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Rethinking the One-shot Object Detection: Cross-Domain
Object Search

ABSTRACT
One-shot object detection (OSOD) uses a query patch to identify
the same category of object in a target image. As the OSOD set-
ting, the target images are required to contain the object category
of the query patch, and the image styles (domains) of the query
patch and target images are always similar. However, in practi-
cal application, the above requirements are not commonly satis-
fied. Therefore, we propose a new problem namely Cross-Domain
Object Search (CDOS), where the object categories of the query
patch and target image are decoupled, and the image styles be-
tween them may also be significantly different. For this problem,
we develop a new method, which incorporates both foreground-
background contrastive learning heads and a domain-generalized
feature augmentation technique.Thismakes ourmethod effectively
handle the object category gap and domain distribution gap, be-
tween the query patch and target image in the training and test-
ing datasets. We further build a new benchmark for the proposed
CDOS problem, on which our method shows significant perfor-
mance improvements over the comparison methods.
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KEYWORDS
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1 INTRODUCTION
Object detection is one of the fundamental problems in computer
vision. The conventional approach relies on training with a large
volume of annotated data and then testing on specified categories,
constituting a closed-classes task that is difficult to extend to novel
categories. In contrast, One-shot Object Detection (OSOD) tasks [2,
12, 32, 36] aim to break the limitation of this closed-classes setting
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Figure 1: Cross-Domain Object Search. During training, we
possess images of real-life scenes featuring multiple base
categories, such as apple and cat. During testing, we aim to
search for novel categories, like airplane and dog, within un-
seen domains, such as watercolor and oil.

and make object detection into an open-classes task. The inspira-
tion for OSOD comes from humans’ remarkable ability to recog-
nize and locate objects by providing them with an example ob-
ject that they have never seen before. In other words, humans can
rapidly learn new concepts and features from a single example and
then identify the same category of objects in other scenes.

As the setting of the OSOD task, given a query patch, and a tar-
get image containing objects of the same category as the query
patch, the goal is to identify the objects (in the target image) of
that category. We have a question about this setting: Does the tar-
get image necessarily contain objects of the same category as the
query patch? In real-world applications, a common scene may be
identifying the objects of interest from a image gallery (no matter
whether containing the query patch), but not manually selecting
the images with the desired detection objects as input. Further, it is
also important that the image gallery should be broad, potentially
containing data from various image styles (domains).

From the above two perspectives, in this work, we propose to
study a new problem, i.e., Cross-Domain Object Search (CDOS).
Different from the classical OSOD, we do not require all the tar-
get images in the gallery to contain the object category of the
query patch.We also allow the target images to have various styles,
which can be different from the query patch, and even have not
been seen in the training dataset, as depicted in Figure 1.

The proposed CDOS is a very challenging problem. The first
challenge comes from the object (category) similaritymeasurement.
In OSOD, the main problem is to find the most similar object to
the query patch in a target image. In CDOS, we have to first judge
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whether the target contains the desired object. The second chal-
lenge comes from the domain gap. In our problem, we allow the
target images within various domains, e.g., a cartoon-style image,
which has the domain gap with the query patch. Moreover, fol-
lowing the domain generalization problem [30], we propose to use
all the natural images as the training set, while the style images
during testing are not seen during training.

To address these two challenges, we present a new approach for
CDOS. Specifically, we first propose a new module for foreground-
background contrastive learning. This module is composed of two
parts. The foreground contrastive learning head aims at improving
the network’s ability to classify foreground objects, thereby reduc-
ing category confusion. The background contrastive learning head
is designed to bolster the network’s capacity to distinguish back-
ground, thus mitigating background misjudgment (false positives).
Besides, to address the challenge of open-domain issues, we im-
plement a random feature perturbation augmentation on the fea-
ture extraction network during training. This data augmentation
strategy diversifies the training scenarios by altering the statisti-
cal properties of images, which enhances the model’s robustness
when encountering data from unknown domains. In summary, the
main contributions of this work are:

• We extend the one-shot object detection task and propose a
new and practical problem, i.e., Cross-DomainObject Search
(CDOS), which enables a convenient search of objects of in-
terest in the category-free and domain-various image gal-
leries.

• We develop the first baseline method for CDOS, which con-
structs an abundant number of foreground and background
samples for contrastive learning, to enhance the model’s
feature discrimination capabilities. Furthermore, a feature
augmenter module is applied to narrow the domain gap be-
tween the query and the target images, also the training and
testing data.

