
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CONTROL EXPERIMENTS ON BIOMEDICAL BENCHMARKS

A.1.1 PERFORMANCE AND ANALYSIS

Method TM MedMCQA MedQA MMLU-Med
ZeroShot ✗ 62.06 67.16 80.06
CoT ✗ 60.91 69.99 76.70

OntoRAG-simple ✗ 64.12 68.34 79.26
✓ 61.80 68.11 80.01

OntoRAG-HyA ✗ 64.04 67.64 79.96
✓ 62.13 69.36 80.65

Table 1: Performance comparison of methods on 3 biomedical benchmarks. TM denotes "translation
module", refering to a variation of the fusion operator F in which an LLM translates ontological
context into natural language.

A.1.2 EFFECTS OF ONTOLOGICAL RELEVANCE.

We hypothesize that weak performance in some areas when using OntoRAG might be due to
vocabulary discrepancies as an effect of decreased ontological relevance. The assess this, we conduct
an analysis where for each question in a given benchmark, the number of retrieved concepts from an
ontology is computed, and the mean across the benchmark is correlated to performance (accuracy),
for a given method. That is, each ontorag variation contributes one point to the correlation analysis.
The goal is to determine whether high ontological relevance correlates with higher accuracy.

The results in Table 2 indicate an overall positive and usually strong correlation between ontological
relevance and downstream performance.

Benchmark Correlation
MedQA 0.7852
MMLU-Med 0.7506
MedMCQA 0.1018

Table 2: Correlation values for different benchmarks

A.2 MEDICAL ONTOLOGIES

We first evaluate our methodology by first gauging its performance on a well known LLM question
and answer (QA) benchmark, Multi-Subject Multi-Choice Dataset for Medical domain (MedMCQA)
(Pal et al., 2022). This is a popular benchmark for evaluating LLM performance on multiple choice
questions from various areas in the medical domain. Questions from this dataset were first divided
based on their medical domain (dentistry, pediatrics, etc.) which then guided the selection of
ontologies to place into the OntoRAG pipeline. The selected ontologies were limited to a biochemical
ontology (https://bioportal.bioontology.org/ontologies/REX) a general medical term/ diagnostic
ontology (https://bioportal.bioontology.org/ontologies/SNOMEDCT), and the widely-used gene
ontology (GO) Aleksander et al. (2023) in an attempt to cover most of the concepts present in the
QA dataset. These ontologies were also chosen due to their public availability and their professional
quality. The benchmark was was curated to only include concepts that appear within the utilized
ontologies. The final dataset contained around 4000 questions with the number of questions ranging
from 27 to 400 for each medical domain. As with the results presented in the main document,
the OntoRAG system offers similar or improved performance over the baseline zero-shot and CoT
methods, with a significant improvements in the areas of genetics, anatomy, and microbiology. These
improvements correlate with the fact that we used ontologies most relevant to these fields.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ZeroShot CoT OntoRAG
No. Entries Question Class

405 Unknown 0.83 0.78 0.82
311 Biochemistry 0.81 0.78 0.83
283 Physiology 0.82 0.79 0.82
130 Medicine 0.88 0.83 0.86
92 Preventive Medicine 0.75 0.65 0.71
88 Microbiology 0.58 0.57 0.61
80 Gynaecology & Obstetrics 0.82 0.78 0.82
77 Anatomy 0.77 0.77 0.91
72 Pharmacology 0.78 0.79 0.76
68 Pediatrics 0.85 0.87 0.85
49 Psychiatry 0.73 0.76 0.73
33 Surgery 0.73 0.67 0.61
23 Dental 0.74 0.65 0.74
18 Genetics 0.83 0.78 0.89
18 Orthopaedics 0.83 0.67 0.83
16 Neurology 0.88 0.81 0.81

Table 3: Accuracy of OntoRAG against baselines on MMLU-Med, by question class. The table
shows the accuracy of each method by type of question. OntoRAG-HyA-TM was used here.

A.3 ONTORAG DETAILS

OntoRAG is implemented using the DSPy library Khattab et al. (2023). The library abstracts the
interface with an LLM into Signatures and Modules. The Signatures abstract the prompting of the
LLM into classes with Input and Output properties, while the Modules define the flow of information
that the pipeline implements.

The below Module is defined as the OntoRAG base module, and defines some standard routines used
in every other sub-module used in this work.

