
De Bruijn goes Neural: Causality-Aware Graph Neural
Networks for Time Series Data on Dynamic Graphs

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

We introduce De Bruijn Graph Neural Networks (DBGNNs), a novel time-aware2

graph neural network architecture for time-resolved data on dynamic graphs. Our3

approach accounts for temporal-topological patterns that unfold in the causal4

topology of dynamic graphs, which is determined by causal walks, i.e. temporally5

ordered sequences of links by which nodes can influence each other over time. Our6

architecture builds on multiple layers of higher-order De Bruijn graphs, an iterative7

line graph construction where nodes in a De Bruijn graph of order k represent8

walks of length k − 1, while edges represent walks of length k. We develop a9

graph neural network architecture that utilizes De Bruijn graphs to implement a10

message passing scheme that considers non-Markovian characteristics of causal11

walks, which enables us to learn patterns in the causal topology of dynamic graphs.12

Addressing the issue that De Bruijn graphs with different orders k can be used to13

model the same data, we apply statistical model selection to determine the optimal14

graph to be used for message passing. An evaluation in synthetic and empirical15

data sets suggests that DBGNNs can leverage temporal patterns in dynamic graphs,16

which substantially improves performance in a node classification task.17

1 Introduction18

Graph Neural Networks (GNNs) [1, 2] are a cornerstone for applications of deep learning to data19

with a non-Euclidean, relational structure. Different flavors of GNNs have been shown to be highly20

efficient for tasks like node classification, representation learning, link prediction, cluster detection,21

or graph classification. The popularity of GNNs is largely due to the abundance of data that can be22

represented as graphs, i.e. as sets of nodes with pairwise connections represented as links. However,23

we increasingly have access to time-stamped data that not only capture which nodes are connected to24

each other, but also at which discrete points in time and in which temporal order those connections25

occur. A number of works in computer science, network science, and physics have highlighted how26

the temporal dimension of such dynamic graphs influences the causal topology of networked systems,27

i.e. which nodes can possibly influence each other over time [3–5]. In a nutshell, if an undirected28

link (a, b) between two nodes a and b occurs before an undirected link (b, c), node a can causally29

influence node c via node b. If the temporal ordering of those two links is reversed, node a cannot30

influence node c via b due to the directionality of the arrow of time. This simple example shows that31

the arrow of time in dynamic graphs limits possible causal influences between nodes beyond what we32

expect based on the mere topology of links. In line with other uses of the term “causal” (e.g. in the33

context of causal inference [6]), the term “causal topology” is justified since the “correct” temporal34

ordering of links is a necessary condition for nodes to causally influence each other.35

Beyond such toy examples, a number of recent studies in network science, computer science, and36

interdisciplinary physics have shown that the temporal ordering of links in real time series data on37

graphs has non-trivial consequences for the properties of networked systems, e.g. reachability and38

percolation [7, 8], diffusion and epidemic spreading [9, 10], node rankings and community structures39

[11]. It had further been shown that this interesting aspect of dynamic graphs can be understood using40

a variant of De Bruijn graphs [12], i.e. static higher-order graphical models [10, 13, 14] of causal41

paths that capture both the temporal and the topological dimension of time series data on graphs.42

While the generalization of network analysis techniques like node centrality measures and community43

detection [11, 13], or graph embedding [15] to such higher-order models has been successful, to44

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

the best of our knowledge no generalizations of Graph Neural Networks to higher-order De Bruijn45

graphs have been proposed [16, 17]. Such a generalization bears several promises: First it could46

enable us to apply well-known and efficient gradient-based learning techniques in a static neural47

network architecture that is able to learn patterns in the causal topology of dynamic graphs that are48

due to the temporal ordering of links. Second, making the temporal ordering of links in time-stamped49

data a first-class citizen of graph neural networks, this generalization could also be an interesting50

approach to incorporate a necessary condition for causality into state-of-the-art geometric deep51

learning techniques, which often lack meaningful ways to represent time. Finally, a combination of52

higher-order De Bruijn graph models with graph neural networks enable us to apply frequentist and53

Bayesian techniques to learn the “optimal” order of a De Bruijn graph model for a given time series,54

providing new ways to combine statistical learning and model selection with graph neural networks.55

Addressing this gap, our work generalizes graph neural networks to high-dimensional De Bruijn graph56

models for causal paths in time-stamped data on dynamic graphs. We obtain a novel causality-aware57

graph neural network architecture for time series data that makes the following contributions:58

• We develop a graph neural network architecture that generalizes message passing to multiple59

layers of higher-order De Bruijn graphs. The resulting De Bruijn Graph Neural Network60

(DBGNN) architecture is used to implement a message passing scheme, whose dynamics61

matches non-Markovian characteristics of causal walks, thus enabling us to learn patterns that62

shape the causal topology of dynamic graphs.63

• We evaluate our DBGNN architecture in empirical and synthetic dynamic graphs and compare64

its performance to graph neural networks as well as (time-aware) graph representation learning65

techniques. We find that our method yields superior node classification performance.66

• We combine this architecture with statistical model selection to infer the optimal higher order of a67

De Bruijn graph. This yields a two-step learning process, where (i) we first learn a parsimonious68

De Bruijn graph model that neither under- nor overfits patterns in a dynamic graph, and (ii) we69

apply message passing and gradient-based optimization to the inferred graph in order to address70

graph learning tasks like node classification or representation learning.71

Our work builds on the –to the best of our knowledge– novel combination of (i) statistical model72

selection to infer optimal higher-order graphical models for dynamic graphs, and (ii) gradient-based73

learning in a GNN architecture that uses the inferred higher-order graphical models as message74

passing layers. Thanks to this approach, our architecture performs message passing in an optimal75

graph model for the causal paths in a given dynamic graph. The results of our evaluation confirm76

that this explicit regularization of the message passing layers enables us to considerably improve77

performance in a node classification task. The remainder of this paper is structured as follows:78

In section 2 we introduce the background of our work and formally state the problem that we79

address, in section 3 we introduce the De Bruijn graph neural network architecture, in section 480

we experimentally validate our method in synthetic and empirical data on dynamic graphs, and in81

section 5 we summarize our contributions and highlight opportunities for future research. We have82

implemented our architecture based on the graph learning library pyTorch Geometric [18] and83

release the code of our experiments as an Open Source package.84

2 Background and Problem Statement85

Basic definitions We consider a dynamic graph GT = (V,ET ) with a (static) set of nodes V and86

time-stamped (directed) edges (v, w; t) ∈ ET ⊆ V × V × N where –without loss of generality–87

integer timestamps t represent the instantaneous time at which a pair of nodes v, w is connected88

[4]. While many real-world network data exhibit such timestamps, for the application of graph89

neural networks we often consider a time-aggregated projection G(V,E) along the time axis, where90

a (static) edge (v, w) ∈ E exists iff ∃t ∈ N : (v, w; t) ∈ ET . We can further consider edge weights91

w : E → N defined as w(v, w) := |{t ∈ N : (v, w; t) ∈ ET }|, i.e. we use w(v, w) to count the92

number of temporal activations of (v, w).93

A key motivation for the study of graphs as models for complex systems is that –apart from direct94

interactions captured by edges (v, w)– they facilitate the study of indirect interactions between nodes95

via paths or walks in a graph. Formally, we define a walk v0, v1, . . . , vl−1 of length l in a graph96

G = (V,E) as any sequence of nodes vi ∈ V such that (vi−1, vi) ∈ E for i = 1, . . . , l − 1. The97

length l of a walk captures the number of traversed edges, i.e. each node v ∈ V is a walk of length98

zero, while each edge (v, w) is a walk of length one. We further call a walk v0, v1, . . . , vl−1 a path99

of length l from v0 to vl−1 iff vi ̸= vj for i ̸= j, i.e. a path is a walk between a set of distinct nodes.100

2



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

Causal walks and paths in dynamic graphs In a static graph G = (V,E), the topology–i.e. which101

nodes can directly and indirectly influence each other via edges, walks, or paths– is completely102

determined by the edges E. This is is different for dynamic graphs, which can be understood by103

extending the definition of walks and paths to causal concepts that respect the arrow of time:104