• Webuild a new large-scale image dataset namelyMulti-Style
Object Search Benchmark (MSOSB), which provides a bench-
mark to facilitate the training and testing of CDOS problems.
Extensive experiments on it demonstrate the effectiveness
of our method, which significantly outperforms the state-of-
the-art methods. The MSOSB is made publicly available at
https://2899253375.github.io/blog/.

2 RELATEDWORK
2.1 One-shot Object Detection
In the domain of computer vision, One-shot Object Detection (OSOD)
presents a unique object detection task. The objective is to detect
objects within an image that are of the same class as a presented
query patch after having only a single instance of the object to
reference, without further fine-tuning for new categories. This dif-
fers from conventional object detection methods, such as Faster-
RCNN [24], which generally require extensive labeled data to train
models for recognizing specific object classes. Works like [2, 12, 32,
36] have made notable contributions to OSOD by employing fea-
ture fusion to obtain directly transferablemeta-knowledge, thereby
generalizing this meta-knowledge to new categories. Among these,

BHRL [32] introduced an innovative Instance Hierarchical Rela-
tion (IHR) module that achieves superior results. In machine learn-
ing, such capabilities are particularly critical for scenarios where
collecting or annotating vast amounts of data is challenging. The
OSOD task is akin to our proposed object search task, but OSOD
evaluations focus on paired query patches and target images and
do not consider searching for objects within an image gallery, lead-
ing to a high rate of false positives in images without the objects of
interest. We have developed a novel method for the object search
task that mitigates these issues.

2.2 Single Domain Generalization
In this study, we delve into Domain Generalization (DG), which
aims to learn a robust model from multiple source domains that
can be effectively generalized to any unseen target domain. Single
Domain Generalization (SDG) [30] represents the more challeng-
ing extreme of DG, where only one source domain dataset is used
for training with the goal of adapting to multiple unseen target
domains. To address this challenge, various data augmentation al-
gorithms have been designed to enhance the diversity of training
data, as proposed in [19, 23, 30]. A domain augmentation module
for synthesizing images was introduced in [30], while [19] incorpo-
rated synthetic feature statistics to simulate the uncertainty of do-
main shift during training. To standardize SDG training, [5] incor-
porated various visual impairments as augmentations and devised
a novel attention consistency loss. A new imagemeta-convolutional
network capturing more domain-generalizable features was devel-
oped in [29]. There are also approaches specific to SDG for Ob-
ject Detection. For instance, [31] proposed a cycle-consistent dis-
entangled self-distillation method that disentangles from domain-
specific representations without domain-related annotations (e.g.,
domain labels), and [28] employed pre-trained visual-languagemod-
els to introduce semantic domain concepts through text prompts.
In the context of CDOS, similar challenges to SDG are evident, such
as training with real-world images and, during testing, the query
patch and target image may appear in any domain. Particularly
challenging is when the styles of the query patch and target image
differ, for which we have applied feature augmentation in the twin
branches of the Siamese network [3] to implement feature random
augmentation.

2.3 Out-of-distribution Detection
Most existing machine learning models are trained based on the
closed-world assumption, where it is assumed that the test data
will share the same distribution as the training data, known as In-
Distribution (ID). However, when models are deployed in open-
world scenarios [1], the test samples can be Out-Of-Distribution
(OOD), significantly increasing the difficulty of recognition. Distri-
bution shifts can be caused by semantic shifts (e.g., samples from
different categories) or covariate shifts (e.g., samples from differ-
ent domains) [33]. Generalizing models to OOD data is a natural
capability of humans that is challenging to replicate in machines.
In the context of CDOS, both query patches and target images may
originate from out-of-domain data (novel categories and unseen
domains). Overall, the CDOS task can also be considered a form of
Out-of-distribution Detection, capable of searching for objects in
novel categories as well as unseen domains.
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3 MSOSB: A MULTI-STYLE OBJECT SEARCH
BENCHMARK