Figure 5: OntoRAG implementations used in this work. Only Simple and HyQ are shown here. These
represent variations in the retrieval type (i.e. direct or hypothetical answer). Variations in the fusion
operator F are defined as part of the BaseOntoRAG class, see Appendix A.3.

class ORAG_Simple(BaseOntoRAG):
"""Simple Ontorag"""
def forward(self, q: str):

ctxt = self.retr(q)
answer = self.predictor(

question=q,
context=context

)
return answer

OntoRAG Simple

class ORAG_HyA(BaseOntoRAG):
"""Ontorag with Hypot. answer
↪→ """
def forward(self, q: str):

Hypothetical answer
ctxt0 = self.retr(q)
hans = self.hya(

question=q,
context=ctxt0

)
Query concepts in HyA
ctxt1 = self.retr(

hans.answer
)
answer = self.predictor(

question=q,
context=ctxt1

)
return answer

OntoRAG-HyA

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 OntoRAG base class.

class BaseOntoRAG(dspy.Module):
retriever: dspy.Retrieve
ontoretriever: OntoRetriever

def forward(self, query: str) -> dspy.Prediction:
"""Forward pass of the OntoRAG pipeline."""
pass

def retrieve(self, query: str, ctxt_doc: str|None) -> str:
"""Retrieve and format."""
ctxt_doc, ctxt_onto = "", ""

if ctxt_doc is None:
ctxt_dict = self.retrieve_doc(query)
ctxt_doc = self.format_context(ctxt_dict)

if self.ontoretriever.ontology.ontologies:
ctxt_ontoj = self.ontoretriever(query)
ctxt_onto = self.format_onto_context(ctxt_ontoj)

ctxt = self.fuse_contexts(ctxt_doc, ctxt_onto)
return ctxt

def format_context(self, context: List[Dict]) -> str:
"""Format context."""
contexts = [p["text"] for c in context for p in c["passages"]]
return "\n".join(deduplicate(contexts))

def format_onto_context(self, context: List[Dict]) -> str:
"""Format ontology context."""
return json.dumps(context, indent=2)

def fuse_contexts(self, ctxt_doc: str, ctxt_onto: str) -> str:
"""Fuse document and ontology contexts."""
return ctxt_doc + ctxt_onto

A specific implementation of OntoRAG looks as follows: First, a Signature is defined, where inputs
and outputs are defined.

The Modules are written to handle the inputs in the Signature, and to produce the outputs.

A.3.1 ONTOLOGY RETRIEVAL OPERATOR

The operator O defined in eq. 2, works by first extracting concepts from a statement s and returning
the most similar ontological concepts {o} in the ontology. The concepts are retrieved by 1. extracting
concepts from the input query, and 2. retrieving ontological context from each of those concepts. The
complete ontology retrieval pipeline is illustrated in pseudo-code 4.

In our implementation, retrieval works by extracting concepts using the spacy "en_core_web_sm"
parser. The pipeline then searches in the loaded ontology, and if found retrieves the parents, children,
as well as the definition, if any.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 MedQnA: Medical Question Answering Signature

class MedQnA(dspy.Signature):
"""Answer a question with a detailed response based on the
given context. If the context is not relevant or there is no
context, answer based on
your knowledge."""

context: str = dspy.InputField(
desc="Context: This information shows the relationships between
relevant concepts:"

)
question: str = dspy.InputField(

desc="Here is the question you need to answer:"
)
reasoning: str = dspy.OutputField(

desc="Reasoning: Let’s think step by step in order to ${reasoning}"
)
choice_answer: str = dspy.OutputField(desc="Answer: ${answer}")

Algorithm 3 SimpleORAG: Simple Ontology-enhanced Retrieval-Augmented Generation

class SimpleORAG(BaseOntoRAG):

def __init__(
self,
ontology: Union[str, OntoRetriever],
context: None|str,

):
super().__init__()
self.predictor = dspy.Predict(MedQnA)
if isinstance(ontology, str):

self.ontoretriever = OntoRetriever(ontology_path=ontology)
else:

self.ontoretriever = ontology

def forward(self, qprompt: str) -> dspy.Prediction:
context = self.retrieve(qprompt)
answer = self.predictor(question=qprompt, context=context)
return answer

A.3.2 WORKING EXAMPLE OF ONTORAG.

Here we need to show an example of a variation of ontorag.

