (e.g., a language code <bam>), the decoding algorithm will itera-
tively expand the hypothesis; when the end-of-sentence token (i.e., </ s>) is generated, a candidate
projection of the labeled spans is found.

3 CONSTRAINED DECODING

In this section, we will propose a constrained decoding algorithm, CODEC, particularly designed
for cross-lingual transfer learning. It uses approximation to reduce the computational complexity of
the original problem and a ranking method to identify hypotheses with accurate span projections.
CODEC has three main steps: (1) prune all unlikely opening-marker positions, (2) search for k
hypotheses with the highest probability, and (3) re-rank to find the best hypothesis.
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Figure 2: The first two steps of CODEC. Step 1 (Left): CODEC prunes search branches based on
unlikely opening marker positions in the target language by comparing probabilities conditioned on
the source language with and without span markers inserted. Step 2 (Right): A branch-and-bound
search algorithm is used to find £ hypotheses with the highest probabilities (k = 3). From each node
of the search tree (e.g., “Faransi”’), CODEC expands to the next token from the translation template
ytmPl (e.g., “ni”) or a marker (i.e., “[” or “]”). A search branch is pruned if its score falls below a
heuristic lower bound. Two branches of different lengths might have different values of lower bound
(e.g., the lower bound for the top and bottom branches are -3.1 and -2.8, respectively).

3.1 PROBLEM APPROXIMATION

As discussed in if we naively project m label spans into the template translation 3*™P!, the
research space ) has a size of O(an) where n is the number of tokens in ytmpl. Therefore, instead
of solving this m-projection problem, we propose to address m 1-projection problems, whose search
space is only (”;rz) or O(n?) each, and approximate the original solution by combining the solutions
from the m problems. In other words, we will project m sentences, each of which only contains one
label span surrounded by one marker pair. This approximation also brings another merit, since there
is only one span projected at a time, we can identify the label of the span (e.g., types of entities) on
the target language without the need for the label matching step as in EasyProject (see Figure [Ta).

3.2 PRUNING OPENING-MARKER POSITIONS

To further reduce the search space and speed up the decoding algorithm, we propose a heuristic
method to detect which position in the translation template can be inserted with the opening marker
(e.g., left square bracket ‘[’). During the search process, all hypotheses that have the opening marker
inserted in other positions will get pruned. The key idea of our method is to track the difference in
conditional word (more accurately subword token) probabilities of generating the same translation
template, when being conditioned on two different inputs: the source sentence with and without
markers. The intuition is that, if we decode the translation template but conditioned on the marker
sentence, at the position that needs to be inserted an opening marker, the model would give a high
probability to this token, and consequently, it would assign a low probability to the token from the
template. This intuition is illustrated in Figure 2] (Step 1). Formally, we define A; as the difference
of the two log-probabilities when generating the i token from the template:

A; = |log P(y,™P lym?! zmerky —log P(y.™ |y z)| (5)

where yZ?p ! indicates all tokens before the i token and, from hereon, P is used in place of P, for

simplicity. We determine the possible positions of the opening marker by choosing all ¢ with a high
value of A; (i.e., larger than a threshold). All hypotheses, which have the opening marker inserted
at other positions, are pruned during the search.

3.3 SEARCHING FOR TOP-k HYPOTHESES

According to our preliminary study, the hypothesis with the highest probability in many cases is
not necessarily the best output, i.e., the one with markers injected correctly. This is typically called
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(translation) model error in machine translation research, in contrast to search error, where the
highest scored sequence is a good translation but the decoding algorithm (often approximate search)
fails to find it. Previous research on translation decoding (Stahlberg & Byrnel [2019; |[Eikema & Aziz,
2020) also found that model errors occur very often when using the exact search.

To address this problem, we propose to first find top-k hypotheses with the highest probabilities,
then use a ranking function (details in §3.4) to choose the best one (i.e., re-ranking). The main idea
is to traverse the entire search space in a depth-first order and adopt the branch-and-bound method
(Stahlberg & Byrne, [2019) to reduce the decoding time — see Figure[2]for an illustration. Compared
to the search algorithm in the previous work (Stahlberg & Byrne, 2019), CODEC uses a different
search strategy to enforce additional constraints for label projection. More specifically, in order for
the generated text to follow the translation template, at each decoding iteration, the decoding scheme
only considers at most two candidates for the next token: the next token from the template and the
next span marker. Besides the search strategy, CODEC also introduced a new heuristic lower bound.
Before presenting the lower bound of CODEC, we first discuss the one introduced by |Stahlberg &
Byrne| (2019) and the reason why we need to define a new lower bound for this task. The purpose
of the lower bound is to prune branches that do not have any solutions with a better score. The
score of a branch, which has expanded a sequence to the length of j (i.e., y1.;), is the generative log-

probability of this sequence (i.e., log P(y1.;|2™"™*) = 37_ log P(y;|y<i, 2™**)). Previous work
has defined an exact lower bound as the log-probability of the current best hypothesis. Generally,
let 4* be the hypothesis whose log-probability is the k™ highest at a specific time during the search
(k = 1 when only need to find the best hypothesis). Let L* be a list containing generative log-
probabilities of all prefix of y* (i.e., Lé? = log P(yF. j |z™7F)). The exact lower bound is defined
as:

,yexact _ Lk (6)

ly*]

One problem with the exact lower bound is that it uses the probability of a complete hypothesis
(i.e., the hypothesis ends with </ s>) to define the lower bound. This probability is often small, and
thus cannot prune off short partial hypotheses early enough. As illustrated in Figure |2 (Step 2), the
exact lower bound with k£ = 3 at this search stage is —36.7, much smaller than the log-probabilities
of other expanded partial hypotheses. Therefore, we propose a heuristic lower bound, whose value
changes according to the length of each partial hypothesis (i.e., having a larger value when compared
to shorter partial hypotheses), to help expedite the pruning. The heuristic lower bound for a partial
hypothesis of length 5 is defined as:

v=Lj ™
d = min (max(j+5,q)a|yk|) ®)

where ¢ is the position of the opening marker in y* (¢ = 0 if the marker is not selected yet) and & is
a hyperparameter of the lower bound. The lower bound with a larger value of § is closer to the exact
lower bound. With the new lower bound, CODEC can prune off the expanding hypotheses as shown
in Figure 2] (Step 2).