Datasets containing a variety of style data can significantly en-
hance the evaluation of a model’s domain generalization capabili-
ties. Thus, for CDOS methods, conducting assessments on datasets
with a wide range of image styles is essential. As shown in Ta-
ble 1, existing multi-style object detection datasets can be catego-
rized as follows: (1) General objects: Clipart [14], Watercolor [14],
Comic [14]; (2) Traffic scenes: KITTI [9], Cityscapes [4], BDD100K [35],
FoggyCityscapes [26], UFDD [22], RTTS [17], Sim10K [15]; (3) Face
detection:WIDER FACE [34].The datasets Clipart [14],Watercolor [14],
and Comic [14] include abstract, artistic, and comic images, respec-
tively. Understanding these types of abstract imagery allows for
direct investigation into how models infer high-level semantic in-
formation. The Clipart [14] comprises approximately 1K images
across 20 categories, aligned with Pascal VOC [7]. The Watercolor
and Comic datasets contain around 1K training images and 1K
testing images across six categories. Overall, the existing style
datasets for common objects are modest in size and offer a
limited array of categories, falling short of the needs for as-
sessing domain generalization models in generic object de-
tection tasks. Consequently, we have developed MSOSB: a
multi-style object search benchmark. We will detail MSOSB’s
key aspects in the following sections.
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Figure 2: Collected data from five styles. Images typically
contain not only the objects and complex backgrounds but
also objects of various other categories.

3.1 Benchmark Construction
We aim to construct a multi-style benchmark for the CDOS task,
sharing categories with the MS COCO [21]. This benchmark will
encompass styles such as cartoon, oil, watercolor, pencil, and art.
To curate images in these styles, we initially selected suitable im-
ages for object detection tasks from the image style classification

cartoon                   oil                         art                        watercolor               pencil  

Figure 3:The t-SNE of feature-level style statistics, Φ = [𝜇, 𝜎],
derived from the outputs of ResNet 50 for samples of the dog
category. Samples are clustered based on domain features.

datasets PACS [18] andOfficeHome [27]. Subsequently, we scoured
the internet for images in these styles, aiming to represent each
category adequately. Given the impressive capabilities of current
generative models and their proliferating presence online, bring-
ing generated images ever closer to our daily lives, we utilized the
stable diffusion model [25] to generate images for each category
and style, followed by a meticulous selection process. The images
were then annotated and verified meticulously, following the an-
notation scheme of MS COCO [21], ensuring the benchmark’s ver-
satility and reliability. For the Clipart [14], Watercolor [14], and
Comic [14] datasets, we conducted a selection and reorganization
process before integrating them into our dataset. Through t-SNE
analysis, we observed that the distributions of Clipart [14] and
Comic [14]were nearly identical, leading us tomerge these datasets
into the cartoon style. To further diversify the dataset’s style, we
applied BaiDu’s style conversion API to the validation set of MS
COCO [21] and all data from Pascal VOC [7], generating pencil
and art-styled data.

In summary, as depicted in Figure 2 and the t-SNE visualization
distribution in Figure 3, we have constructed a benchmark com-
prising 80 categories. This benchmark includes 999 images from
Clipart [14], 1905 images from Watercolor [14], 1905 images from
Comic [14], 264 images from PACS [18], 170 images from Office-
Home [27], 1004 images sourced from the internet, 37624 images
generated by stable diffusion [25], and 32275 images produced via
BaiDu’s style conversion API, culminating in a total of 75146 im-
ages in the MSOSB.
3.2 Data Cleaning and Annotation
For the existing datasets Clipart [14], Watercolor [14], Comic [14],
PACS [18], and OfficeHome [27], we assigned three researchers
to screen and adjust the annotations for the Clipart [14], Water-
color [14], and Comic [14] images, with the principle that the im-
ages must be readable and clear, and any misaligned annotations
corrected. Three researchers were tasked with selecting images
from the PACS [18] and OfficeHome [27] classification datasets,
as well as collecting high-quality images of similar styles from the
internet. The selection criteria were that the images should belong
to the cartoon, oil, or watercolor styles, and be suitable for object
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Table 1: Relative to Other Styled Object Detection Datasets.

Name Year Images Classes Styles Application Scenes Image source
Pascal VOC [7] 2010 21,493 20 1 General objects Internet

KITTI [9] 2013 14,999 1 1 Traffic scenes Shooting
MS COCO [21] 2014 123,287 80 1 General objects Internet
Cityscapes [4] 2016 3,475 8 1 Traffic scenes Shooting
Sim10K [15] 2016 10,000 1 1 Traffic scenes Game engine

WIDER FACE [34] 2016 32,000 1 1 Face detection Shooting
FoggyCityscapes [26] 2018 3,475 8 1 Traffic scenes Shooting

Clipart [14] 2018 1,000 20 1 General objects Internet
Watercolor [14] 2018 1,905 6 1 General objects Internet

Comic [14] 2018 1,905 6 1 General objects Internet
UFDD [22] 2018 884 1 1 Traffic scenes Shooting
RTTS [17] 2018 9,109 5 1 Traffic scenes Various