A.4 ONTOGEN DETAILS

A.4.1 SELF CONSISTENCY

The improvement of LLMs’ capabilities to generate high-quality, hallucination-free answers is
currently a highly active area of research. Many generic methods have been proposed that improve
LLMs outputs without training data, fine-tuning or reinforcement learning, which includes, among
others, self-consistency Wang et al. (2022), debating LLMs Du et al. (2023), and self-refinement
Madaan et al. (2024). Research by Huang et al. Huang et al. (2023) demonstrates that self-consistency
offers competitive results while being more computationally efficient compared to other methods.
Therefore, in this work, self-consistency is used to improve the quality of answers from a LLM. As
utilized in our approach, self-consistency can be defined as:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 4 Retrieval of ontological context

1: procedure PROCESSQUERY(query)
2: recognizedConcepts← RecognizeConcepts(query)
3: output← ∅
4: for each ontology, concepts in recognizedConcepts do
5: for each concept in concepts do
6: context← GetOntologicalContext(concept, ontology)
7: output[ontology][concept]← context

return output

8: procedure RECOGNIZECONCEPTS(text)
9: doc← NLP(text)

10: recognizedConcepts← ∅
11: for each token in doc do
12: if token matches any ontology pattern then
13: concept← token.text
14: ontology ← DetermineOntology(concept)
15: recognizedConcepts[ontology].add(concept)

return recognizedConcepts

16: procedure GETONTOLOGICALCONTEXT(concept, ontology)
17: class← ontology.search(label = concept)
18: context← {
19: ”label” : class.label,
20: ”definition” : class.definition,
21: ”parents” : class.superclasses(),
22: ”children” : class.subclasses()
23: } return context

Definition A.1 Let a1, a2, ..., an ∈ A be the answers to a given prompt p generated by a LLM, and
ri the set of tokens generated before the answer ai.

Self-Consistency (SC) applies a marginalization over ri by taking the majority vote of the answers ai,
i.e. a = argmaxai

∑n
j=1 1(ai = aj), thus giving as a final answer the most “consistent” answer

generated by the LLM.

It is important to note that self-consistency was initially proposed to enhance Chain of Thought (CoT)
reasoning Wei et al. (2022) in LLMs Wang et al. (2022), to improve performance on generalized
problem-solving tasks. In our work, we leverage the generalizability of self-consistency to improve
the quality of our knowledge schemas reconstruction.

A.4.2 VOCABULARY EXTRACTION

After each iteration with the LLM, when it has extracted a list of concepts, a verification step is
performed that consists of performing a string search of each of the list terms, in the original sentence.
Terms pass this filter only if they are contained in the original sentence. With this process, we terms
that originate as a result of hallucinations from the LLM used.

A.4.3 CATEGORIES GENERATION

During the refinement step, the LLM is prompted to curate a list of the most frequent categories
extracted from the previous step. SC is applied here by generating many answers from the same
prompt, and taking the majority vote of the categories extracted. While this provides a more robust
list of categories, it is important to note that the correctness of an ontology is dependent on the
downstream application it is intended for. Therefore, human involvement may be required in this step
to select or exclude certain categories in order to align it with the downstream application. The final
list of categories is then used as a seed for extracting the entire taxonomy, making it crucial to ensure
the list is of high quality.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

In the case of SACs ontology, the generated list of categories, obtained by majority voting was: Char-
acterization, Physical properties, Synthesis methods, Reaction mechanisms, Structure, Applications,
Reactions and Support. The manual curation performed in this step involved selecting the following
additional categories from the pool of generated categories, so as to make the ontology more aligned
with our chemistry knowledge: Catalytic performance, Preparation methods, Theory and modelling,
and Materials.

A.4.4 ALGORITHM FOR TAXONOMY GENERATION

Algorithm 5 Iterative and Incremental Top-Down Taxonomy Generation

Input: Papers P , Vocabulary V , Initial Taxonomy T (0)

Output: Reconstructed Taxonomy after K iterations T (K)

1: for k = 1, . . . ,K do
2: T (k) ← T (k−1)

3: for Pi ∈ P do
4: Ri ← query_relationships(Pi, Vi, T (k))
5: for (s, t) ∈ Ri do
6: if is_valid((s, t), T (k)) then
7: T (k) ← T (k) ∪ {(s, t)}
8: return T (K)

Where,

• query_relationships: Extracts isA relationships (s, t) from paper Pi, where s ∈
C(T (k)) is a term in the current taxonomy T (k), and t ∈ Vi. This function aims to place
each term into the existing taxonomy, potentially returning multiple relationships per term.

