
Appendix

A Related Work of AUC Optimization

OpenAUC is naturally related to AUC [23] due to the pairwise formulation Eq.(12) and the surrogate
loss used in Eq.(15). Specifically, for a binary classification problem, AUC, the Area Under the
ROC Curve, measures the probability that the positive instances are ranked higher than the negative
ones. Benefiting from this property, AUC is essentially insensitive to label distribution and thus
has become a popular metric for imbalanced scenarios such as disease prediction [37] and novelty
detection [18]. As pointed out in [23], optimizing the AUC performance cannot be realized by the
traditional learning paradigm that minimizes the error rate. To this end, how to optimize the AUC
performance has raised wide attention. In this direction, most early work focuses on the off-line
setting [38, 39, 40]. And [28] provides a systematic analysis of the consistency property of common
surrogate losses. Nowadays, more studies explore the online setting due to the rapid increase of the
dataset scale [41, 42, 43, 44, 45], whose details can be found in the recent survey [21].

B Proof for the Inconsistency Property

B.1 Proof for Proposition 1

Proposition 1 (Inconsistency Property I). Given a dataset S and a metric M that is invariant to
TPC+1, FNC+1 and FPC+1, then for any (h,R) such that

∑C
i=1 FPi(h,R) ≥ TPC+1(h,R), there

exists (h̃, R̃) such that M(h̃, R̃) = M(h,R) but TPC+1(h̃, R̃) = 0.

Proof. We first consider a simpler case where only two predictions differ between (h,R) and (h̃, R̃).
As shown in Fig.3(a), given an open-set sample (x1, C + 1) and a close-set sample (x2, y2), where
y2 6= C + 1, if (h̃, R̃) makes the same predictions as (h,R) expect that R(x1) = 1, R̃(x1) =

0, h̃(x1) = h(x2) and R(x2) = 0, h(x2) 6= y2, R̃(x2) = 1, it is not difficult to check that

• F̃Ny2 = FNy2 since both (h,R) and (h̃, R̃) fail to classify x2;

• F̃Ph(x2) = FPh(x2) since x1 is misclassified as h(x2), and (h̃, R̃) changes the prediction
of x2 to C + 1 (increase and decrease F̃Ph(x2) by 1, respectively).

Under such a construction, we can find that M(h̃, R̃) = M(h,R) but T̃PC+1 = TPC+1 − 1. As long
as

C∑
i=1

FPi(h,R) ≥ TPC+1(h,R),

we can utilize this construction iteratively until TPC+1(h̃, R̃) = 0, that is, R̃(x) ≡ 0 for any
y = C + 1.

B.2 Proof for Proposition 2

Proposition 2 (Inconsistency Property II). Given a dataset S , for any classifier-rejector pair (h,R)
such that

∑C
i=1 FNi(h,R) ≥ TPC+1(h,R) and TPC+1(h,R) > FPC+1(h,R), there exists (h̃, R̃)

such that NAcc(h̃, R̃) > NAcc(h,R) but TPC+1(h̃, R̃) = 0.

Proof. Similarly, we first consider a simpler case where only two predictions differ between (h,R)

and (h̃, R̃). As shown in Fig.3(b), given an open-set sample (x1, C + 1) and a close-set sample
(x2, y2), where y2 6= C + 1, if (h̃, R̃) makes the same predictions as (h,R) expect that R(x1) =

1, R̃(x1) = 0, h̃(x1) = y2 and R(x2) = 1, R̃(x2) = 0, h̃(x2) = y2, we can find that

• T̃Ny2 = TNy2 − 1, F̃P y2 = FPy2 + 1 and T̃PC+1 = TPC+1 − 1 since (h̃, R̃) changes
the prediction of x1 to y2.

14

Figure 3: The illustration of three inconsistency phenomena: (a) The metric invariant to TPC+1,
FNC+1 and FPC+1 suffers from the inconsistency property I, such as F-score and Youden’s index;
(b) NA suffers from the inconsistency property II; (c) the metric simply aggregating Acck and AUC
suffers from the inconsistency property III.