BDD100K [35] 2020 41,986 10 12 Traffic scenes Shooting
MSOSB 2024 76,146 80 5 General objects Various

detection tasks (the target objects’ area should not be too large), fol-
lowed by format conversion, meticulous selection, and annotation.
Subsequently, we deployed ten researchers to generate cartoon,
oil, and watercolor style images using stable Diffusion [25] via
Google’s Colab, with categories matching those of MS COCO [21].
For each style and category, 500 images were generated with vary-
ing sizes, ranging from 512 to 2048 pixels. Given the variable qual-
ity of some generated images, a rigorous selection and annotation
process was necessary. Since the MS COCO [21] validation set and
all Pascal VOC [7] data are already annotated, we utilized BaiDu’s
style conversion API for stylization, randomly generating pencil
and art-style images. It’s noteworthy that this stylization does not
alter the content of the images, hence the original annotations can
still be used.

Finally, we standardized the annotation files into Pascal VOC [7]
andMSCOCO [21] formats.The first two digits of the image names
indicate the style, for example, “01” for cartoon, followed by a se-
quence number representing the image’s order within its style cat-
egory, such as “01000000002” for the second image in cartoon style.

3.3 Dataset Characteristics
The MSOSB introduces a series of challenging settings that rigor-
ously test the limits of CDOSmodels, with challenges arising from:

Variability in object size and aspect ratio.TheMSOSB dataset
includes objects of different sizes and shapes. This requires models
to have strong abilities to recognize and distinguish objects in var-
ious visual situations.

Complex Backgrounds and Overlapping Objects. Images
within the MSOSB dataset typically exhibit complex backgrounds
and overlapping objects, reflecting the conditions of cluttered en-
vironments around the objects in the real world.

Multi-categorymulti-object scenes. Each image in theMSOSB
may contain multiple objects with different categories to measure
the models’ ability of robust object classification/localization.

Cross-DomainVariability. SinceMSOSB shares categorieswith
MS COCO [21], it can be combined with MS COCO [21] to use to-
gether in six styles, further challenging the domain generalization
capabilities of CDOS models.

These challenging settings are meticulously planned to simu-
late complex real-world scenes, thereby providing a comprehen-
sive benchmark for advancing CDOS techniques.

4 PROPOSED METHOD
In this section, we first define the setup for the CDOS problem
and then elaborate on how the key components of our proposed
method (CrDoOS) address the CDOS task.

4.1 CDOS Problem Formulation
Similar to OSOD, object catogories are divided into base catogories
𝐵 and novel catogories 𝑁 , where 𝐵 ∩ 𝑁 = ∅. The domains of the
data are split into seen domains 𝑆 and unseen domains 𝑈 , with
𝑆 ∩ 𝑈 = ∅. Given an arbitrary query patch, CDOS aims to detect
targets within an image gallery, which contains a large and com-
plex assortment of unknown images, that match the category of
the query patch. Like OSOD, the CDOS task is trained using data
from the base catogories and seen domains. After training, it can
generalize to directly search for objects in an image gallery using
just a single query patch, where the image gallery includes images
from both base and novel catogories, as well as images from vari-
ous domains. Unlike the OSOD task, the images in image gallery
does not necessarily contain objects of the same category as the
query patch in CDOS, and the styles of the target image and query
patchmay not match.This significantly increases the difficulty and
aligns more closely with real-world scenarios.

4.2 Framework
We introduce a CDOS framework inspired by BHRL [32], with its
overall architecture depicted in Figure 4. This structure utilizes a
two-stage object detection paradigm and employs a Siamese net-
work [3] to extract features from both the query patch and the
target image. Subsequently, a feature fusion module aggregates
the features of the query patch and proposals of target image for
classification and regression tasks. Building on this foundation, we
have incorporated a foreground-background contrastive learning
heads, enabling the network to fully leverage the features of ob-
jects across various categories and their background for contrastive
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Figure 4: Overview of CrDoOS. The diagram illustrates the comprehensive training workflow of our method, where both
Backbone_q and Backbone_k are ResNet 50. The parameters of Backbone_k are momentum-updated based on Backbone_q.
The light blue sections represent our proposed Foreground-Background Contrastive Learning heads. The training process
involves both the deep and light blue sections, using a pair of query patch (fed into the first branch of the Siamese network)
and target image (fed into the second branch of the Siamese network and the Foreground-Background Contrastive Learning
heads). For testing, the process traverses the deep blue section, where the query patch (fed into the first branch of the Siamese
network) and the image gallery (fed into the second branch of the Siamese network) are utilized.