Definition 1. For a dynamic graph GT = (V,ET ), we call a node sequence v0, v1, . . . , vl−1 a causal105

walk iff the following two conditions hold: (i) ∃t0, . . . , tl−1 : (vi−1, vi; ti) ∈ ET for i = 1, . . . , l− 1106

and (ii) 0 < tj − ti ≤ δ for i < j and some δ > 0.107

The first condition ensures that nodes in a dynamic graph can only indirectly influence each other108

via a causal walk iff a corresponding walk exists in the time-aggregated graph. Due to 0 < tj − ti109

for i < j, the second condition ensures that time-stamped edges in a causal walk occur in the110

correct chronological order, i.e. timestamps are monotonically increasing [3, 4]. As an example, two111

time-stamped edges (a, b; 1), (b, c; 2) constitute a causal walk by which information from node a112

starting at time t1 = 1 can reach node c at time t2 = 2 via node b, while the same edges in reverse113

temporal order (a, b; 2), (b, c; 1) do not constitute a causal walk. While this definition of a causal walk114

does not impose an upper bound on the time difference between consecutive time-stamped edges115

constituting a causal walk, it is often reasonable to define a time limit δ > 0, i.e. a time difference116

beyond which consecutive edges are not considered to contribute to a causal walk. As an example,117

two time-stamped edges (a, b; 1), (b, c; 100) constitute a causal walk by which information from node118

a starting at time t1 = 1 can reach node c at time t2 = 100 via node b for δ = 150, while they do not119

constitute a causal walk for δ = 5. This time-limited notion of causal or time-respecting walks is120

characteristic for many real networked systems in which processes or agents have a finite time scale121

or “memory”, which rules out infinitely long gaps between consecutive causal interactions [4, 5].122

Analogous to the definition in a static network, we finally define a causal path v0, v1, . . . , vl−1 of123

length l from node v0 to node vl−1 as a causal walk with vi ̸= vj for i ̸= j.124

The definitions above have important consequences for our understanding of the causal topology125

of dynamic graphs, i.e. which nodes can influence each other directly via causal walks or paths.126

The causal topology of a static graph G = (V,E) can be fully understood based on the transitive127

hull of edges, i.e. the presence of two edges (u, v) ∈ E and (v, w) ∈ E implies that nodes u and128

w can indirectly influence each other via a walk or path, which we denote as u →∗ w. This is the129

basis of graph analytic methods, e.g. to calculate (shortest) paths, eigenvalues and eigenvectors to130

analyze topological properties. In contrast, the chronological order of edges in dynamic graphs can131

break transitivity, i.e. (u, v; t) ∈ E and (v, w; t′) ∈ E does not necessarily imply u →∗ w, which132

invalidates graph analytic approaches [14].133

To study how the temporal ordering of edges influences the causal topology of dynamic graphs, we134

can consider causal walks as sequences of random variables that can be modelled via Markov chains of135

order k over discrete state space V [13]. We thus model node sequences v0, . . . , vl−1 in causal walks136

as P (vi|vi−k, . . . , vi−1), where k−1 is the “memory” of the model. For k = 1 we have a memoryless,137

first-order Markov chain P (vi|vi−1), where the next node on a walk only depends on the current node.138

This corresponds to causal walks that are determined by the topology (and possibly frequency) of139

edges, i.e. in absence of correlations in the temporal ordering of edges the causal topology of dynamic140

graphs corresponds to the time-aggregated graph. For order k > 1 the sequence of nodes traversed141

by causal walks exhibits memory, i.e. the next node on a walk can depend on past interactions. Such142

temporal correlations in dynamic graphs can result in complex causal topologies that (i) cannot be143

understood based on the time-aggregated graph, and (ii) influence dynamical processes and spectral144

properties [10, 14, 19], node centralities [13, 20, 21], and community structures [11].145

Higher-order De Bruijn graph models of causal topologies The use of higher-order Markov chain146

models for causal paths leads to a novel view, where the common (weighted) time-aggregated graph147

representation of time-stamped edges corresponds to a first-order graphical model, where edge148

weights capture the statistics of edges, i.e. causal paths of length one. A normalization of edge149

weights in this graph yields a first-order Markov model of causal walks in a dynamic graph. Similarly,150

a graphical representation of higher-order Markov chain model of causal walks can be used to capture151

non-Markovian patterns in the temporal sequence of time-stamped edges. However, different from152

higher-order Markov chain models of general categorical sequences, a higher-order model of causal153

paths in dynamic graphs must account for the fact that the set of possible causal paths is constrained154

by the topology of the corresponding static graph (i.e. condition (i) in Definition 1). To account for155

this we define a higher-order De Bruijn graph model of causal walks [12]:156

3



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

Definition 2 (k-th order De Bruijn graph). For dynamic graph GT = (V,ET ) and k ∈ N, a157

k-th order De Bruijn graph model of causal paths in GT is a graph G(k) = (V (k), E(k)), with158

u := (u0, u1, . . . , uk−1) ∈ V (k) a causal walk of length k − 1 in GT and (u, v) ∈ E(k) iff (i)159

v = (v1, . . . , vk) with ui = vi for i = 1, . . . , k − 1 and (ii) u ⊕ v = (u0, . . . , uk−1, vk) a causal160

walk of length k in GT .161

Any two adjacent nodes u, v ∈ V k in a k-th order De Bruijn graph G(k) represent two causal walks162

of length k − 1 that overlap in exactly k − 1 nodes, i.e. each edge (u, v) ∈ E(k) represents a causal163

walk of length k. We use edge weights w : E(k) → N to capture frequencies of causal paths of164

length k. The (weighted) time-aggregated graph G of a dynamic graph trivially corresponds to a165

first-order De Bruijn graph, where (i) nodes are causal walks of length zero and (ii) edges E = E(1)166

capture causal walks of length one (i.e. edges) in GT . To construct a second-order De Bruijn167

graph G(2) we can perform a line graph transformation of a static graph G = G(1), where each168

edge (u0, u1), (u1, u2) ∈ E(2) captures a causally ordered sequence of two edges (u0, u1; t) and169

(u1, u2; t
′). A k-th order De Bruijn graph can be constructed by a repeated line graph transformation170

of a static graph G. Hence, De Bruijn graphs can be viewed as generalization of common graph171

models to a higher-order graphical model of causal walks of length k, where walks of length l in Gk172

model causal walks of length k + l − 1 in GT [10, 14].173

De Bruijn graphs have interesting mathematical properties that connect them to trajectories of174

subshifts of finite type and to dynamical systems and ergodic theory [22]. In our work, we use a k-th175

order De Bruijn graph to model the causal topology of dynamic graphs. We illustrate this in fig. 1,176

which shows two dynamic graphs with four nodes and 33 time-stamped links. These dynamic graphs177

only differ in the temporal ordering of edges, i.e. their (first-order) weighted graph representation is178

the same (center). Moreover, this first-order representation wrongly suggests that node A can causally179

influence node C by a path via node B. While this is true in the dynamic graph on the right (see red180

causal paths), no corresponding causal path from A via B to C exists in the dynamic graph on the left.181

A second-order De Bruijn graph model (bottom left and right) captures the fact that the causal path182

from A via B to C is absent in the right example. This shows that, different from commonly used183

static graph representations, the edges of a k-th order De Bruijn graph with k > 1 are sensitive to the184

temporal ordering of time-stamped edges. Hence, static higher-order De Bruijn graphs can be used to185

model the causal topology in a dynamic graph. We can view a k-th order De Bruijn graph in analogy186

to a k-th order Markov chain, where a directed link from state (u0, . . . , uk−1) to state (u1, . . . , uk)187

captures a walk from node uk−1 to uk in the underlying graph, with a memory of k − 1 previously188

visited nodes u1, . . . , uk−1. This approach has been used to analyze how the causal topology of189

dynamic graphs influences node ranking in dynamic graphs [11, 13], random walks and diffusion190

[10], community detection [11, 19], and graph embedding [15, 23].191

timeedge
statistics

k=1

A
B
C
D

DC

A B

3
3

8

7 7
5

A-B

B-D D-B

B-C

D-A C-A

2

1

4

2

1

12

3

2

A
B
C
D

time

A-B

B-D D-B

B-C

D-A C-A
2

1

3

2

42

3

5

edge
statistics

causal walk
statistics

causal walk
statistics

k=2 k=2

Figure 1: Example for two dynamic graphs with four nodes and 33 time-stamped edges (top left
and right) that only differ in the temporal ordering of edges. Frequency and topology of edges are
identical, i.e. they have the same first-order time-aggregated weighted graph (center). Due to the
arrow of time, causal walks and paths differ in the dynamic graphs: Assuming δ = 1, in the left
example node A cannot causally influence C via B, while such a causal path is possible in the right
example. A second-order De Bruijn graph model of causal walks in the two graphs (bottom left and
right) captures this difference in the causal topology. Building on such higher-order graph models,
we define a GNN architecture that is able to learn patterns in the causal topology of dynamic graphs.