3.4 RE-RANKING

The goal of this step is to pick the best hypotheses, which have markers injected in the correct
positions, among the top-k candidates found in the previous step (§3.3). Two scores are used for
this purpose: (i) hypothesis-level score: the generative log-probability of a hypothesis (Eq §) and
(ii) span-level score: the log-probability of generating the original span given the label span found
in a hypothesis. In particular, for a label span e°"¢ in the source sentence, we have k hypotheses of
projecting e to the target language after the search step. Let ezg " be the label span found in the i

hypothesis. The span-level score of the hypothesis i" is defined as:
SiP" = log P(e™°lei) ©)

The same MT model is used to compute both hypothesis-level and span-level scores. The k& hy-
potheses are first ranked by the hypothesis-level score. The span-level score is then used to re-rank
all hypotheses, whose label spans are equal to or are subsequences of the label span of the current
top-1 hypothesis. The best hypothesis is the new top-1 after the re-ranking. More details about
CODEC can be found in the Appendix §A]
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4 EXPERIMENTS

We evaluate CODEC on two benchmark cross-lingual NLP tasks, including Named Entity Recogni-
tion and Event Argument Extraction, covering 20 languages in total.

4.1 DATASETS

For Named Entity Recognition (NER), we use English CoNLLO3 (Tjong Kim Sang| |2002) as
train/dev data and use MasakhaNER2.0 (Adelani et al.| [2022) which consist of human-labeled data
for 20 African languages as test data. Following |Chen et al.| (2023a)), we consider three main types
of entities (i.e., person, organization, and location) in the dataset and skip Ghomala and Naija (two
languages that NLLB does not support). We conduct experiments on MasakhaNER?2.0, instead of
WikiANN (Pan et al.,|2017), as the latter was automatically constructed dataset and contains a higher
level of noises (Lignos et al.l|2022)). For Event Argument Extraction (EAE), we use the ACE-2005
(Doddington et al.| |2004), a multilingual dataset that covers English, Chinese, and Arabic. The
task is to identify the event arguments and their roles in the text given the event triggers. We use
the English training sets of CoONLLO3 (Tjong Kim Sang| 2002) and ACE-2005 to act as the source
language to perform cross-lingual transfer for the NER and EAE tasks, respectively.

4.2 EXPERIMENTAL SETTINGS AND RESULTS

Setup We use NLLB (No Language Left Behind) as the translation model (Costa-jussa et al.,
2022) in our experiments. We fine-tune mDeBERTa-v3 (276M) to act as a NER tagger following
(Chen et al} |2023a); and fine-tune mT5-large (Xue et al., 2021)) following the X-Gear framework
(Huang et al., 2022) for EAE. For a direct comparison with existing work (Chen et al., | 2023bza;
Huang et al.| [2022), we report the average F1 scores across five random seeds for NER and three
random seeds for EAE. More details are provided in the Appendix

Baselines We compare CODEC with the following baselines: (1) EasyProject (Chen et al.| 2023a)):
a state-of-the-art marker-based label projection approach; (2) Awes-align: an alignment-based label
projection approach, in which the state-of-the-art word aligner (Dou & Neubigl 2021)) is used to
align the text spans between the source and target sentences; (3) FTg,: the multilingual models
(the ones described in “Setup” above) fine-tuned directly on the English data, which have shown to
be a very strong baseline for cross-lingual transfer; (4) GPT-4: in the cross-lingual NER task, we
also prompt GPT-4-0613 (Achiam et al.,|2023) to annotate each word using BIO scheme, following
Chen et al.| (2023b). Due to cost constraints, we only evaluate GPT-4 on 200 examples for each
language of MasakhaNER?2.0. EasyProject uses an NLLB model fine-tuned on a synthetic dataset
as the MT model, in which the marker pairs are inserted around the label spans in both source and
target sentences. We also use the fine-tuned version of NLLB-600M that they provide in CODEC for
a more fair comparison.

Results Table[T]shows the performance of different approaches on the test set of MasakhaNER2.0.
On average, label projection methods outperform both GPT-4 and FTg, by a large margin. Among
the label projection methods, CODEC achieves the best results in both translate-train and translate-
test settings, on average. Compared to EasyProject, a similar method to CODEC but using a dif-
ferent decoding algorithm, CODEC has achieved better or comparable performance in most of the
languages, with improvements of at least 1.5 F1 in nine languages. The improvement is especially
evident for the chiShona language, which is +16.5 F1. Having higher translation quality may be
the reason why CODEC can outperform EasyProject in many languages. One noticeable issue with
the translation of EasyProject is that the label spans are more often left untranslated (similar to the
example in Figure [Ta). Other types of error from EasyProject and Awes-align are demonstrated in
Figure |4|in the Appendix. In addition, we observe that cross-lingual NER in African languages fa-
vors translate-test approaches more than translate-train overall. Compared to when being used in the
translate-train setting, both CODEC and Awes-align have significant increases in the translate-test. In
the translate-test setting, CODEC also shows better results than the latter method in 13 out of 18 lan-
guages. Another interesting observation is that FTg, achieves the best performance in Chichewa and
Kiswabhili, likely because the entities in these two languages are often kept the same as their English
form. Therefore, fine-tuning the NER model on English data only is sufficient for the two languages
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Table 1: Cross-lingual NER results on the test set of MasakhaNER2.0 (the best F1 score of a lan-
guage is in bold, A pp: calculated against F'T'g,, T: GPT-4 is evaluated on a subset of 200 examples
from the test set of each language due to cost constraints). On average, CODEC outperforms other
approaches by a large margin especially when used with the translate-test strategy; EasyProject is
not applicable to translate-test.