learning. This addition enhances the network’s discriminative ca-
pability regarding features without increasing inference parame-
ters and computation time. To address the domain discrepancy be-
tween the query patch and the target image, we have incorporated
a Feature Random Augmenter into both branches of the Siamese
network [3].This augmentermainly operates by randomly perturb-
ing the mean and variance of shallow features within the Siamese
network [3] to achieve feature augmentation, thereby exposing the
network to a broader range of domains and enhancing its abil-
ity to search for objects in images of various styles. Overall, our
method presents two primary contributions: firstly, we introduced
a foreground-background contrastive learning heads (see Subsec-
tion 4.3), and secondly, we implemented a feature random aug-
menter within the Siamese network [3] (see Subsection 4.4).

4.3 Foreground-Background Contrastive
Learning Heads

A classical method–MoCo [10], by employing momentum update
mechanisms for feature comparison, has exerted a beneficial and
profound impact on self-supervised learning.This approach demon-
strates that utilizing a large set of features for contrastive learn-
ing enhances the backbone’s capabilities in feature extraction and
discrimination. Given the severe foreground confusion and back-
groundmisclassification encounteredwhen directly applyingOSOD

methods to object search tasks, we introduced amomentum-updated
foreground-background contrastive learning heads. This addition
improves the backbone’s discriminative ability, thus mitigating is-
sues of foreground confusion and backgroundmisclassification.The
heads are divided into two parts.

Enqueue
Dequeue

…

Class 1

Class 2

Class 3

Class 4

Class N

(a) Foreground feature quene group

(b) Background feature queue

Figure 5: Foreground feature queue group and background
feature queue. (a) is the foreground feature queue group,
where each category has a separate queue for storing fore-
ground features. (b) is the background feature queue, where
the network randomly crops a piece of background feature
from each target image for storage.
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Foreground Contrastive Learning. We use a foreground fea-
ture contrastive learning strategy, which aims to resolve issues of
foreground object ambiguity. Specifically, as shown in Figure 4, the
features of the target images are extracted using the Backbone_k,
which employsmomentum-updated parameters in combinationwith
the Feature Pyramid Network (FPN) [20], as described in following

𝜃𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑘 (𝑡 ) =𝑚 ·𝜃𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑘 (𝑡−1) + (1−𝑚) ·𝜃𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑞 (𝑡 ) (1)

where 𝜃𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑘 denotes the parameters of the Backbone_k, and
𝜃𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑞 represents the parameters of Backbone_q, 𝑡 denotes
the number of iterations, and𝑚 stands for the momentum update
parameter.

For the supervision of this branch, the foreground features are
cropped from the image using Ground Truth (GT) boxes of base
categories and processed through a projector layer. These features
are stored and updated in a categorized queue group, as illustrated
in Figure 5 (a).

During this process, the features of objects from the same cat-
egory as the query patch are considered positive samples, while
those from different categories serve as negative samples.With the
positive/negative samples, we apply the following loss function in
Equation (2) [16] to train the network by contrastive learning

𝐿Foreg =
∑
𝑖∈𝐼

𝐿Foreg,𝑖 =
∑
𝑖∈𝐼

− 1
|𝑃 (𝑖) |

∑
𝑝∈𝑃 (𝑖 )

log
exp(𝑧𝑖 · 𝑧𝑝/𝑇 )∑

𝑎∈𝐴(𝑖 )
exp(𝑧𝑖 · 𝑧𝑎/𝑇 )

(2)
where 𝐿Foreg denotes the foreground contrastive learning loss,𝑇 ∈
R+ is a scalar temperature parameter, 𝑧𝑝 is a sample of the same
category as 𝑧𝑖 , and 𝑧𝑎 represents samples from other categories,
𝐴(𝑖) represent the set of samples excluding 𝑖 .

Through the above strategy, extensive contrastive learning among
base category features enhances the discriminative capability of
the Backbone_q, thereby alleviating foreground confusion during
inference. It is important to note that in our design of the fore-
ground feature queue group, we employ queues of the same length
for different categories.This ensures that the number of features per
category is consistent, thereby facilitating a more balanced learning
process across the network.

BackgroundContrastive Learning.We then consider the back-
ground contrastive learning head. Our basic idea is to build an in-
dividual discrimination task from the vast image backgrounds. By
maximizing the separation between object features and background
features, we can enhance the network’s ability to discriminate be-
tween foreground and background regions.