4



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

Problem Statement and Research Gap The works above provide the background for the generaliza-192

tion of graph neural networks to higher-order De Bruijn graph models of causal walks in dynamic193

graphs, which we propose in the following section. Following the terminology in the network science194

community, higher-order De Bruijn graph models can be seen as one particular type of higher-order195

network models [14, 24, 25], which capture (causally-ordered) sequences of interactions between196

more than two nodes, rather than dyadic edges. They complement other types of popular higher-order197

network models (like, e.g. hypergraphs, simplicial complexes, or motif-based adjacency matrices)198

that consider (unordered) non-dyadic interactions in static networks, and which have been used to199

generalize graph neural networks to non-dyadic interactions [26, 27].200

To the best of our knowledge, De Bruijn graph models have not been combined with recent advanced201

in graph neural networks. Closing this gap, we propose a causality-aware graph convolutional network202

architecture that uses an augmented message passing scheme [28] in higher-order De Bruijn graphs203

to capture patterns in the causal topology of dynamic graphs.204

3 De Bruijn Graph Neural Network Architecture205

We now introduce the De Bruijn Graph Neural Network (DBGNN) architecture with an augmented206

message passing [28] scheme whose dynamics matches the non-Markovian characteristics of causal207

walks in dynamic graphs, which is the key contribution of our work. While we build on the208

message passing proposed for Graph Convolutional Networks (GCN) [29], it is easy to generalize209

our architecture to other message passing schemes. Our approach is based on the following three210

steps, which yield an easy to implement and scalable class of graph neural networks for time series211

and sequential data on graphs: We first use time series data on dynamic graphs to calculate statistics212

of causal walks of different lengths k. We use these statistics to select an higher-order De Bruijn213

graph model for the causal topology of a dynamic graph. This step is parameter-free, i.e. we can use214

statistical learning techniques to infer an optimal graph model for the causal topology directly from215

time series data, without need for hyperparameter tuning or cross-validation. We now define a graph216

convolutional network that builds on neural message passing in the higher-order De Bruijn graphs217

inferred in step one. The hidden layers of the resulting graph convolutional network yield meaningful218

latent representations of patterns in the causal topology of a dynamic graph. Since the nodes in a219

k-th order De Bruijn graph model correspond to walks (i.e. sequences) of nodes of length k − 1, we220

implement an additional bipartite layer that maps the latent space representations of sequences to221

nodes in the original graph. In the following, we provide a detailed description of these three steps.222

Inference of Optimal Higher-Order De Bruijn Graph Model The first step in the DBGNN223

architecture is the inference of the higher-order De Bruijn graph model for the causal topology in224

a given dynamic graph data set. For this, we use Definition 1 to calculate statistic of causal walks225

of different lengths k for a given maximum time difference δ. We note that this can be achieved226

using efficient window-based algorithms [30, 31]. The statistics of causal walks in the dynamic227

graph allows us to apply heuristic and statistical model selection techniques [11, 13, 21, 32] to228

find an optimal higher-order model given the statistics of causal walks (or paths). In our work, we229

employ the method proposed in [13], which yields the optimal higher order kopt for all data sets (see230

table 2). While for the details of the method we refer to [13], in the appendix we provide a high-level231

description of the approach. The resulting (static) higher-order De Bruijn graph model is the basis for232

our extension of the message passing scheme for dynamic graphs.233

Message passing in higher-order De Bruijn graphs Standard message passing algorithms in graph234

neural networks use the topology of a graph to propagate (and smooth) features across nodes, thus235

generating hidden features that incorporate patterns in the topology of a graph. To additionally236

incorporate patterns in the causal topology of a dynamic graph we perform message passing in237

multiple layers of higher-order De Bruijn graphs. Assuming a k-th order De Bruijn graph model238

G(k) = (V (k), E(k)) as defined in Definition 2, the input to the first layer l = 0 is a set of k-th order239

node features hk,0 = {h⃗k,0
1 , h⃗k,0

2 , . . . , h⃗k,0
N }, for h⃗k,0

i ∈ RH0

, where N = |V (k)| and H0 is the240

dimensionality of initial node features. The De Bruijn graph message passing layer uses the causal241

topology to learn a new set of hidden representations for higher-nodes hk,1 = {h⃗k,1
1 , h⃗k,1

2 , . . . , h⃗k,1
N },242

with h⃗k,1
i ∈ RH1

for each k − th order node i (corresponding to a causal walk of length k − 1). For243

5



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

layer l, we define the update rule of the message passing as:244

h⃗k,l
v = σ

(
WWW k,l

∑
{u∈V (k):(u,v)∈E(k)}∪{v}

w(u, v) · h⃗k,l−1
u√

S(v) · S(u)

)
, (1)

where h⃗k,l−1
u is the previous hidden representation of node u ∈ V k, w(u, v) is the weight of edge245

(u, v) ∈ Ek (capturing the frequency of the corresponding causal walk as explained in section 2),246

WWW k,l ∈ RHl×Hl−1

are trainable weight matrices, S(v) :=
∑

u∈V (k) w(u,w) is the sum of weights247

of incoming edges of nodes, and σ is a non-linear activation function. Since it is performed on a248

higher-order De Bruijn graph, we obtain a message passing that is influenced by the non-Markovian249

characteristics of causal walks in the underlying dynamic graph. Different from standard, static graph250

neural networks that ignore the temporal dimension of dynamic graphs, this enables our architecture251

to incorporate temporal patters that shape the causal topology, i.e. which nodes in a dynamic graph252

can influence each other directly and indirectly based on the temporal ordering of edges.253

First-order message passing and bipartite projection layer The (static) topology of a graph254

influences which causal walks are theoretically possible (i.e. they constitute valid walks in the graph)255

and thus which edges can exist in the k-th order De Bruin graph. However, since it operates on256

nodes V (k) in the higher-order graph, the message passing outlined above does not allow us to257

incorporate information on the first-order topology. To address this issue, we additionally include258

message passing in the (static) time-aggregated weighted graph G, which can be done in parallel to259

the message passing in the higher-order De Bruijn graph. The g layers of this first-order message260

passing (whose formal definition we omit as it simply uses the GCN update rule [29]) generate hidden261

representations h⃗1,g
v of nodes v ∈ V . This approach enables us to incorporate optional node features262

h⃗0,g
v (or alternatively use a one-hot-encoding of nodes). In the appendix, we include an ablation study263

that highlights the advantage of first-order message passing.264

Since the message passing in a higher-order De Bruijn graph generates hidden features for higher-265

order nodes V (k) (i.e. sequences of k nodes) rather than nodes V in the original dynamic graph,266

we finally define a bipartite graph Gb = (V (k) ∪ V,Eb ⊆ V (k) × V ) that maps node features of267

higher-nodes to the first-order node space. For a given node v ∈ V , this bipartite layer sums the268

hidden representations h⃗k,l
u of each higher-order node u = (u0, . . . , uk−1) ∈ V (k) with uk−1 = v269

to the representation h1,g
v ∈ RF g

generated by the last layer of the first-order message passing. The270

choice of a bipartite mapping that aggregates higher-order nodes u based on the last first-order node271

uk−1 is based on the interpretation of multiple k-th order De Bruijn graph message passing layers in272

analogy to higher-order Markov chains, where subsequent layers “shift” the memory prefix by one273

position, while the last node captures the current state of the chain.274

Notice that the dimensions of representations in the last layers of the k-th and first-order message275

passing should satisfy F g = H l to enable the summing of the representations. We obtain represen-276

tations {h⃗k,l
u + h⃗1,g

v : for u ∈ V k with (u, v) ∈ Eb} that are the higher-order node representations277

augmented by the corresponding first order representations. We then use a function F to aggregate278

the augmented higher-order representations at the level of first-order nodes. In our experiments, we279

learn first-order node representations h1,g using GCN message passing with g layers, allowing to280

integrate information on the static and the causal topology of a dynamic graph. Formally, we define281

the bipartite layer as282

h⃗b
v = σ

(
WWW bF

(
{h⃗k,l

u + h⃗1,g
v : for u ∈ V (k) with (u, v) ∈ Eb}

))
, (2)

where h⃗b
v is the output of the bipartite layer for node v ∈ V , and Wb ∈ RF g×Hl

is a learnable weight283

matrix. The function F can be SUM, MEAN, MAX, MIN.284

Figure 2 gives an overview of the proposed neural network architecture for the dynamic graph (and285

associated second-order De Bruijn graph model) shown in Figure 1 (left). The higher-order message286

passing layers on the right use the topology of the second-order De Bruijn graph in Figure 1 (left),287

while the first-order message passing layers (left) use the topology of the first-order graph. Note that288

the first-order and higher-order message passing can be performed in parallel, and that the number of289

message passing layers do not necessarily need to be the same. Red edges indicate the propagation of290

higher-order node representations to first order nodes performed in the final bipartite layer. Due to291

space constraints, in Figure 2 we omit the final linear layer used for classification.292

6



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D A-B

B-C

B-D

C-A

D-A

D-B

A-B

B-C

B-D

C-A

D-A

D-B

A-B

B-C

B-D

C-A

D-A

D-B

k-th order De Bruijn graph
message passing layers

�rst-order graph
message passing layers

bipartite
mapping to 

output vector

in
pu

t f
ea

tu
re

s 
(o

r O
H

E)
 

of
 �

rs
t-

or
de

r n
od

es
 V

input features (or O
H

E) 
of higher-order nodes V

(k)

h1,0 h1,1 h1,2 hb

hk,2 hk,1 hk,0

Figure 2: Illustration of DBGNN architecture with two message passing layers in first- (left, gray)
and second-order De Bruijn graph (right, orange) corresponding to the dynamic graph in Figure 1
(left). Red edges represent indicate the bipartite mapping Gb of higher-order node representations to
first-order representations. An additional linear layer (not shown) is used for node classification.