• is_valid: Ensures no loops are created in the taxonomy when inserting a new relation-
ship.

In our implementation, query_relationships utilizes an LLM prompted with the paper content,
the current taxonomy terms, and the vocabulary to be queried. An example prompt and response
can be found in Appendix A.6. To enhance the quality of the generated taxonomy and reduce
hallucinations, SC is applied in this step by generating multiple answers from the same prompt and
taking the majority voting as the final answer.

A.4.5 EXPERT EVALUATION

In order to evaluate the quality of the generated ontology, a panel of two experts was assembled to
assess the taxonomical relationships. The experts were tasked with randomly sampling relationships
from various iterations of the ontology and determining whether each sampled relationship was
correct according to the context provided for such relationship, in this case, the corresponding
paper. According to the experts, on average at least 64.5% of the sampled relationships were
considered correct. While this indicates a majority of accurate relationships, it also suggests room for
improvement in the ontology generation process. Upon analysis of the incorrect relationships, the
experts identified as potential improvements the removal of semantically similar concepts, which
might appear repeated in different parts of the structure, and the need to provide a more specific
context for the relationships, in order to reduce ambiguity.

A.4.6 SACS ONTOLOGY EXAMPLE

To provide a concrete example of how the ontology is able to capture meaningful relationships, below
two examples are provided corresponding to the synthesis methods (left) and CO2 reduction reactions
(right) branches for both the ontologies generated with Claude 3.5 Sonnet and Llama3.1:70b. Here it
can be seen that both ontologies are able to capture meaningful synthesis methods for SACs that appear
in the literature. It can be seen that, generally there is an agreement in the synthesis methods identified
in both ontologies. It can be highlighted, however, that the Llama-generated ontology contains a
larger number of false-positive synthesis methods (e.g. Methodology, Synthesis, Strategies), which

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

explains the larger number of terms included in this ontology. Regarding the CO2 reduction branch,
one can notice that each ontology contains semantically similar terms (e.g. Carbon dioxide reduction
reaction and CO2 reduction reaction). While this does not affect the downstream performance of
the ontology, it creates unnecessary redundancies in the structure. Additionally, it can be seen that,
in the Llama-generated ontology, CO2 reduction has not been classified as a separate branch, but
instead, it is contained inside the Reactions branch, without this being necessarily incorrect. Finally,
as it happened with the synthesis methods branch, the Llama-generated ontology contains evident
false-positives (e.g. CO2 molecules, dioxide), which did not appear in the Claude-generated ontology.

Example SACs Ontology (Claude 3.5 Sonnet)

Thing
Synthesis methods

Catalyst synthetic strategies
Two-step approach
Ni-TAPc anchoring strategies
Pyrolysis procedure
Bimodal template based synthesis strategies
Multistep pyrolysis process
Multistep pyrolysis method
Wet chemistry methods
Pyrolysis
Atomic layer deposition
Pyrolysis process
NH3 atmosphere annealing
Co precipitation
Annealing
Lyophilization
Galvanic replacement reaction
Synthetic process
Incipient wetness impregnation
Synthesis approach
Silica templating
Synthetic approaches
Synthesis
Synthesis condition
Heteroatom doped
Reduction temperature
Hydrothermal ethanol reduction method
High-temperature pyrolysis
Immobilization via functional group
Dendrimer encapsulation
Hydrothermal treatment
Impregnation methods
Wet impregnation
Sol-gel approach
Self-assembly route
Synthetic strategies
High-temperature self-assembly route

Thing
Reactions

CO2 reduction
Electrochemical carbon dioxide reduction
Carbon dioxide reduction reaction
CO2 reduction reaction (CO2RR)
Electrochemical CO2-to-CO conversion
Electrochemical CO2 reduction reaction (CO2RR)
CO2 conversion
eCO2RR
CO2 electroreduction
Photocatalytic CO2 conversion
Photocatalytic CO2 reduction reaction
CO2 to CO conversion
Photocatalytic reduction
CO2 photoreduction
Catalytic CO2 conversion
CO2 hydrogenation
Electroreduction

Example SACs Ontology (Llama 3.1:70b)