This way, our background contrastive learning head involves
contrasting positive sample pairs against a large pool of negative
samples. Specifically, we randomly crop features from the back-
ground areas of the target image to populate the background fea-
ture queue (ensuring that the cropped features are not too small
to maintain rich background information), as illustrated in Fig-
ure 5(b). By storing these background features in an extensive queue,
we enrich the diversity of background samples, effectively lever-
aging the advantages of individual discrimination tasks and con-
trastive learning.The features of the query patch and its augmented
counterpart serve as positive samples, while all features in the
background feature queue serve as negative samples.

Finally, similar to the foreground head, the loss function for this
background contrastive learning is detailed in the following Equa-
tion (3).

𝐿Backg =
∑
𝑖∈𝐼

𝐿Backg,𝑖 = −
∑
𝑖∈𝐼

log
exp(𝑧𝑖 · 𝑧 𝑗 (𝑖 )/𝑇 )∑

𝑏∈𝐵 (𝑖 )
exp(𝑧𝑖 · 𝑧𝑏/𝑇 )

(3)

where 𝐿Backg denotes the background contrastive learning loss,
𝑧 𝑗 (𝑖 ) is the augmented sample of 𝑧𝑖 , and 𝑧𝑏 represents the back-
ground sample, 𝐵(𝑖) represent the set of samples excluding 𝑖 .
4.4 Feature Random Augmenter
Considering the domain gap between the query patch and the tar-
get image, and the training and testing datasets, we further develop
a feature random augmenter to narrow the domain gap.

As discussed in previous work [13], the statistics of image fea-
ture channels (mean and standard deviation) are closely related to
image style. Altering these channel statistics can be seen as an im-
plicit way to change the style of the input image, as in Equation (4)

Sty(𝑥 ) =
𝜎 (𝑦)
𝜎 (𝑥 )

(𝑥 − 𝜇 (𝑥 ) ) + 𝜇 (𝑦) . (4)

where 𝑥 represents the original sample and Sty(𝑥 ) denotes the gen-
erated sample with image style transformation. Here 𝜇 (𝑥 ) denotes
the mean of sample 𝑥 , 𝜎 (𝑥 ) represents the variance of sample 𝑥 ,
𝜇 (𝑦) denotes the mean of the augmented sample 𝑦, and 𝜎 (𝑦) rep-
resents the variance of the augmented sample 𝑦.

Inspired by [8], we employ Normalization Perturbation (NP) to
disturb the image features, as represented by Equation (5).

𝑦 =
𝜎∗(𝑥 )

(
𝑥 − 𝜇 (𝑥 )

)
𝜎 (𝑥 )

+ 𝜇∗(𝑥 ) , 𝜎∗(𝑥 ) = 𝛼𝜎 (𝑥 ) , 𝜇∗(𝑥 ) = 𝛽𝜇 (𝑥 ) (5)

where {𝜇 (𝑥 ) , 𝜎 (𝑥 ) } are the channel statistics, mean and standard
deviation of the sample 𝑥 , estimated on the input features. The
{𝛼, 𝛽} are random noises drawn from the Gaussian distribution.
The equation can be simplified to

𝑦 = 𝛼𝑥 + (𝛽 − 𝛼)𝜇 (𝑥 ) . (6)

Figure 6: Incorporate Normalization Perturbation into the
Siamese Network.

The above NP operation effectively synthesizes various poten-
tial styles by perturbing the channel statistics in the shallow CNN
layers of source domain images, without altering the shape or po-
sition of the objects within the images, which is suitable for the
object search tasks in this work.

We next present how to integrate the NP into our framework.
Specifically, as shown in Figure 6, we use a straightforward strat-
egy by applying theNormalization Perturbation (NP) to both branches

2024-04-13 11:46. Page 6 of 1–9.
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of the Siamese network, setting an activation probability of 0.5. It
is noteworthy that the augmenters in both branches of the Siamese
network operate independently, enabling the network to generate
various augmentation patterns during training.This independence
allows each branch to process different domains separately during
training, learning domain-invariant feature representations. Based
on this, the trained models are more universal across different do-
mains and generalize well even without data from the target do-
main. Consequently, this aids in better matching the objects across
different styles.
4.5 Implementation Details
We trained our model using the Stochastic Gradient Descent (SGD)
optimizer for 15 epochs, employing a weight decay of 1e-4. The
training was performed on 4 NVIDIA 3090 GPUs with a batch size
of 16. The initial learning rate was set at 0.02 and reduced by a fac-
tor of ten after the seventh epoch. Our backbone, a ResNet 50 [11],
was pretrained on a reduced version of ImageNet [6], ensuring that
our model was not exposed to novel classes. The momentum value
𝑚 in Equation (1) was set to 0.999. For the feature queues in the
foreground-background contrastive learning heads, we standard-
ized the length of each category’s foreground queue to 128, while
the background feature queue was set to 65,536.