4 Experimental Evaluation293

In the following, we experimentally evaluate our proposed causality-aware graph neural network294

architecture both in synthetic and empirical time series data on dynamic graphs. With our evaluation,295

we want to answer the following questions:296

Q1 How does the performance of De Bruijn Graph Neural Networks compare to temporal and297

non-temporal graph learning techniqes?298

Q2 Can we use De Bruijn Graph Neural Networks to learn interpretable static latent space represen-299

tations of nodes in dynamic graphs?300

To address those questions, we use six time series data sets on dynamic graphs that provide meta-301

information on node classes. The overall statistics of the data sets can be found in table 2, temp-302

clusters is a synthetically generated dynamic graph with three clusters in the causal topology, but303

no pattern in the static topology. To generate this data set, we first constructed a random graph and304

generated random sequences of time-stamped edges. We then selectively swap the time stamps of305

edges such that causal walks of length two within three clusters of nodes are overrepresented, while306

causal walks between clusters are underrepresented. We include a more detailed description in the307

appendix (code and data will be provided in a companion repository).308

Apart from this synthetic data set, we use five empirical time series data sets: student-sms captures309

time-stamped SMS exchanged over four weeks between freshmen at the Technical University of310

Denmark [33]. We use the gender of participants as ground truth classes and use a maximum time311

difference of δ = 40. Since the time granularity of this data set is five minutes, this corresponds312

to a maximum time difference of 200 minutes. high-school-2011 and high-school-2012 capture313

time-stamped proximities between high-school students in two consecutive years [34] (4 days in314

2001, 7 days in 2012). We use the gender of students as ground truth classes. workplace captures315

time-stamped proximity interaction between employees recorded in an office building for multiple316

days in different years [35]. We use the department of employees as ground truth classes. hospital317

captures time-stamped proximities between patients and healthcare workers in a hospital ward.318

We use employees’ roles (patient, nurse, administrative, doctor) as ground truth node classes. All319

proximity data sets have a temporal resolution of 20 seconds.320

To mitigate the computational complexity of the causal walk extraction in the (undirected) proximity321

data sets, we coarsen the resolution by aggregating interactions to a resolution of fifteen minutes and322

use δ = 4, which corresponds to a maximum time difference of one hour. Based on the resulting323

statistics of causal walks, we use the method (and code) provided in [13] to select an optimal higher-324

order De Bruijn graph model. In Table 2 we report the optimal order kopt detected by likelihood ratio325

test, which is used to test the hypothesis that a first-order graph model is sufficient to explain the326

observed causal walk statistics, against the alternative hypothesis that a higher-order De Bruijn graph327

model is needed (see description of order detection in appendix).328

One goal of the synthetic model described above is to show how a static latent property of nodes (here:329

cluster labels) can introduce patterns in the causal topology of a temporal network. Here, following330

an edge (u, v) where node u is member of a given community, node v is more likely to next interact331

with another node in the same community, which influences the statistics of causal walks connecting332

nodes across communities. Similar mechanisms are likely at work in real temporal networks, e.g.333

7



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

node properties like gender, roles, or social groups can introduce correlations in the ordering of334

time-stamped interactions, which are expressed by the presence of second-order correlations in all335

five empirical data sets. The goal of our analysis is to show that such patterns can be used to improve336

the performance of node classification. To this end, we compare the node classification performance337

of the DBGNN architecture with an higher-order De Bruijn graph with optimal order kopt against338

the following five baselines. The first three are standard (static) graph learning techniques, namely339

Graph Convolutional Networks (GCN) [29], DeepWalk [36] and node2vec [37]. We further use two340

recently proposed temporal graph embedding techniques that capture non-Markovian dependencies341

in time series data on graphs. Embedding Variable Orders (EVO) [15] uses random walks to obtain342

vector representation of higher-order nodes. Then, a time-aware representation of each node is343

obtained by aggregating the vector representations of all the higher-order nodes that contain it. In344

HONEM [23], the causal paths observed in time-series data are used to populate a higher-order345

neighborhood matrix. Then, a time-aware node representations is obtained by applying truncated346

SVD to the higher-order neighborhood matrix. Due to the resemblance of a k-th order De Bruijn347

graph with the line graph of the (k−1)-th order graph (which can be viewed as “null model” capturing348

all possible walks of length k), we finally included LGNN [38], a generalization of GCN to line349

graphs, which we adopt to address node classification.350

Addressing Q1, the results of our experiments on node classification are shown in Table 1. Since351

the classes of the empirical data sets are imbalanced, we use balanced accuracy and additionally352

report macro-averaged precision, recall and f1-score for a 70-30 training-test split. The macro353

average performs the arithmetic mean of the scores (precision, recall and f1-score) obtained on the354

individual classes. We report the average performance across multiple splits. For DBGNN, GCN,355

LGNN, DeepWalk, node2vec, and HONEM we performed 50 runs. Due to its larger computational356

complexity (and time constraints) we could only perform 10 runs on EVO. The standard deviations357

are included in the appendix. We trained node2vec, EVO, and DeepWalk with 80 walks of length 40358

per each node and a window of 10. We obtained the embeddings using the word2vec implementation359

in [39]. For EVO, we use the average as an aggregator for the higher-order representations. To ensure360

the comparability of the results from GCN and DBGNN, we train both with the same number of361

convolutional layers with a learning rate of 0.001 for 5000 epochs, ELU [40] as activation function,362

and Adam [41] optimiser. For DBGNN, we use SUM as aggregation function F . We used one-hot363

encoding of nodes as feature matrix (and one-hot encoding of higher-order nodes in the initial layer364

of the DBGNN). For all methods, we fix the dimensions of the last hidden layer to d = 16. We365

manually tuned the hidden dimensions of the first hidden layers for GCN and DBGNN, as well as the366

p and q parameters of EVO and node2vec. For LGNN we adjust the experimental setup in [42] for367

node classification task. We report results for the best combination of hyperparameters.368

The results in Table 1 for the synthetic temporal clusters data set show that the three time-aware369

methods (EVO, HONEM, and DBGNN) perform considerably better than the static counterparts,370

which only “see” a random graph that does not allow to meaningfully assign node classes. Both EVO371

and our proposed DBGNN architecture are able to perfectly classify nodes in this data set. Despite372

their good performance in the synthetic data set, the three time-aware methods show much higher373

variability in the empirical data. DBGNN shows superior performance in terms of balanced accuracy,374

f1-macro, and recall-macro, for all empirical data sets, with relative performance increases compared375

to the second best method ranging from 1.55% to 22.65%. For precision-macro, DBGNN performs376

best in four of the five. We attribute this to the ability of DBGNN to consider both patterns in the377

(static) graph topology and the causal topology, as well as to the underlying supervised approach.378

To address Q2, we study hidden representations of higher- and first-order nodes generated by the379

DBGNN architecture for the synthetic data set, which exhibits three clusters in the causal topology.380

We use the hidden representations h⃗b
v generated by the bipartite layer of our DBGNN architecture, as381

defined in Section 3. We compare this to the representation generated by GCN. Figure 3 confirms that382

the DBGNN architecture learns meaningful node representations that incorporate temporal patterns.383

5 Conclusion384

We propose a new way to apply GNNs to data that capture the temporal ordering of edges in dynamic385

graphs. Our method is based on a combination of (i) a statistical approach to infer an optimal static386

higher-order De Bruijn graph model for the causal topology that is due to the temporal ordering of387

edges, (ii) gradient-based learning in a neural network architecture that performs neural message388

passing in the inferred higher-order De Bruijn graph, and (iii) a bipartite mapping layer that maps the389