Thing
Synthesis methods

Catalyst synthetic strategies
Nanoconfined ILs strategy
Solid liquid interface engineering
Confinement
Synthesis
Strategies
Postprocessing solution treatments
Acidic leaching
Sol-gel approach
Incipient wetness impregnation
Annealing
Lyophilization
Galvanic replacement reaction
Atomic layer deposition
Co-precipitation
Alloying
Synthetic process
NH3 atmosphere annealing
Hydrothermal treatment
Oxychlorination
Iodo hydrocarbon treatment
NO/CO treatment
Dendrimer encapsulation
Repetitive oxidation and reduction
Immobilization via functional group
Pyrolysis procedure
Bimodal template based synthesis strategies

Thing
Reactions

CO2 molecules
CO2 reduction
Electrochemical CO2 reduction reaction (CO2RR)
Carbon dioxide
CO2 emissions
CO2 reduction reaction (CO2RR)
Anthropogenic CO2 emissions
Carbon dioxide reduction reaction
Electrochemical carbon dioxide reduction
Photocatalytic CO2 reduction reaction
CO2 to CO conversion
dioxide
eCO2RR
CO2 electroreduction
CO2 photoreduction
CO2 conversion
CO2 activation
Electrochemical CO2 to CO conversion
<remaining omitted for clarity>

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Calcination
Wet impregnation
Reduction
Impregnation methods
Rational design
Two-step approach
Ni-TAPc anchoring strategies
High-temperature aging
Synthetic strategies
Scale up flexibility
Low cost
Self-assembly route
High-temperature self-assembly route
Aging treatment
Synthesis approach
Acid wash steps
Silica templating
Sacrificial Zn based metal organic framework
Synthetic approaches
NaOH etching
Pyrolysis
Rational identification
Synthesis condition
High temperature pyrolysis
Hydrothermal ethanol reduction method
Catalyst design
Ionic exchange
Modulation
Composition evolution
Metal salt
Structure performance relationships
o phenylenediamine
Ultrahigh vacuum surface science procedures
Multistep pyrolysis process
Wet-chemistry methods
Multistep pyrolysis method
Physical techniques
Mass-selected soft-landing
Pyrolysis process
Atom beams
Growth mechanism
Post treatment processes
Reconnaissance study
Ketoamine condensation reaction
Multiscale tuning
Ni salts
Methodology
Ni precursor
Formation mechanism
Distribution
Metal precursor

A.5 SACBENCH: BENCHMARK FOR SAC SYNTHESIS PROCEDURES

SACBench is a comprehensive benchmark designed to evaluate the performance of systems that
generate experimental procedures for the synthesis of Single-Atom Catalysts (SACs). The benchmark
consists of 50 input-output pairs, where the input specifies a desired SAC and the output is the correct
synthesis procedure.

The evaluation metrics used aim to assess the validity and correctness of a generated synthesis
suggestion, in chemically meaningful terms.

Some metrics include:

1. Procedure Accuracy: Measures the overall correctness of the generated procedure.

2. Procedure Completeness: Assesses how comprehensive the generated procedure is compared
to the reference.

3. Procedure Order: Evaluates the correct sequencing of steps in the generated procedure.

4. Chemical Identification: Includes recall, precision, F1 score, and accuracy for identifying
correct chemicals in the procedure.

5. Metal Identification: Measures recall, precision, F1 score, and accuracy for correctly
identifying the metal component of the SAC.

6. Support Identification: Evaluates recall, precision, F1 score, and accuracy for correctly
identifying the support material in the SAC synthesis.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 6 shows some general statistics about the test dataset, and the co occurrences between different
variables.

pyrolysi
s

impregnatio
n

ion-exchang
e

hydrotherma
l

sol-gel

other

metal
s

suppor
t

Pt

Cu

Rh

Zn

Fe

AgRuPd
Ir

Ni

Co
Mn

other

Ce

Ce
oxid
eZr ox.

Co
ox.

Ti
oxid
e carbon

other
carbon

N-doped
other

oxide
s

Ti
other

Figure 6: Descriptive statistics of the benchmark created for this work.

A.5.1 SAC RESEARCH PAPERS CORPUS

The corpus of 500 recent research papers on Single-Atom Catalysts (SACs) used for ontology
generation includes publications from top journals in catalysis and materials science from the past
5 years. The papers cover various aspects of SACs, including synthesis methods, characterization
techniques, and applications.

The research papers were obtained from Wiley Journals through Wiley’s official API (Wiley-API
(2024)).