5 EXPERIMENTS
5.1 Setup
Benchmark. For a fair comparison, we adhere to the divisionmethod
previously established in works such as [2, 12, 32], spliting the 80
categories ofMS COCO [21] into four distinct combinations (split1-
split4). For the testing experiments of the CDOS task, we meticu-
lously reference the setup from image retrieval experiments, specif-
ically choosing Split1 as our designated experimental setup.

Metrics. Considering the distinct setup of the CDOS task from
the OSOD task, the metric for the CDOS task should calculate the
search precision for each category and then compute an average
across all categories. Ultimately, we utilize the AP50 metric from
MS COCO [21] to evaluate the outcomes of the CDOS task.This ap-
proach ensures that the evaluation accurately reflects the model’s
performance across all categories, adhering to academic standards
while enhancing the clarity and comprehensibility of our findings.

Comparison methods. As a new problem, we can not find a
method to handle the CDOS problem directly. We try to include
more methods for comparison. First, given the similar dataset con-
figurations and training processes between CDOS and OSOD, we
have selected several stare-of-the-art OSOD methods CoAE [12],
AiT [2] and BHRL [32] as the comparison method. Additionally, in
CDOS problem, a key problem comes from the domain gap from
different image styles. This way, to evaluate the effectiveness of
our method for pen-domain scenarios, we also include two main-
stream domain augmentation modules Learning to Diversify [30]
and ACVC [5] into our approach, thereby investigating the cross-
domain robustness of our model.
5.2 Comparison with State-of-the-art Methods
As discussed above, based on OSOD, this work makes the follow-
ing two extensions. Category extension: we expand the search
space from the specific target images into the query-free retrieval

gallery. Doamin extension we expand the image styles of the
gallery from the natural image into a variety of styles. For compre-
hensive testing, we develop three protocols for evaluation.

Protocol I: Fixed category in each domain.We randomly se-
lected 10 images from each style and category to serve as query
patches, which were then used to search for objects within an im-
age gallery. The gallery is built upon all the images with the same
style and category of the query in the whole dataset.

Protocol II: Fixed category in various domains. We ran-
domly selected 10 images from each style and category to serve
as queries, which were then used to search for objects within an
image gallery of the same category but in all styles in the dataset.

Protocol III: Free category in various domains.We randomly
selected 10 images from each style and category to serve as query
patches. We select the images from the dataset to form a com-
plex gallery, without considering the style and category consis-
tency with the query. This can be regarded as the most typical
and generic CDOS setup, which is also the most challenging. Note
that, without the limitation of both category and style, the gallery
should have been the whole dataset, which is too large for imple-
mentation. This way, in our experiments, we randomly select 2k
images as the gallery.

Table 2 display the experimental results under the three proto-
cols. It is evident that our method has achieved an increase of 2.6%
in AP50 for base categories and 1.7% in AP50 for novel categories,
resulting in an overall improvement of 2.4% in the protocol I. In
the protocol II, there was an enhancement of 5.3% in AP50 for base
categories and 5.0% in AP50 for novel categories, leading to a total
elevation of 5.2% across the test set. In the most stringent protocol
III, our approach realized a significant uplift of 4.2% in AP50 for
base categories and 2.3% in AP50 for novel categories, culminating
in an overall boost of 3.8% across the entire test dataset. Overall,
the improvements are notably substantial.

Additionally, we also follow the previous experimental setup of
the classical one-shot object detection (OSOD) and conduct the ex-
perimental evaluation on MS COCO dataset [21]. The results, dis-
played in Table 3, show that we exclusively used the foreground-
background contrastive learning heads. The data indicate that our
method achieved an approximate 0.1% increase in AP50 for both
base and novel categories. Although this improvement may seem
modest for the OSOD task, our method showed more significant
enhancements in the CDOS task, suggesting that it is particularly
effective for the challenges unique to CDOS.

5.3 Ablation Studies
In this section, we conducted extensive ablation experiments to
analyze the impact of each component of our proposed CrDoOS.
We used AP50 as the primary performance metric.