8



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

dataset method Balanced Accuracy F1-score-macro Precision-macro Recall-macro

temp-clusters DeepWalk 32.47 30.39 32.25 32.47
Node2Vec p=1 q=4 35.48 33.02 34.92 35.48
GCN (8,32) 33.52 12.5 8.61 33.52
EVO p=1 q=1 100.0 100.0 100.0 100.0
HONEM 54.94 53.5 58.16 54.94
LGNN 33.33 16.67 11.11 33.33
DBGNN (16,16) 100.0 100.0 100.0 100.0

gain 0% 0% 0% 0%
high-school-2011 DeepWalk 55.25 54.02 60.45 55.25

Node2Vec p=1 q=4 56.89 56.29 60.05 56.89
GCN (32,4) 50.06 40.27 33.99 50.06
EVO p=1 q=4 57.21 56.28 62.09 57.21
HONEM 54.24 53.08 56.44 54.24
LGNN 52.76 46.16 51.10 52.76
DBGNN (32,8) 64.4 63.7 65.14 64.4

gain 12.57% 13.16% 4.91% 12.57%
high-school-2012 DeepWalk 59.46 59.6 71.71 59.46

Node2Vec p=1 q=4 60.75 61.23 72.44 60.75
GCN (8,32) 58.03 56.39 59.16 58.03
EVO p=4 q=1 57.98 57.5 69.42 57.98
HONEM 53.16 51.7 56.59 53.16
LGNN 50.56 41.27 46.26 50.56
DBGNN (4,8) 65.8 65.89 67.27 65.8

gain 8.31% 7.61% -7.14% 8.31%
hospital DeepWalk 47.18 44.18 43.91 47.18

Node2Vec p=1 q=4 50.6 47.14 45.81 50.6
GCN [32,32] 49.48 44.62 43.55 49.48
EVO p=1 q=4 36.34 36.44 42.1 36.34
HONEM 46.17 43.13 44.45 46.17
LGNN 30.90 21.30 17.52 30.91
DBGNN (32,16) 59.73 55.81 56.19 59.07

gain 18.04% 18.29% 22.65% 16.64%
student-sms DeepWalk 53.22 50.57 60.57 53.22

Node2Vec p=1 q=4 53.22 50.97 58.56 53.22
GCN (4,32) 57.33 57.25 57.72 57.33
EVO p=4 q=1 52.93 50.66 57.14 52.93
HONEM 50.43 44.44 52.91 50.43
LGNN 52.40 52.11 52.33 52.39
DBGNN (4,4) 60.6 60.89 62.55 60.6

gain 5.7% 6.36% 3.27% 5.7%
workplace DeepWalk 77.81 76.74 76.06 77.81

Node2Vec p=1 q=4 78.0 77.01 76.38 78.0
GCN (32,16) 81.86 78.72 78.58 79.93
EVO p=1 q=4 77.0 75.68 75.03 77.0
HONEM 73.26 72.82 73.73 73.26
LGNN 28.38 17.90 16.64 28.38
DBGNN (32,8) 83.13 81.06 81.52 81.75

gain 1.55% 2.97% 3.74% 2.28%

Table 1: Results of node classification for static graph learning techniques (DeepWalk, node2vec,
GCN, LGNN), time-aware methods (HONEM, EVO) and the proposed DBGNN architecture.

learnt hidden representation of higher-order nodes to the original node space. Thanks to this approach,390

our architecture is able to generalize neural message passing to a static higher-order graph model that391

captures the causal topology of a dynamic graph, which can considerably deviate from what we would392

expect based on the mere (static) topology of edges. The results of our experiments demonstrate that393

the resulting architecture considerably improves the performance of node classification in time series394

data, despite using message passing in a simple static (augmented) graph.395

Our work provides potential for several follow-up studies: First, our method requires to select a pa-396

rameter δ, which determines the “time scale” of the patterns considered by our model. Automatically397

learning the most “informative” time scale for a given temporal network is an interesting and open398

problem that we currently address in a separate work. Second, while for the present work we have399

focused on node classification, it is reasonable to assume that the DBGNN architecture can be used400

for other graph learning tasks like link prediction or graph classification. The clusters recovered in401

the learned latent space representations for the synthetic data further suggest a possible application402

to community detection in temporal networks. Finally, the DBGNN architecture allows to include403

node or edge features to further improve node classification performance. Since our work focuses404

on the advantage of considering the temporal ordering of edges, here we did not consider data with405

additional node or features, which can be addressed in future work.406

Bridging recent research on higher-order graph models in network science and deep learning in407

graphs [14, 16, 24, 25], our work contributes to the ongoing discussion about the need for augmented408

message passing schemes in data on graphs with complex characteristics [28].409

9



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

References410

[1] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Artifical Intelligence and Machine411

Learning 14, 1–159 (2020). 1412

[2] Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks413

and Learning Systems 32, 4–24 (2021). 1414

[3] Kempe, D., Kleinberg, J. & Kumar, A. Connectivity and inference problems for temporal networks. In415

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, 504–513416

(Association for Computing Machinery, New York, NY, USA, 2000). URL https://doi.org/10.1145/417

335305.335364. 1, 3418

[4] Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97 – 125 (2012). URL http://www.419

sciencedirect.com/science/article/pii/S0370157312000841. 2, 3420

[5] Badie-Modiri, A., Karsai, M. & Kivelä, M. Efficient limited-time reachability estimation in temporal421

networks. Phys. Rev. E 101, 052303 (2020). URL https://link.aps.org/doi/10.1103/PhysRevE.422

101.052303. 1, 3423

[6] Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econo-424

metrica: journal of the Econometric Society 424–438 (1969). 1425

[7] Lentz, H. H. K., Selhorst, T. & Sokolov, I. M. Unfolding accessibility provides a macroscopic approach to426

temporal networks. Phys. Rev. Lett. 110, 118701 (2013). URL http://link.aps.org/doi/10.1103/427

PhysRevLett.110.118701. 1428

[8] Badie-Modiri, A., Rizi, A. K., Karsai, M. & Kivelä, M. Directed percolation in temporal networks. Phys.429

Rev. Research 4, L022047 (2022). URL https://link.aps.org/doi/10.1103/PhysRevResearch.430

4.L022047. 1431

[9] Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J. & Schweitzer, F. Betweenness preference: Quantifying432

correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110, 198701 (2013). URL433

http://link.aps.org/doi/10.1103/PhysRevLett.110.198701. https://doi.org/10.1103/434

PhysRevLett.110.198701. 1435

[10] Scholtes, I. et al. Causality-driven slow-down and speed-up of diffusion in non-markovian tempo-436

ral networks. Nature Communications 5, 5024 (2014). URL http://www.nature.com/ncomms/437

2014/140924/ncomms6024/full/ncomms6024.html. https://doi.org/10.1038/ncomms6024,438

1307.4030. 1, 3, 4439

[11] Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R. Memory in network flows and440

its effects on spreading dynamics and community detection. Nature communications 5 (2014). 1, 3, 4, 5441

[12] Bruijn, N. D. A combinatorial problem. In Nederl. Akad. Wetensch., Proc. 49, 461–467 (1946). 1, 3442

[13] Scholtes, I. When is a network a network?: Multi-order graphical model selection in pathways and443

temporal networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge444

Discovery and Data Mining, Halifax, NS, CA, August 2017, KDD ’17, 1037–1046 (ACM, New York, NY,445

USA, 2017). URL http://doi.acm.org/10.1145/3097983.3098145. http://doi.acm.org/10.446

1145/3097983.3098145. 1, 3, 4, 5, 7, 12447

[14] Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex448

systems. Nature physics 15, 313–320 (2019). 1, 3, 4, 5, 9449

[15] Belth, C., Kamran, F., Tjandra, D. & Koutra, D. When to remember where you came from: Node450

representation learning in higher-order networks. In 2019 IEEE/ACM International Conference on451

Advances in Social Networks Analysis and Mining (ASONAM), 222–225 (2019). 1, 4, 8452

[16] Eliassi-Rad, T., Latora, V., Rosvall, M. & Scholtes, I. Higher-Order Graph Models: From Theoretical453

Foundations to Machine Learning (Dagstuhl Seminar 21352). Dagstuhl Reports 11, 139–178 (2021). URL454

https://drops.dagstuhl.de/opus/volltexte/2021/15592. 2, 9455

[17] Krieg, S. J., Burgis, W. C., Soga, P. M. & Chawla, N. V. Deep ensembles for graphs with higher-order456

dependencies. CoRR abs/2205.13988 (2022). URL https://doi.org/10.48550/arXiv.2205.13988.457