Lang, GPT4"  FTg, Translate-train Translate-test
Awes-align  EasyProject CODEC (Afrr) Awes-align CODEC (Afr)
Bambara 46.8 37.1 45.0 45.8 45.8 (+8.7) 50.0 55.6 (+18.5)
Ewe 75.5 75.3 78.3 78.5 79.1 (+3.8) 72.5 79.1 (+3.8)
Fon 19.4 49.6 59.3 61.4 65.5 (+15.9) 62.8 61.4 (+11.8)
Hausa 70.7 71.7 72.7 72.2 72.4 (+0.7) 70.0 73.7 (+2.0)
Igbo 51.7 59.3 63.5 65.6 70.9 (+11.6) 77.2 72.8 (+13.5)
Kinyarwanda 59.1 66.4 63.2 71.0 71.2 (+4.8) 64.9 78.0 (+11.6)
Luganda 73.7 75.3 77.7 76.7 77.2 (+1.9) 82.4 82.3 (+7.0)
Luo 55.2 35.8 46.5 50.2 49.6 (+13.8) 52.6 52.9 (+17.1)
Mossi 442 45.0 522 53.1 55.6 (+10.6) 48.4 50.4 (+5.4)
Chichewa 75.8 79.5 75.1 75.3 76.8 (-2.7) 78.0 76.8 (-2.7)
chiShona 66.8 352 69.5 55.9 72.4 (+37.2) 67.0 78.4 (+43.2)
Kiswahili 82.6 87.7 82.4 83.6 83.1 (-4.6) 80.2 81.5(-6.2)
Setswana 62.0 64.8 73.8 74.0 74.7 (+9.9) 81.4 80.3 (+15.5)
Akan/Twi 52.9 50.1 62.7 65.3 64.6 (+14.5) 72.6 73.5 (+23.4)
Wolof 62.6 442 54.5 58.9 63.1 (+18.9) 58.1 67.2 (+23.0)
isiXhosa 69.5 24.0 61.7 71.1 70.4 (+46.4) 52.7 69.2 (+45.2)
Yoruba 58.2 36.0 38.1 36.8 414 (+5.4) 49.1 58.0 (+22.0)
isiZulu 60.2 439 68.9 73.0 74.8 (+30.9) 64.1 76.9 (+33.0)
AVG 60.4 54.5 63.6 64.9 67.1 (+12.7) 65.8 70.4 (+16.0)

in this setting. As for the EAE task, we observe a similar trend in Table 2] that CODEC outperforms
the other label projection approaches on average. In each language, CODEC also has comparable
or better performance than each baseline. We only report the performance in the translate-train set-
ting for the EAE task, because the typical experiment setup requires the gold event trigger as input,
but for translate-test, this information in English can only achieved by another pass of label pro-
jection (from a target language to English) during inference time. More discussions about the two
cross-lingual tasks are in Appendix [C]

4.3 ABLATION STUDY
In this section, we study the efficiency and accuracy of the two heuristic steps in CODEC.

Setup We modify each module of CODEC and Table 2: F1 scores of different methods on ACE-
evaluate the performance of each setting in 2005 dataset in the translate-train setting.
translate-dev on a sample of MasakhaNER2.0 dev
set for five languages (i.e., Bambara, Fon, Mossi,
Yoruba, and isiZulu). We evaluate the perfor- b 448 153 ey 154
mance of exact (+re_rank): exact search algo- rabic - 44. : : .
rithm, similar to CODEC except using the exgact Chinese 54.0 573 .7 291
lower bound (discussed in §3)) and does not prune AVG 494 52.8 52.6 53.8
the opening marker positions; exact: similar to
exact (+re_rank) but does not conduct the re-ranking and only return hypothesis with the highest
probability; CODEC (6=1), CODEC (§=3): CODEC with different value of J, the hyperparameter of
the heuristic lower bound in Eq. ; CODEC (6=1+]), CODEC (6=3+[): CODEC with different val-
ues of § and does pruning the opening-marker positions. Since the exact search takes an extremely
long time to complete, we sample only 100 examples with up to 5 label spans for each language.

Lang. FT., Awes-align EasyProject CODEC

Results The performance and decoding time of different search settings are shown in Figure
and Figure [3b] respectively. Firstly, compared to exact (+re-rank), only returning the hypothesis
with the highest probability (exact) resulted in a significant drop in performance in all languages.
This observation shows the necessity of the re-ranking step to choose the best hypothesis. In terms of
the heuristic lower bound, CODEC (6=3) has roughly the same F1 as exact (+re-rank), showing that
the heuristic lower bound with § = 3 is a good approximation of the exact lower bound while having
a much better decoding speed. Finally, pruning the opening marker positions further speeds up the
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(a) F1 scores on dev set (translate-dev). (b) Average decoding time per example.

Figure 3: Ablation study on MasakhaNER?2.0 dev set of different search settings for five languages,
including Bambara (bam), Fon (fon), Mossi (mos), Yoruba (yor), and isiZulu (zul). exact (+re-
rank): exact search with re-ranking; exact: exact search and return the top-1 hypothesis. ‘0’ is
the hyperparameter of the heuristic lower bound. ‘+ [’ indicates pruning unlikely opening-marker
positions beforehand. Compared to constrained decoding with exact search, CODEC with § = 3
significantly reduces the decoding time, while retaining the performance measured by F1 scores.

decoding speed by at least about 1.4 times when § = 3, while causing only a slight drop of F1 (the
biggest drop is 0.7 absolute F1 in Yoruba). One interesting observation is that pruning the possible
opening-marker position can boost the performance in many cases (i.e., all languages when § = 1;
Fon, Mossi, and isiZulu when § = 3). One explanation is that the translation model is imperfect
and may give bad hypotheses high probabilities, sometimes even higher than the probability of the
correct hypothesis. With the marker-position pruning step, those noisy hypotheses are avoided.
More analyses about CODEC are in Appendix [E]