Component Analysis. We conducted experiments based on
Protocol III to verify the effectiveness of the proposed contrastive
learning module and feature random augmenter, summarizing the
average precision across all categories on the test dataset in Table 4.
The method in the first row adopts the BHRL [32]. As shown in
the second to fourth rows, the application of the contrastive learn-
ing for foreground features, background features, and the com-
bined effect of both, resulted in improvements of 1.4%, 2.2%, and

2024-04-13 11:46. Page 7 of 1–9.
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Table 2: Comparisons of CrDoOS with state-of-the-art methods on the MSOSB in terms of AP50 under the three protocols.

Method Protocol I Protocol II Protocol III
Base Novel All Base Novel All Base Novel All

CoAE [12] 40.1 33.4 38.4 38.4 28.7 36.0 9.8 2.9 8.1
AIT [2] 49.7 37.9 46.8 46.5 33.9 43.4 11.6 3.0 9.5

BHRL [32] 54.8 39.6 51.0 52.0 37.8 48.5 13.5 3.5 10.9
CrDoOS 57.4 41.3 53.4 57.3 42.8 53.7 17.7 5.8 14.7

Table 3: Comparisons with state-of-the-art methods on the COCO dataset in terms of AP50 under the OSOD setting.

Method Base Novel
Split-1 Split-2 Split-3 Split-4 Average Split-1 Split-2 Split-3 Split-4 Average

CoAE [12] 42.2 40.2 39.9 41.3 40.9 23.4 23.6 20.5 20.4 22.0
AIT [2] 50.1 47.2 45.8 46.9 47.5 26.0 26.4 22.3 22.6 24.3

BHRL [32] 56.0 52.1 52.6 53.4 53.5 26.1 29.0 22.7 24.5 25.6
CrDoOS 56.0 51.9 52.8 53.5 53.6 26.3 28.8 22.9 24.6 25.7

2.7% AP50 on the test dataset, respectively. This benefit is attrib-
uted to the contrastive learning heads, which enhance the discrim-
inability of the network-generated foreground and background fea-
tures. As illustrated in the fifth row of the table, the feature ran-
dom augmenter improved the BHRL [32] method by 1.1% AP50.
This indicates that the feature random augmenter can increase the
network’s robustness across multi-domain datasets by introducing
more style variations of training samples through perturbations of
shallow features.

Table 4: Effects of each component.

foreg contra backg contra Aug AP50

10.9
✓ 12.3

✓ 13.1
✓ ✓ 13.6

✓ 12.2
✓ ✓ 13.6

✓ ✓ 14.2
✓ ✓ ✓ 14.7

The Impact of Different Random Augmenter Module. We
explored the integration of different Single-Source Domain Gener-
alization methods into our method and their effects. For instance,
the feature augmentation parts of Learning to Diversify [30] and
ACVC [5] could be seamlessly incorporated into our network, with
the final results presented in Table 5. It is evident that the methods
of Learning to Diversify [30] and NP [8], which directly perturb
image features, are more conducive to enhancing the model’s do-
main generalization capability. In contrast, the fixed form of fea-
ture augmentation in ACVC [5] is slightly less effective than the
first two augmentation methods. This suggests that random do-
main augmentation can expose the model to a wider variety of
styles, thereby strengthening its domain generalization ability.

Table 5: Feature augmentation comparison results.

Results of Various feature augmentation Methods
Method Learning to Diversify [30] ACVC [5] NP [8]
AP50 14.4 14.1 14.7

5.4 Qualitative Results
In Figure 7, we visualize the test results of BHRL [32] and CrDoOS
on the MSOSB. It is evident that our CrDoOS can accurately detect
targets of interest categories. Compared to OSOD methods, our
proposed CrDoOS generates fewer false detections.

BHRL

CrDoOS

GT

BHRL

GT

BHRL

GT

CrDoOS

CrDoOS

query patch image gallery

Figure 7: Visualization comparisons.

6 CONCLUSION
In this paper, we have proposed a novel problem of CDOS and a
correspondingmethod, CrDoOS. Initially, we proposed a foreground-
background contrastive learning heads, which have substantially
improved the model’s ability to discriminate features, thereby miti-
gating issues related to foreground confusion and background mis-
judgments. Then, we incorporated a feature random augmenter to
strengthen the model’s capability for domain generalization. Ad-
ditionally, we devised the MSOSB to evaluate our CDOS method.
Comparedwith existingOSODmethods under similar settings, our
model has achieved state-of-the-art performance.We hope that our
work provides practical insights and methodologies that closely re-
flect real-world scenarios and contributes to the advancement of
open-category and open-domain challenges in the field.
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