2205.13988. 2458

[18] Fey, M. & Lenssen, J. E. Fast graph representation learning with pytorch geometric. arXiv preprint459

arXiv:1903.02428 (2019). 2460

[19] Salnikov, V., Schaub, M. T. & Lambiotte, R. Using higher-order markov models to reveal flow-based461

communities in networks. Scientific reports 6, 1–13 (2016). 3, 4462

[20] Scholtes, I., Wider, N. & Garas, A. Higher-order aggregate networks in the analysis of temporal networks:463

path structures and centralities. The European Physical Journal B 89, 61 (2016). URL http://dx.doi.464

org/10.1140/epjb/e2016-60663-0. http://dx.doi.org/10.1140/epjb/e2016-60663-0. 3465

10

https://doi.org/10.1145/335305.335364
https://doi.org/10.1145/335305.335364
https://doi.org/10.1145/335305.335364
http://www.sciencedirect.com/science/article/pii/S0370157312000841
http://www.sciencedirect.com/science/article/pii/S0370157312000841
http://www.sciencedirect.com/science/article/pii/S0370157312000841
https://link.aps.org/doi/10.1103/PhysRevE.101.052303
https://link.aps.org/doi/10.1103/PhysRevE.101.052303
https://link.aps.org/doi/10.1103/PhysRevE.101.052303
http://link.aps.org/doi/10.1103/PhysRevLett.110.118701
http://link.aps.org/doi/10.1103/PhysRevLett.110.118701
http://link.aps.org/doi/10.1103/PhysRevLett.110.118701
https://link.aps.org/doi/10.1103/PhysRevResearch.4.L022047
https://link.aps.org/doi/10.1103/PhysRevResearch.4.L022047
https://link.aps.org/doi/10.1103/PhysRevResearch.4.L022047
http://link.aps.org/doi/10.1103/PhysRevLett.110.198701
https://doi.org/10.1103/PhysRevLett.110.198701
https://doi.org/10.1103/PhysRevLett.110.198701
https://doi.org/10.1103/PhysRevLett.110.198701
http://www.nature.com/ncomms/2014/140924/ncomms6024/full/ncomms6024.html
http://www.nature.com/ncomms/2014/140924/ncomms6024/full/ncomms6024.html
http://www.nature.com/ncomms/2014/140924/ncomms6024/full/ncomms6024.html
https://doi.org/10.1038/ncomms6024
1307.4030
http://doi.acm.org/10.1145/3097983.3098145
http://doi.acm.org/10.1145/3097983.3098145
http://doi.acm.org/10.1145/3097983.3098145
http://doi.acm.org/10.1145/3097983.3098145
https://drops.dagstuhl.de/opus/volltexte/2021/15592
https://doi.org/10.48550/arXiv.2205.13988
2205.13988
http://dx.doi.org/10.1140/epjb/e2016-60663-0
http://dx.doi.org/10.1140/epjb/e2016-60663-0
http://dx.doi.org/10.1140/epjb/e2016-60663-0
http://dx.doi.org/10.1140/epjb/e2016-60663-0


De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

[21] Xu, J., Wickramarathne, T. L. & Chawla, N. V. Representing higher-order dependencies in networks.466

Science Advances 2 (2016). URL http://advances.sciencemag.org/content/2/5/e1600028.467

http://advances.sciencemag.org/content/2/5/e1600028.full.pdf. 3, 5468

[22] Chung, F., Diaconis, P. & Graham, R. Universal cycles for combinatorial structures. Discrete469

Mathematics 110, 43–59 (1992). URL https://www.sciencedirect.com/science/article/pii/470

0012365X9290699G. 4471

[23] Saebi, M., Ciampaglia, G. L., Kaplan, L. M. & Chawla, N. V. HONEM: learning embedding for higher472

order networks. Big Data 8, 255–269 (2020). URL https://doi.org/10.1089/big.2019.0169. 4, 8473

[24] Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for474

complex systems. SIAM Review 63, 435–485 (2021). URL https://doi.org/10.1137/20M1355896.475

https://doi.org/10.1137/20M1355896. 5, 9476

[25] Benson, A. R., Gleich, D. F. & Higham, D. J. Higher-order network analysis takes off, fueled by classical477

ideas and new data. arXiv preprint arXiv:2103.05031 (2021). 5, 9478

[26] Feng, Y., You, H., Zhang, Z., Ji, R. & Gao, Y. Hypergraph neural networks. CoRR abs/1809.09401 (2018).479

URL http://arxiv.org/abs/1809.09401. 1809.09401. 5480

[27] Huang, J. & Yang, J. Unignn: a unified framework for graph and hypergraph neural networks. In481

Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,482

IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, 2563–2569 (ijcai.org, 2021). URL483

https://doi.org/10.24963/ijcai.2021/353. 5484

[28] Veličković, P. Message passing all the way up. arXiv preprint arXiv:2202.11097 (2022). 5, 9485

[29] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. CoRR486

abs/1609.02907 (2016). URL http://arxiv.org/abs/1609.02907. 1609.02907. 5, 6, 8487

[30] Badie-Modiri, A., Karsai, M. & Kivelä, M. Efficient limited-time reachability estimation in temporal488

networks. Physical Review E 101, 052303 (2020). 5489

[31] Petrovic, L. V. & Scholtes, I. Paco: Fast counting of causal paths in temporal network data. In Leskovec,490

J., Grobelnik, M., Najork, M., Tang, J. & Zia, L. (eds.) Companion of The Web Conference 2021,491

Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, 521–526 (ACM / IW3C2, 2021). URL https:492

//doi.org/10.1145/3442442.3452050. 5493

[32] Petrovic, L. V. & Scholtes, I. Learning the markov order of paths in graphs. In Laforest, F. et al. (eds.)494

WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, 1559–1569495

(ACM, 2022). URL https://doi.org/10.1145/3485447.3512091. 5496

[33] Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the copenhagen497

networks study. Scientific Data 6, 1–10 (2019). 7, 12498

[34] Fournet, J. & Barrat, A. Contact patterns among high school students. PloS one 9, e107878 (2014). 7, 12499

[35] Génois, M. et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy500

based on community linkers. Network Science 3, 326–347 (2015). URL http://www.sociopatterns.501

org/datasets/contacts-in-a-workplace/. 7, 12502

[36] Perozzi, B., Al-Rfou, R. & Skiena, S. Deepwalk: online learning of social representations. In Macskassy,503

S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds.) The 20th ACM SIGKDD International504

Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27,505

2014, 701–710 (ACM, 2014). URL https://doi.org/10.1145/2623330.2623732. 8506

[37] Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. In Krishnapuram, B.507

et al. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery508

and Data Mining, San Francisco, CA, USA, August 13-17, 2016, 855–864 (ACM, 2016). URL https:509

//doi.org/10.1145/2939672.2939754. 8510

[38] Chen, Z., Li, X. & Bruna, J. Supervised community detection with line graph neural networks. arXiv511

preprint arXiv:1705.08415 (2017). 8512

[39] Rehurek, R. & Sojka, P. Gensim–python framework for vector space modelling. NLP Centre, Faculty of513

Informatics, Masaryk University, Brno, Czech Republic 3 (2011). 8514

[40] Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential515

linear units (elus). arXiv: Learning (2016). 8516

[41] Kingma, D. & Ba, J. Adam: A method for stochastic optimization. International Conference on Learning517

Representations (2014). 8518

[42] https://docs.dgl.ai/en/0.9.x/tutorials/models/1_gnn/6_line_graph.html. 8519

[43] Vanhems, P. et al. Estimating potential infection transmission routes in hospital wards using wearable520

proximity sensors. PloS one 8, e73970 (2013). URL http://www.sociopatterns.org/datasets/521

hospital-ward-dynamic-contact-network/. 12522

11

http://advances.sciencemag.org/content/2/5/e1600028
http://advances.sciencemag.org/content/2/5/e1600028.full.pdf
https://www.sciencedirect.com/science/article/pii/0012365X9290699G
https://www.sciencedirect.com/science/article/pii/0012365X9290699G
https://www.sciencedirect.com/science/article/pii/0012365X9290699G
https://doi.org/10.1089/big.2019.0169
https://doi.org/10.1137/20M1355896
https://doi.org/10.1137/20M1355896
http://arxiv.org/abs/1809.09401
1809.09401
https://doi.org/10.24963/ijcai.2021/353
http://arxiv.org/abs/1609.02907
1609.02907
https://doi.org/10.1145/3442442.3452050
https://doi.org/10.1145/3442442.3452050
https://doi.org/10.1145/3442442.3452050
https://doi.org/10.1145/3485447.3512091
http://www.sociopatterns.org/datasets/contacts-in-a-workplace/
http://www.sociopatterns.org/datasets/contacts-in-a-workplace/
http://www.sociopatterns.org/datasets/contacts-in-a-workplace/
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://docs.dgl.ai/en/0.9.x/tutorials/models/1_gnn/6_line_graph.html
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/


De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

A Overview of data sets523

Data set Ref |V | |E| |ET | kopt |V (2)| |E(2)| δ Classes

temp-clusters [blinded] 30 560 60000 2 560 6,789 1 3
high-school-2011 [34] 126 3042 28561 2 3042 17141 4 2
high-school-2012 [34] 180 3965 45047 2 3965 20614 4 2
hospital [43] 75 2028 32424 3 2028 15500 4 4
student-sms [33] 429 733 46138 2 733 846 40 2
workplace [35] 92 1431 9827 2 1431 7121 4 5

Table 2: Overview of time series data and ground truth node classes used in the experiments.