A.6 PROMPT EXAMPLE

Here’s an example prompt used in the query_relationships function for taxonomy extraction:

Given the following paper content, current taxonomy terms, and vocabulary
↪→ to be queried, please identify ’isA’ relationships between terms
↪→ in the vocabulary and terms in the current taxonomy. Ensure that
↪→ each relationship is supported by evidence from the paper content.

Paper content:
In the field of catalysis, single-atom catalysts represent a specialized

↪→ form of catalysts, emerging from the parent concept of a catalyst
↪→ but with isolated active sites at the atomic level. Their creation

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

↪→ often involves various synthesis methods, with wet impregnation
↪→ being a common technique to distribute the active metal atoms
↪→ evenly on a support. Once synthesized, these catalysts can be
↪→ characterized using X-ray absorption spectroscopy.

Current taxonomy terms:
- Reactions
- Catalyst
- Materials
- Synthesis method
- Characterization technique
- Preparation method

Vocabulary to be queried:
- Single-atom catalyst
- Wet impregnation
- X-ray absorption spectroscopy

Please format your response as a list of relationships in the form (
↪→ parent_term, child_term), where parent_term is from the current
↪→ taxonomy and child_term is from the vocabulary to be queried."

Listing 1: Prompt Example

Here is the list of relationships:

(Catalyst, Single-atom catalyst)
(Synthesis method, Wet impregnation)
(Characterization technique, X-ray absorption spectroscopy)

Listing 2: Response Example

A.7 DOWNSTREAM EVALUATION OF ONTOLOGIES

Evaluating the quality of generated ontologies requires either careful expert evaluation, typically
involving committees of experts in the field Keet (2018), or downstream applications that use them as
an integral part of the pipeline and provide quantitative result of some sort.

In our work, we opt for the downstream application on SAC Synthesis to compare two SAC ontologies
generated with OntoGen, using LLMs of different capacity, namely Claude-3.5-Sonnet, and Llama-
3.1-70B. We compare two variants of OntoRAG-simple: with and without a Translation Module.
Additionally we include the results of the ZeroShot and CoT baselines for comparison. All the results
in Tables 4 to 6 are results with gpt-4o-mini as LLM. The metrics used are defined in Appendix A.5.

Table 4: ZeroShot (Baseline)

Procedure Chemicals Metal Support
completeness order accuracy accuracy accuracy accuracy

ontology

Claude 0.725011 0.400722 0.055564 0.130818 0.490196 0.549020
Llama 0.725011 0.400722 0.055564 0.130818 0.490196 0.549020

Table 5: CoT (Baseline)

procedure chemicals metal support
completeness order accuracy accuracy accuracy accuracy

ontology

Claude 0.570561 0.321268 0.048420 0.141569 0.578431 0.490196
Llama 0.570561 0.321268 0.048420 0.141569 0.578431 0.490196

A.8 SACBENCH RESULTS & ANALYSIS

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: OntoRAG-simple

procedure chemicals metal support
completeness order accuracy accuracy accuracy accuracy

ontology

Claude 0.577304 0.330314 0.044630 0.130324 0.607843 0.490196
Llama 0.536076 0.337008 0.038061 0.138353 0.509804 0.431373

Table 7: OntoRAG-simple-tm

procedure chemicals metal support
completeness order accuracy accuracy accuracy accuracy

ontology

Claude 0.613198 0.364592 0.049093 0.132388 0.705882 0.568627
Llama 0.593519 0.369136 0.049502 0.138899 0.647059 0.607843

Figure 7: Complete results of multiple methods, and LLMs, on multiple metrics of the SACBench
benchmark.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Distributions of length of response, by method

Number of characters

Figure 8: Distribution of response length for each LLM, by method. The plot shows a clear difference
between the ZeroShot responses as compared to the rest of the methods.

28

	Appendix
	Control experiments on biomedical benchmarks
	Performance and analysis
	Effects of ontological relevance.

	Medical Ontologies
	OntoRAG Details
	Ontology Retrieval Operator
	Working example of OntoRAG.

	OntoGen Details
	Self consistency
	Vocabulary extraction
	Categories generation
	Algorithm for Taxonomy Generation
	Expert evaluation
	SACs ontology example

	SACBench: Benchmark for SAC Synthesis Procedures
	SAC Research Papers Corpus

	Prompt Example
	Downstream evaluation of Ontologies
	SACBench results & analysis