5 MANUAL ASSESSMENT OF CODEC AND DISCUSSION

In this section, we analyze the behavior of each sub-component in CODEC. In particular, we manu-
ally inspect outputs of CODEC when being used in translate-train and translate-test settings for the
cross-lingual NER task from English to Chinese and Vietnamese (100 examples are inspected for
each language). We categorize them into error types based on the source of errors: (1) Translation:
error from the MT model, (2) NER: error from the NER tagger (translate-test only), (3) CODEC:
error from CODEC. For all studies, we use the translation from Google Translation (GMT) AP]E|
(which has better translation quality for these two languages) to focus the analysis on CODEC, other
than the MT system. In addition, we also inspect the outputs of CODEC in the scenarios when the
outputs from the MT model and NER tagger are perfect (i.e., Oracle). More details are provided in
the Appendix §F

Results From Table 3} we see that there is a considerable amount of errors from CODEC in Chi-
nese. Further inspecting the error outputs from CODEC, we observe that in more than 60% of the
cases, the correct hypothesis is in the top-k found by CODEC, but the re-ranking step fails to re-
trieve it. Therefore, studying how to select the best hypothesis is one promising direction to improve
CoODEC further. Also from the table, there are many errors from the MT models in the translate-
test setting. In Vietnamese, most of the translation error is incorrectly translating the entities, while
in Chinese, most of the time, the error is not due to incorrect translation but the translation style.
Particularly, different styles of translation to English may change the entity type, e.g., “Chineseysc
journalists” and “journalists from China;pc” can be the translation from the same text, but have
different entity types. One possible direction to tackle this issue is to use constrained decoding to
control the translation style (e.g., use words that mean nation instead of nationality).

6 RELATED WORK

Label Projection There has been research that involves projecting label spans between bilingual
parallel texts for cross-lingual transfer. One popular approach is to utilize word alignment models to

https://cloud.google.com/translate
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Table 3: Manual analysis of CODEC outputs in translate-train and translate-test settings for Viet-
namese and Chinese. The number indicates how many examples out of the 100 sampled for each
language are correct or have corresponding |errors| (one example may have more than one error).

Language MT Translate-train Translate-test

Correct |Translation |CODEC Correct | NER|  Translation |CODEC

Viet GMT 94 2 4 51 33 14 13
1eamese gracle 96 0 4 85 0 0 15
Chinese GMT 80 6 14 34 36 24 16

Oracle 83 0 16 69 0 0 3]

project the label span between the source and target sentence. This approach has been adopted for a
wide range of tasks: Part-of-speech Tagging (Yarowsky & Ngail [2001;|Duong et al.,|2013}; |[Eskander
et al.| 2020), Semantic Role Labeling (Akbik et al., 2015} [Fei et al.| |2020), Named Entity Recogni-
tion (N1 et al., [2017; Stengel-Eskin et al., 2019; |Garcia-Ferrero et al.,[2023;|Behzad et al.,|2023)), and
Slot Filling (Xu et al.,|2020). With the advancement of the MT systems, several recent efforts have
adopted the marker-based approach, which directly uses the MT system to perform the label projec-
tion (Lee et al., [2018; [Lewis et al., |2020; [Hu et al., [2020; | Bornea et al., 2021} |Chen et al.l 2023a).
Between the two directions, the alignment-based approach is more adaptable in terms of being ap-
plicable to both translate-train and translate-test, and can preserve the translation quality; however,
it is shown to be less accurate than the marker-based approach (Chen et al.,[2023a). CODEC has the
advantages of both approaches. There is also research that takes different directions to transfer label
spans,|Daza & Frank| (2019) presents an encoder-decoder model to translate and generate Semantic
Role labels on the target sentence at the same time, while|Guo & Roth|(2021)) proposes to use con-
strained decoding to construct the target sentence from pre-translated labeled entities. In parallel to
our work, [Parekh et al.| (2023) also propose to translate the original sentence without markers, be-
fore label projection, to address the translation quality degradation. In addition to having access to a
translation system, their approach requires an instruction-tuned large language model (currently not
available in many languages) to detect the label spans in the target language. Different from their
method, we adopt an approach based on constrained decoding, which only requires a translation
model, such as NLLB, that can support a much wider range of low-resource languages. Outside the
topic of label projection, Razumovskaia et al.| (2023)) share a similar idea of re-purposing multilin-
gual models with ours, and introduces a two-stage framework to adapt multilingual encoders to the
task of slot labeling, in the transfer-free scenarios, where no annotated English data is available.

Lexically constrained decoding While constrained decoding has previously been explored in ma-
chine translation and text generation, it is typically used to constrain the vocabulary or the length
of the outputs (Anderson et al., |2017; [Hokamp & Liu, 2017; [Post & Vilar, 2018} Miao et al.
2019; [Zhang et al., 2020; Lu et al.| 2021} 2022} |Qin et al, 2022). Compared to these past works,
CODEC has some important features that make it more suitable for the label projection problem.
Firstly, instead of only constraining the occurrence of some words, CODEC constrains the whole de-
coding sentence to follow a pre-defined template. This feature is important as it allows CODEC to do
the projection to a fixed target sentence, which is a requirement for being applicable to the translate-
test and preserving translation quality during translate-train. Secondly, CODEC also constrains the
number of occurrences of each token, including the marker, which is essential as it prevents the gen-
erative model from dropping markers, addressing a serious issue with the marker-based approach
for label projection. The idea of using constrained decoding to guarantee the validity of the output
space has also been adopted in the task of semantic parsing (Scholak et al.| [2021).

7 CONCLUSION

In this work, we introduced a new approach of using constrained decoding for cross-lingual label
projection. Our new method — CODEC — not only addresses the problem of translation-quality
degradation, which is a major issue of the previous marker-based label projection methods, but is
also adaptable in terms of being applicable to both translate-train and translate-test. Experiments on
two cross-lingual tasks over 20 languages show that, on average, CODEC has shown improvements
over strong fine-tuning baseline and other label projection methods.
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A CODEC IMPLEMENTATION DETAILS

When we approximate the original m-projection problem by solving m 1-projection sub-problems,
there are cases where some projections overlap with each other. In translate-train, we remove all
examples which have this issue.