B Description of order detection technique524

In our work, we use the order detection technique that was proposed and evaluated in [13]. The525

method casts the selection of the optimal order as a statistical model selection problem that can be526

addressed using a likelihood ratio test. For a given temporal network, it uses the statistics of observed527

causal walks to calculate the likelihood of a probabilistic De Bruijn graph model with maximum order528

k. A likelihood ratio test is then used to test the goodness of a fit of a k-th order model compared to529

a more complex model with order k + 1, while accounting for the difference in model complexity530

between the k and (k + 1)-th order De Bruijn graph. The null hypothesis that a k-th order model531

is sufficient to explain the statistics of observed causal walk is rejected in favor of the alternative532

hypothesis that a (k + 1)-th model is needed if the associated increase in model likelihood is larger533

than the sampling error, which accounts both for the difference in model complexity and the amount534

of available data. This test can be efficiently be performed using Wilks’ theorem for nested models535

[13]. With this, an incremental test of a k-th order (null model) against a model with order k + 1536

allows us to select the a De Bruijn graph with the largest order k that is justified given the complexity537

of the model and the available data. Specifically, it can be used to select any optimal order kopt ≥ 1,538

i.e. we can not only distinguish between first- and second-order De Bruijn graphs.539

C Generation of Synthetic data with temporal clusters540

temp-clusters is a synthetically generated dynamic graph with a random static topology but a strong541

cluster structure in the causal topology. To generate the dynamic graph, we first generate a static542

directed random graph with n vertices and m edges. For our experiment we chose n = 30 and543

m = 560. We randomly assign vertices to three equally-sized, non-overlapping clusters, where C(v)544

denotes the cluster of vertex v. We then generate N sequences of two randomly chosen time-stamped545

edges (v0, v1; t) and (v1, v2; t + 1) that contribute to a causal walk of length two in the resulting546

dynamic graph. For each vertex v1 of such a causal path of length two, we randomly pick:547

• two time-stamped edges (u, v1; t1) and (v1, w, t1 + 1) such that C(u) = C(v1) ̸= C(w)548

• two time-stamped edges (x, v1; t2) and (v1, z; t2 + 1) with C(v1) = C(z) ̸= C(x)549

Finally, we swap the time stamps of the four time-stamped edges to (u, v1; t1) and (v1, z; t1 + 1),550

(x, v1, t2), and (v1, w, t2+1). This swapping procedure is repeated for each vertex v1 of a causal path551

of length two. This simple process changes the temporal ordering of time-stamped edges, affecting552

neither the topology nor the frequency of time-stamped edges. The model changes time stamps of553

edges (and thus causal paths) such that vertices are preferentially connected—via causal paths of554

length two—to other vertices in the same cluster. This leads to a strong cluster structure in the causal555

topology of the dynamic graph, which (i) is neither present in the time-aggregated topology nor in the556

temporal activation patterns of edges, and (ii) can nevertheless be detected by higher-order methods.557

A random reshuffling of timestamps destroys the cluster pattern, which confirms that it is only due to558

the temporal order of time-stamped edges.559

The larger gain of our DBGNN architecture for the synthetically generated data compared to the560

empirical data sets (observed in Table 1) is likely due to the fact that the synthetic model purposefully561

generates strong patterns that allow to accurately classify nodes. This demonstrates the type of562

patterns that can be used by our architecture, while real data likely exhibit a mix of patterns that563

influence node classification.564

D Latent Space Embeddings of Synthetic Example565

Figure 3 shows a latent representation of nodes in the synthetic data set temp-clusters generated by566

the DBGNN (a) and GCN (b) architecture. This synthetically generated dynamic graph contains567

12



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

no pattern whatsoever in the (static) graph topology, which corresponds to a random graph, i.e.568

the topology of edges is random and all nodes have similar degrees (cf. Figure 3(b)). However,569

correlations in the temporal ordering of edges lead to three strong clusters in the causal topology,570

i.e. there are three groups of nodes where –due to the arrow of time and the temporal ordering571

of edges– pairs of nodes within the same cluster can influence each other via causal walks more572

frequently than pairs of nodes in different clusters. We emphasize that the resulting pattern in the573

causal topology is exclusively due to the temporal ordering of edges. The latent space embedding in574

Figure 3(a) highlights the DBGNN architectures’s ability to learn this pattern in the causal topology575

of the underlying dynamic graph, which is absent in Figure 3(b). As expected, the different node576

degrees of the static graph (visible as clusters in Figure 3(b)) are the only pattern captured in the577

hidden node representations of the GCN architecture, which is insensitive to the temporal ordering578

of edges. This synthetic example confirms that DBGNNs provide a simple, static causality-aware579

approach for deep learning in dynamic graphs.580

The fact that the learned latent representation of nodes clearly and accurately capture the known581

community structure encoded in the causal topology of the synthetic temporal network indicates that582

our method could be used for community detection, a potential that we seek to explore in future583

works.584

13



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

(a) Latent space representation of nodes generated by De Bruijn Graph Neural Network (DBGNN) using higher-
order De Bruijn graph with order k = 2.

(b) Latent space representation of nodes generated by Graph Convolutional Network (GCN).

Figure 3: Latent space representations of nodes in a synthetically generated dynamic graph (temp-
clusters) with three clusters in the causal topology, where colours indicate cluster memberships. The
hidden node representations learned by the DBGNN architecture capture the cluster structure in the
causal topology, which is exclusively due to the temporal ordering –and not due to the topology or
frequency– of time-stamped edges.

14



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

E Semi-supervised Node Classification in DBGNNs585

As an additional experiment that highlights the potential of our method beyond supervised node586

classification, we have performed an experiment where we apply the DBGNN model to the temporal587

clusters data set to address a semi-supervised node classification task.588

For this illustrative experiment, we have chosen one random node per community in the training589

set (see grey nodes in Figure 4) and applied (i) the causality-aware DBGNN architecture and (ii)590

the GCN architecture to classify the remaining nodes in a test set. The latent representations of591

test nodes, where node colors capture the predicted class labels, are shown for the DBGNN and the592

GCN architecture in Figure 4(a) and Figure 3(b) respectively. We find that all predicted labels are593

correct for the DBGNN architecture, which is also visible based on the correlation between latent594

space positions of nodes and node predictions (see Figure 4(a)). In contrast, the predictions of the595

GCN architecture are not better than a random guess (see Figure 3(b)). To facilitate the comparison596

of predicted node labels, we have used the DBGNN latent space representations of nodes for both597

Figure 4(b) and Figure 4(a).598

15



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

(a) Semi-supervised node classification using DBGNN (where nodes are positioned based on DBGNN latent
representation)

(b) Semi-supervised node classification using GCN (where nodes are positioned based on DBGNN latent
representation)

Figure 4: Semi-supervised node classification with DBGNN (a) and GCN (b) for the synthetically
generated dynamic graph (temp-clusters). Node colors indicate predicted node classes, where
training nodes are shown in gray. For clarity of exposition, in both panels (a) and (b) we used the
PCA reduced hidden representation from DBGNN for the node layout. In both panels we highlight
the seed nodes in grey. The mixture of node colors in (b) demonstrates GCN inability to recover
the ground truth node classes. As highlighted by the agreement in colors and node clusters in (a),
DBGNN perfectly recovers the ground truth classes.

16



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

F Standard Deviation of Classification Results599

In Table 3 we present the standard deviation of the classification results reported in table 1 across all600

runs for all models.601

dataset method Balanced Accuracy F1-score-macro Precision-macro Recall-macro

temp-clusters DeepWalk 15.38 15.04 18.03 15.38
Node2Vec p=1 q=4 17.12 16.88 20.24 17.12
GCN (8,32) 7.3 7.69 8.04 7.3
EVO p=1 q=1 0.0 0.0 0.0 0.0
HONEM 16.27 16.71 19.61 16.27
LGNN 0 0 0 0
DBGNN (16,16) 0.0 0.0 0.0 0.0

high-school-2011 DeepWalk 5.83 7.22 12.79 5.83
Node2Vec1.04.0 6.34 7.58 9.44 6.34
GCN (32,4) 0.89 3.1 4.83 0.89
EVO p=1 q=4 5.72 7.65 9.33 5.72
HONEM 5.72 6.93 10.07 5.72
LGNN 6.41 10.48 17.22 6.42
DBGNN (32,8) 7.0 7.42 7.8 7.0

high-school-2012 DeepWalk 4.97 6.52 11.0 4.97
Node2Vec p=1 q=4 5.27 6.8 11.29 5.27
GCN (8,32) 6.87 9.49 13.58 6.87
EVO p=4 q=1 4.14 6.07 9.96 4.14
HONEM 4.59 5.89 9.12 4.59
LGNN 4.48 10.75 14.91 4.48
DBGNN (4,8) 6.59 6.62 7.07 6.59

hospital DeepWalk 7.64 6.9 7.51 7.64
Node2Vec p=1 q=4 6.79 6.46 6.95 6.79
GCN (32,32) 11.06 12.0 13.58 11.06
EVO p=1 q=4 9.31 11.34 16.31 9.31
HONEM 8.51 7.78 8.25 8.51
LGNN 7.38 10.65 10.76 7.38
DBGNN (32,16) 10.7 9.68 9.9 10.74

student-sms DeepWalk 2.72 4.45 10.05 2.72
Node2Vec p=1 q=4 3.29 4.93 9.13 3.29
GCN (4,32) 3.59 3.65 3.91 3.59
EVO p=4 q=1 3.38 5.14 7.89 3.38
HONEM 1.29 2.31 15.0 1.29
LGNN 4.46 4.44 4.37 4.46
DBGNN (4,4) 4.28 4.47 4.56 4.28

workplace DeepWalk 2.23 1.85 1.48 2.23
Node2Vec p=1 q=4 3.3 3.11 2.95 3.3
GCN (32,16) 8.67 8.6 9.61 8.26
EVO p=1 q=4 3.12 2.36 1.65 3.12
HONEM 6.27 5.17 4.34 6.27
LGNN 11.31 12.90 14.92 11.31
DBGNN (32,8) 9.67 9.76 10.26 9.65

Table 3: Standard deviations of node classification in six dynamic graphs for static graph learning
techniques (DeepWalk, node2vec, GCN) and time-aware methods (HONEM, EVO) as well as the
DBGNN architecture proposed in this work.

17



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

G Ablation study of DBGNN without first-order message passing602

As mentioned in the main text, our choice of performing message passing on the first-order graph in603

addition to the message passing in the higher-order De Bruijn graph is based on the idea that we want604

to additionally include information on the graph topology of the underlying system. To justify this605

design choice, we performed an ablation study, in which we removed the first-order message passing606

layer (see fig. 2) and evaluate the node classification performance of the resulting architecture, which607

we denote ad DBGNN∗.608

The results in Table 4 confirm that the inclusion of the first-order message passing layer considerably609

improves the performance of the DBGNN architecture.610

dataset method Balanced Accuracy F1-score-macro Precision-macro Recall-macro

temp-clusters DBGNN* (16,16) 100.0 100.0 100.0 100.0
DBGNN (16,16) 100.0 100.0 100.0 100.0

high-school-2011 DBGNN* (32,8) 60.3 59.4 61.1 60.3
DBGNN (32,8) 64.4 63.7 65.14 64.4

high-school-2012 DBGNN* (4,8) 65.3 64.96 66.63 65.3
DBGNN (4,8) 65.8 65.89 67.27 65.8

hospital DBGNN* (32,16) 53.3 51.78 56.72 53.23
DBGNN (32,16) 59.04 55.26 58.71 57.71

student-sms DBGNN* (4,4) 59.41 59.47 61.56 59.41
DBGNN (4,4) 60.6 60.89 62.55 60.6

workplace DBGNN* (32,8) 76.07 73.18 74.08 74.17
DBGNN (32,8) 83.13 81.06 81.52 81.75

Table 4: Results node classification performance in an ablation study, where we use a model
DBGNN∗ that is identical to DBGNN, except for the missing first-order message passing layer.

18



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

H Comments on computational complexity611

Due to their resemblance to higher-order Markov chains, the computational complexity of our higher-612

order De Bruijn graph architecture could be a possible concern regarding its practical applicability.613

To address those potential concerns, we include an empirical investigation of the number of edges in614

higher-order De Bruijn graphs for all data sets, which determines the computational complexity of615

the message passing scheme.616

For Markov chain models of unconstrained sequences of n nodes, the number of transitions (i.e.617

edges) in a k-th order model grows exponentially as nk+1 (see blue lines in left column of Figure 5).618

The size of such models quickly becomes impractical for real data sets.619

However, compared to higher-order Markov chain models for unconstrained node sequences, in620

our work we are concerned with higher-order De Bruijn graph models of causal walks in a given621

graph. Since most real-world graphs are sparse, the number of walks of length k that are theoretically622

possible is severely reduced compared to the state space of a k-th order Markov chain. For a directed623

graph with n nodes and binary adjacency matrix A the number of walks of exactly length k is given624

as
∑

ij A
k
ij ≤ nk, where Ak is the k-th power of A (see orange lines in the right column of Figure 5).625

This size is the theoretical upper limit for the size of a k-th order De Bruijn graph model of causal626

paths in dynamic graphs that holds iff all possible walks in the underlying graph are realized in627

terms of a corresponding causal walk. In real data sets on dynamic graphs, we find that only a small628

fraction of possible walks is actually realized as causal walks, which further reduces the size of the629

higher-order De Bruijn graphs that are used for message passing (see blue line in right column of630

Figure 5).631

In summary, we find that the number of edges in a higher-order De Bruin graph model grows slowly632

(or even decreases) as the order increases, which considerably reduces the computational complexity633

of our method, making it practically applicable in a wide range of systems. We further note that the634

complexity of the message passing is independent of the length of the time series on the dynamic635

graphs, which is merely used to calculate the statistics of causal walks of length k that are represented636

in the kth order De Bruijn graph models.637

19



De Bruijn goes Neural: Causality-Aware Graph Neural Networks for Time Series Data on Dynamic Graphs

103

104

105

106

107

Nu
m

be
r o

f e
dg

es
temp-clusters

EXP

103

104

105

106

temp-clusters
HON
LINE

105

107

109

Nu
m

be
r o

f e
dg

es

high-school-2011
EXP

104

105

106

107

108
high-school-2011

HON
LINE

106

108

1010

Nu
m

be
r o

f e
dg

es

high-school-2012
EXP

104

105

106

107

108
high-school-2012

HON
LINE

105

107

109

Nu
m

be
r o

f e
dg

es

hospital
EXP

104

105

106

107

108
hospital

HON
LINE

106

108

1010

1012

Nu
m

be
r o

f e
dg

es

student-sms
EXP

103

104

105
student-sms

HON
LINE

1 2 3 4
Order

105

107

109

Nu
m

be
r o

f e
dg

es

workplace
EXP

1 2 3 4
Order

103

104

105

106

107
workplace

HON
LINE

Figure 5: Number of edges in k-th order models for the six different data sets (rows). In the
first column we show the number of edges in a k-th order Markov chain model for unconstrained
sequences of n nodes, which is given as nk+1. The second column contains the number of edges in a
repeated line graph construction of the first-order graph (orange line), and the number of edges in the
actual k-th order De Bruijn graph model of causal walks observed in the data sets (blue line in second
column). Due to the sparsity of the graphs and the relatively small number of long causal walks, we
find that the actual size of the higher-order De Bruijn graph models are order of magnitudes smaller
than the theoretical limit.

20


	1 Introduction
	2 Background and Problem Statement
	3 De Bruijn Graph Neural Network Architecture
	4 Experimental Evaluation
	5 Conclusion
	A Overview of data sets
	B Description of order detection technique
	C Generation of Synthetic data with temporal clusters
	D Latent Space Embeddings of Synthetic Example
	E Semi-supervised Node Classification in DBGNNs
	F Standard Deviation of Classification Results
	G Ablation study of DBGNN without first-order message passing
	H Comments on computational complexity