A.1 PRUNING OPENING-MARKER POSITIONS

Let M be a set of all position 7, in which the difference between the two log probabilities is greater
than a threshold a;. Let My be a neighbor set of M, which includes all positions that are near each
position in M (within a window of size o) and have a difference greater than a second threshold o
(a2 < a1). The set of candidates for the opening marker position M is the union of the two sets -
M and M. In our experiments, we choose a; = 0.5, ay = 0.1,0 = 5.

A.2 SEARCHING FOR TOP-K HYPOTHESES

This step is described in Algorithm [T} In our implementation, for efficiency, we send a batch of
partial hypotheses in Line We set the batch size equal to 16 and 12 for NER and EAE experi-
ments, respectively. For all experiments, we search for 5 hypotheses with the highest probabilities
(i.e., k = 5).

In Eq |8} the max operation is to avoid the case where the current-chosen hypothesis “saves” the
markers until the end. In this case, the probability of a prefix of the current-chosen hypothesis is
high at the beginning, thus can mistakenly prune the correct hypothesis, but degrades significantly
after a marker is inserted. We set d equal to 1 for translate-train experiments in the MasakhaNER2.0
dataset and set d equal to 5 for all other experiments.

A.3 RE-RANKING

For the translate-train experiments, we also use an additional lexical-span-level score to filter noisy
augmented data. Particularly, we translate each label span in the source sentence independently,
let ef7"* be the translation of a label span e*"¢, the lexical-span-level score of the i hypothesis
is the lexical similarity between !¢ and eﬁgt, where efgt is the span found in the i hypothesis,
following the fuzzy string matching method in |Chen et al.| (2023a). An example will be filtered out
if both its lexical-span-level score and the span-level score defined in §3.4] are smaller than the two
corresponding thresholds. We set the threshold for the lexical- and probability-span-level scores as
0.5 and -5 respectively.

Augmented data in low-resource languages

English Data
EasyProject Awesome-align Codec
Indiacoc and Pakistan.oc have IndiaLoc ne Pakistanioc ... Indiacoc nePakistan ... Indiaoc nePakistanioc ...
fought ... region of ye chibviro ... zvinetso zvinetso
State media quoted Chinacoc 's top Imithombo ... we China.oc ne Imithomboioc ... waseChina Imithombo ... waseChinaioc
negotiator with Taipeiroc , TaipeiLoc, , neTaipei , s neTaipeicoc ,
, ... from Taiwan.oc ... ... elivela eTaiwan.oc ... ... elivela eTaiwan ... ... elivela eTaiwan.oc ...

Figure 4: Examples of using different approaches to project label spans from English to low-resource
languages (i.e., chiShona (middle) and isiZulu (bottom)) in the translate-train setting for Cross-
lingual NER. In each example, label spans in English data and their corresponding projections in
the target language have the same color, the projection errors are underline. In the two examples:
(1) EasyProject incorrectly splits some words and only marks a part of them as an entity (e.g.,
“Pakistan” instead of “nePakistan”); (2) Awes-align cannot project all label spans and incorrectly
map “China” to “Imithombo” in the second example; (3) CODEC has the correct projections in both
examples.
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Algorithm 1 Constrained_DFS: Searching for top-k best hypotheses

Input z™°"*: Source sentence with marker, y: translation prefix (default: €), y*™?!: translation template,

L: [log P(y1|z),log P(y1:2]|z), ..., log P(y|z)] (default=[0.0]), M: opening marker positions
H': min heap to record the results, k: number of hypotheses, d: lower bound hyperparameter

1: flag < {check if all markers are generated}

2: if yj, = </s> and flag = TRUE: then

3 H.push((Lyy, L,y)) > H sorts by the first element
4 iflen(H) > k then

5: H.pop()

6: else

7 T« ]

8 w1 < {get the next token in 3'™P'}

9: 'T(—'TU{(w17logP(w1|y,:vm”k))}

10: jlyl+1 > position of the token to be generated next
11: wa < {get the next marker}

12: if 3 ws and not (w2 = ‘[’ land j ¢ M) then

13: T+ T U{(w2,log P(waly, ™**))}

14: T < {sort T by the second element in decreasing order}

15: for (w,p) € T do

16: logp <= Ly +p

17: ~ < {compute lower bound following Eq

18: if logp > ~ then

19: Constrained_DFS (z™"% 4y - w, ™' L U {logp}, M, H, k, §)
20: return H

B EXPERIMENT DETAILS

For all experiments, we use 1 A40 GPUs (48GB each). About fine-tuning backbone models, for the
NER model, we fine-tune mDeBERTaV3-base (276M) using the learning rate of 2e-5, batch size 16,
and train for 5 epochs (except for the baseline, which is trained for 10 epochs) provided by |Chen
et al.[(2023b). Due to the high variance of cross-lingual transfer performance (Chen & Ritter,|2021)),
we report average results of 5 random seeds. About the Event Argument Extraction model, for a fair
comparison, we fine-tune mT5-large using the X-Gear (Huang et al.| [2022) codebas using their
provided hyperparameters when fine-tuning and using their scripts for evaluation.

For all experiments, we use the NLLB-3.3B version to generate the translation template and and use
NLLB-600M for decoding in CODEC, unless specified otherwise.

C MORE EXPERIMENTS ON MASAKHANER?2.0

C.1 MORE BASELINES WITH COMPETITIVE PRE-TRAINED MODELS

In we fine-tune mDebertaV3-base model on English data (FTg,) as a baseline NER model, and
use mBERT-base (Devlin et al.| [ 2019) as the multilingual models in Awesome-align. In this section,
we consider using other pre-trained models, which are more competitive for African languages,
for the two aforementioned baselines: (1) AfroXLMR-large (Alabi et al., [2022), a model which
is adapted to 17 African languages, and (2) Glot500-base (ImaniGooghari et al., [2023)), which is
pre-trained on 500+ languages. We consider the following baselines: (1) FTgy: fine-tuning mDe-
bertaV3/AfroXLMR/Glot500 on English data and directly evaluate the model, (2) Awes-align: us-
ing Awesome-align with mBERT/AfroXLMR/Glot500 as the underlined multilingual models, (3)
CODEC. Since Awes-align and CODEC achieve the best average performance in translate-test (as
discussed in §d), in this experiment, we evaluate these two approaches in this setting. For all
translate-test experiments, mDebertaV3-base is still used as the English NER model.

Table [] shows the performance of the above methods on the test set of MasakhaNER2.0 dataset.
Replacing mDeBERTaV3 (for FTg,) and mBERT (for Awes-align) with models that are pre-trained

*https://github.com/PlusLabNLP/X-Gear/tree/main
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Table 4: Cross-lingual NER results of: (1) FTgy: Fine-tuning different pre-trained models
(mDeBERTaV3, AfroXLMR-large, and Glot500-base) on English data only, (2) Awes-align:
Awesome-align with different multilingual models (mBERT, AfroXLMR, and Glot500), (3)
CoDEC: CODEC with two different MT models (M2M-100 and NLLB) for decoding, on the
test set of MasakhaNER2.0. CODEC and Awesome-align are evaluated in the translate-test setting.
CoDEC with NLLB outperforms all other baselines on average (“-”: these low-resource languages
are not supported by the M2M-100 MT system).

L FTgn Awes-align CODEC
anguages
mDeBERTa  AfroXLMR  Glot500 mBERT AfroXLMR Glot500 NLLB M2M-100
Bambara 37.1 42.8 53.0 50.0 53.8 52.0 55.6 -
Ewe 75.3 73.1 75.4 72.5 78.0 76.8 79.1 -
Fon 49.6 54.6 59.4 62.8 66.0 61.2 61.4 -
Hausa 71.7 74.8 68.0 70.0 73.7 73.1 73.7 73.1
Igbo 59.3 74.4 65.4 77.2 71.7 71.2 72.8 72.8
Kinyarwanda 66.4 68.4 67.0 64.9 68.2 68.1 78.0 -
Luganda 75.3 78.9 80.9 824 82.1 82.5 82.3 -
Luo 358 40.4 42.0 52.6 51.3 51.2 529 -
Mossi 45.0 453 55.5 484 49.1 48.7 50.4 -
Chichewa 79.5 82.2 73.8 78.0 76.7 71.3 76.8 -
chiShona 352 384 37.6 67.0 78.6 75.6 78.4 -
Kiswabhili 87.7 88.1 84.7 80.2 80.5 79.5 81.5 82.9
Setswana 64.8 74.4 68.8 814 80.7 80.5 80.3 -
Akan/Twi 50.1 419 57.9 72.6 71.7 73.5 73.5 -
Wolof 442 49.0 64.5 58.1 59.0 57.1 67.2 -
isiXhosa 24.0 26.8 27.8 52.7 67.6 63.9 69.2 67.9
Yoruba 36.0 57.0 56.1 49.1 52.7 49.2 58.0 53.8
isiZulu 439 473 46.5 64.1 75.5 74.9 76.9 75.7
AVG 54.5 58.8 60.2 65.8 68.7 67.6 70.4 -

or adapted to African languages further improve the average results of both approaches. However,
the two approaches still fall behind CODEC with NLLB on average.

C.2 USING THE M2M MT SYSTEM IN CODEC

In this section, we experiment with M2M-100 (418M parameters) (Fan et al.| |2021)), another MT
system that can support many African languages, in CODEC for constrained decoding. Results are
shown in Table[d CODEC with M2M-100 has similar performance to CODEC with NLLB on most
of the languages that it can support, except for isiXhosa, and also outperforms the baseline of fine-
tuning on English data with mDeBERTa on 5 over 6 supported languages.

C.3 IMPACT OF THE SCALE OF THE MT MODEL TO CODEC

There are two places where MT systems are used in CODEC: one for generating the translation
template, and the other for decoding. In this section, we explore the impact of the scale of each MT
model on the performance of CODEC on the MasakhaNER?2.0 dataset, in the translate-test setting.

We first analyze the impact of using different sizes of NLLB (i.e., 600M, 1.3B, and 3.3B) to generate
the translation template, and use the same MT system (i.e., NLLB-600M) for constrained decoding.
Overall, the average F1 scores of methods using NLLB-600M, NLLB-1.3B and NLLB-3.3B as
the template-translator are 68.6, 70.6 and 70.4 respectively (details are in Table [9). We observe
the performance significantly improve when changing from NLLB-600M to 1.3B, where NLLB’s
translation quality also improves the most (Costa-jussa et al., [2022)).

Given the same translation templates (i.e., using NLLB-3.3B as the template generator), we explored
using CODEC with NLLB-600M, NLLB-1.3B and NLLB-3.3B as the constrained decoding module,
and observed that the average performance of the three models are 70.4, 70.1, 70.1 respectively.
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Table 5: F1 scores of different methods of two Cross-lingual tasks: Event Trigger Detection (ETD)
and Event Argument Extraction (EAE) on ACE-2005 dataset in the translate-train setting.

Languages Tasks FT., Awes-align EasyProject CODEC

ETD 48.0 54.6 47.2 51.3
Arabic EAE 26.7 33.1 26.9 33.6
AVG 374 43.9 37.1 42.5
ETD 5238 54.4 51.5 53.1
Chinese EAE 33.5 37.1 37.2 41.2
AVG 432 45.8 44 .4 47.2

D MORE EXPERIMENTS ON ACE2005 DATASET

D.1 AN END-TO-END PIPELINE FOR CROSS-LINGUAL EVENT EXTRACTION

In the main paper, following many prior works, we assume to access the gold event trigger at the
inference time and only focus on the Event Argument Extraction (EAE) task. In this section, we ex-
plore a full pipeline for the EAE task, which includes first using an Event Trigger Detection (ETD)
module to detect the event trigger, then using an EAE module to extract the event arguments. To
train the ETD model in Arabic/Chinese, we project the event triggers from English to the target
language, and fine-tune mDeBERTaV3-base on the concatenation of the English and projected data.
We consider the same baselines and follow the same setup as §4.2] for fine-tuning the EAE model.
We train each model three times with three different random seeds and report the average F1 scores.
We also consider using label projection methods (i.e., Awes-align, CODEC) in the translate-test
setting, in which we use English ETD and EAE models to extract the event triggers and event argu-
ments, and use label projection to project the information from English to target languages. Table 5]
shows the performance of different methods on the test set of ACE 2005. Overall, Awes-Align (an
embedding-based word alignment method) is a very strong baseline for high-resource languages,
such as Arabic and Chinese. CODEC is a marker-based method, which is more directly comparable
to EasyProject (the state-of-the-art marker-based method). CODEC’s strengths are more apparent for
low-resource languages and event arguments (i.e., varied nouns, pronouns, noun phrases, and entity
mentions) where the multilingual LLM/embeddings are less performant. Event triggers are often the
main verbs or action nouns (e.g., “married”, “attack”), where word aligner seems to be doing better,
especially in high-resource languages.

D.2 USING THE MBART MT SYSTEM IN CODEC

In this section, we explore using a different MT system for the cross-lingual event extraction task.
In particular, we choose mBARTS50 many-to-many translation system (Tang et al.l 2020), which
is a competitive open-source MT system for Chinese and Arabic. We use it for generating the
translation template (for the three label projection methods) and decoding (for CODEC only). Except
of changing the underlining MT systems, we follow the same experiment setup as described in
§4.2] We also fine-tune mBARTS50 many-to-many on the synthetic data which Chen et al| (2023a)
provided. The fine-tuned checkpoint in used as the MT system of EasyProject and is used as the
decoding MT of CODEC.

Table [ compares the performance of different label projection methods while using mBART50 MT
system. CODEC achieves competitive performance compared to the other label projection baselines.
It achieves the best results in Arabic, and is slightly worse than EasyProject in Chinese.

D.3 TRANSLATE-TEST RESULTS

In this section, we explore the usage of label projection methods in the translate-test setting of the
Cross-lingual EAE task. In the setting, label projection methods (i.e., Awesome-align, CODEC) are
first used to project event triggers from target languages to English, then an English EAE model
is run to extract the arguments, and finally the label projection methods are used to project the
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Table 6: F1 scores of different label projection methods using mBARTS0 MT system on ACE2005.
mBARTS50 is used for both template generation and decoding in CODEC.

mBARTS50-many-to-many

Lang. FTg,
Awes-align EasyProject CODEC
Arabic 44.8 49.1 45.4 49.5
Chinese 54.0 56.6 57.6 57.2
AVG 494 52.9 51.5 53.4

extracted arguments back to target languages. We experiment with two MT systems for translation
template - NLLB-3.3B and Google Machine Translation (GMT). We observe that the tokenizer used
in NLLB models lacks some Chinese characters and encodes numerous tokens in the Chinese test
sentences as “unknown”, therefore, in experiments of CODEC with Chinese data, we use mBARTS50
many-to-many (Tang et al.|[2020) to decode. While in the experiments of CODEC with Arabic data,
we continue using NLLB-600M to decode. In §4]and[D.2] we use the fine-tuned version of NLLB-
600M and mBARTS50 many-to-many as the decoding MT for CODEC. Specifically, the checkpoints
are fine-tuned on the synthetic data from Chen et al.| (2023a). The data contains parallel sentences,
where the entities on both sides are surrounded by markers. Since the text spans within markers
in the synthetic data are only entities, the fine-tuned checkpoints might not be performant when
projecting other types of span, such as event triggers, which are often main verbs or action nouns.
Consequently, to improve the projection accuracy of CODEC in the EAE task, we explore creating
new synthetic data, whose parallel sentences having event triggers and arguments surrounded by
markers. This data is then used to fine-tune the decoding MT of CODEC. For constructing the data,
we use English Event Trigger Detection (ETD) and EAE models to annotate English sentences.
We follow the setup in to obtain the two models. The extracted event trigger and arguments
are then projected to sentences in target languages by utilizing string matching or alignment-based
approaches. For the former method, we use NLLB-3.3B to translate event triggers and arguments,
and use string matching to find the corresponding text spans in the target sentences, following |Chen
et al.| (2023a). For the latter approach, we utilize Awesome-align to align the event spans between
the source and target sentences. We use the training data of NLLBE] to obtain parallel sentences,
following|Chen et al.[{(2023a)). In total, our synthetic data has 10,000 sentence pairs for each language
pairs (i.e., English-Chinese, English-Arabic, Chinese-English, Arabic-English).

In Table [/} we report the performance of zero-shot cross-lingual transfer approach (i.e., FTg,), and
translate-test results of label projection methods (i.e., Awes-align and CODEC). We study three
versions of CODEC, with the difference comes from the synthetic data used to fine-tune the decoding
MT: CODEC: the synthetic data is from |Chen et al.|(2023a), whose parallel sentences having entity
spans surrounded by markers, CODECyya¢ch and CODECyjig,: our new synthetic data, whose parallel
sentences having event triggers and arguments surrounded by markers, constructed by following the
string matching and alignment-based approach, respectively. Overall, we observe that the translation
quality has a big impact on the performance of translate-test methods, especially in Chinese. For
Chinese, label projection methods can only outperform FTg, when switching to use GMT as the
template translator. Compared to Awes-align, CODEC and variants have better performance for most
of the cases, especially in Arabic. Finally, except for CODECyn in Chinese when using NLLB-
3.3B as the template translator, CODECpich and CODEC,j;g, significantly outperforms CODEC. The
observation demonstrates the benefit of using the synthetic data with event labels surrounded when
fine-tuning the decoding MT of CODEC.

E COMPARE TO BEAM SEARCH IN THE CONSTRAINED SEARCH SPACE

In this section, we compare CODEC with a modified version of beam search that has the same search
space, which we name as CODEC to Constrained-Space Beam Search (CSBS). EasyProject is in fact
a method that uses an un-modified version of Beam Search. Similar to CODEC, at each decoding
iteration, instead of looking at the whole vocabulary, CSBS considers only the next token from the

*https://huggingface.co/datasets/allenai/nllb
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Table 7: Cross-lingual EAE results of label projection methods using different MT systems in the
translate-test setting. “MT” is the MT system used for translation template. In CODEC and vari-
ants, mBART50 and NLLB-600M are used for decoding for Chinese and Arabic data, respectively.
CODECaich/ CODECyjign: the decoding MT in CODEC is fine-tuned on synthetic parallel data, where
event arguments and triggers are surrounded by markers (more details are in @)

Languages MT FTg, Translate-test

Awes-align CODEC CODECmach CODECalign

— NLLB-33B 419 428 452 471
Arabic omr M8 s 49.1 53.9 522

. NLLB-3 3B 458 478 446 50.4
Chinese ~“oyr 40 563 547 56.9 56.8

Table 8: Cross-lingual NER results of using Constrained-Space Beam Search (CSBS) with different
beam sizes and CODEC in the translate-test setting in MasakhaNER2.0. CODEC outperforms CSBS
for every language.

Languages CSBS CODEC
beam=2 beam=4 beam=8 beam=16

Bambara 32.6 359 38.5 42.4 55.6
Ewe 54.8 61.0 66.8 70.6 79.1
Fon 21.3 24.2 29.0 32.7 61.4
Hausa 54.4 66.4 68.7 70.1 73.7
Igbo 46.2 52.3 56.5 60.3 72.8
Kinyarwanda 61.5 70.7 72.7 74.7 78.0
Luganda 62.0 74.2 77.8 80.3 82.3
Luo 27.4 31.8 34.4 41.1 52.9
Mossi 222 253 294 34.5 50.4
Chichewa 519 59.0 62.5 67.8 76.8
chiShona 68.0 74.0 75.3 76.2 78.4
Kiswabhili 57.8 73.5 75.8 77.3 81.5
Setswana 69.2 74.7 76.7 78.1 80.3
Akan/Twi 57.3 63.1 65.4 68.1 73.5
Wolof 39.1 45.8 50.7 54.7 67.2
isiXhosa 49.9 59.9 64.2 67.0 69.2
Yoruba 38.1 45.1 48.4 51.7 58.0
isiZulu 54.2 69.4 72.2 74.6 76.9
AVG 48.2 559 59.2 62.3 70.4

translation template and/or a marker. We compare the two search algorithms in the translate-test
setting on the MasakhaNER2.0 dataset. Table [§|illustrates the performance of CSBS with different
beam sizes (i.e., 2, 4, 8, 16) and CODEC. As shown in the table, a higher beam size will increase the
performance of CSBS, however, even with the beam size of 16, CSBS’s average F1 score still falls
behind CODEC with a big gap.

F MANUAL ASSESSMENT SETUP

Setup In the translate-train setting, we translate 100 English examples from the CoNLL-
2002/2003 multilingual NER datasets (Tjong Kim Sang, 2002) to Vietnamese and Chinese, and use
CODEC to project label spans. For the translate-test setting, we inspect 100 Vietnamese examples
from the VLSP 2016 NER dataset (Nguyen et al.| 2019) and 100 Chinese examples from MSRA-
NER dataset (Levow, [2006). When using the NLLB model to encode texts from the MSRA dataset,
we observe that NLLB lacks many Chinese tokens. Therefore, for experiments on this dataset, we
use a fine-tuned version of the M2M-100 model (Fan et al., 2021) instead. M2M-100 (418M) is
fine-tuned on the same synthetic dataset and follows the same script which is used to fine-tune the
NLLB models used in CODEC and EasyProject (Chen et al., [2023a)).
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Table 9: Cross-lingual NER results of CODEC using different scalses of NLLB (600m, 1.3B, and
3.3B) for template translation and for constrained decoding. Results are reported for the translate-
test setting of MasakhaNER?2.0 dataset (“Translate”: the NLLB model used for template translation;
“Decode”: the NLLB model used for decoding in CODEC).

Languages Translate=NLLB-3.3B Decode=NLLB-600M
Decode=NLLB-600M NLLB-1.3B NLLB-3.3B  Translate=NLLB-600M NLLB-1.3B
Bambara 55.6 56.0 55.8 48.4 54.9
Ewe 79.1 79.3 71.7 78.0 78.2
Fon 61.4 62.4 60.2 59.7 61.2
Hausa 73.7 73.5 73.1 72.2 73.0
Igbo 72.8 72.9 72.8 70.5 71.3
Kinyarwanda 78.0 71.3 71.6 76.8 78.4
Luganda 82.3 82.4 81.7 80.9 82.5
Luo 52.9 53.1 53.1 50.2 54.7
Mossi 50.4 52.1 50.7 48.4 53.7
Chichewa 76.8 76.7 76.9 71.5 75.8
chiShona 78.4 78.0 78.3 71.7 79.2
Kiswahili 81.5 82.0 82.5 81.2 81.1
Setswana 80.3 81.0 81.2 78.3 79.3
Akan/Twi 73.5 72.7 74.6 74.9 73.9
Wolof 67.2 66.2 67.5 65.2 69.8
isiXhosa 69.2 69.6 69.1 69.6 69.4
Yoruba 58.0 56.5 58.7 56.2 58.6
isiZulu 76.9 76.6 76.6 74.2 75.6
AVG 70.4 70.1 70.1 68.6 70.6
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