• T̃P y2 = TPy2 + 1, F̃Ny2 = FNy2 − 1 and F̃PC+1 = FPC+1 − 1 since (h̃, R̃) make a
correct prediction on x2.

On one hand, we have AKS(h̃, R̃) = AKS(h,R) since T̃P y2 + T̃Ny2 = TPy2 + TNy2 and T̃P y2 +
T̃Ny2 + F̃P y2 + F̃Ny2 = TPy2 + TNy2 + FPy2 + FNy2 . On the other hand,

AUS(h̃, R̃)− AUS(h,R) =
TPC+1 − 1

TPC+1 + FPC+1 − 2
− TPC+1

TPC+1 + FPC+1

=
TPC+1 − FPC+1

(TPC+1 + FPC+1 − 2)(TPC+1 + FPC+1)

> 0.

(18)

Consequently, we have NAcc(h̃, R̃) > NAcc(h,R) but TPC+1(h̃, R̃) = TPC+1(h,R)−1. As long as

C∑
i=1

FNi(h,R) ≥ TPC+1(h,R),

we can utilize this construction iteratively until TPC+1(h̃, R̃) = 0, that is, R̃(x) ≡ 0 for any
y = C + 1.

B.3 Proof for Proposition 3

Proposition 3 (Inconsistency Property III). Given a dataset S , for any (h, r) satisfying Acck, AUC 6=
1, there exists (h̃, r̃) that performs worse on the OSR task but satisfies:

agg(Acck(h̃), AUC(r̃)) = agg(Acck(h), AUC(r)),

where agg : R× R→ R is the aggregation function.

Proof. Similarly, we first consider a simpler case where only two predictions differ between (h, r)

and (h̃, r̃). As shown in Fig.3(c), given two close-set samples (x1, y1), (x2, y2) and an open-set
sample (x3, C + 1), if (h̃, r̃) makes the same predictions as (h, r) expect that h(x1) = h̃(x1) =

y1, h(x2), h̃(x2) 6= y2, r(x2) > r(x3) > r(x1), r(x3) = r̃(x3) and r̃(x2) = r(x1), r̃(x1) =
r(x2), we can find that

• Acck(h̃) = Acck(h) since (f̃ , r̃) does not change the predictions on close-set;

• AUCk(r̃) = AUCk(r) since the ordering between close-set samples and open-set samples is
also not changed.

15

Consequently, we have agg(Acck(h̃), AUC(r̃)) = agg(Acck(h), AUC(r)). However, (h̃, r̃) performs
inferior to (h, r) on the OSR task. To be specific, according to the prediction process described
in Sec.2, if we select t = r(x3), then (h, r) will make correct predictions on x1 and x3. As a
comparison, (h̃, r̃) only correctly classifies x3. In this case, the simple aggregation of Acck and AUCk
is clearly inconsistent with the model performance.

C Proof for OpenAUC

C.1 Proof for Proposition 4

Proposition 4. Given (h, r) and a sample pair (zk, zu), zk ∈ Zk, zu ∈ Zu, OpenAUC equals the
probability that h makes correct prediction on zk and r ranks zu higher than zk:

OpenAUC = E
zk∼Dk
zu∼Du

[
1 [yk = h(xk)]︸ ︷︷ ︸

(a)

·1 [r(xu) > r(xk)]︸ ︷︷ ︸
(b)

]
. (12)

Let X1, X0 be continuous random variables for a close-set/open-set sample given by r. Let Y ∈
{0, 1} be the random variable where Y = 1 means that the classifier h makes a correct prediction for
a close-set sample. Then, Let f1 and f0 be the density of X1|Y = 1 and X2 respectively and F1 and
F0 be the cumulative distribution function of X1 and Y = 1, X2 respectively. Given a classifier h, an
open-set score function r and a threshold t, we have

COTPR(t) = P [X1 ≤ t, Y = 1] = P [X1 ≤ t|Y = 1]P [Y = 1] = F1(t)P [Y = 1] ,

OFPR(t) = P [X0 ≤ t] = F0(t).
(19)

Then let t = OFPR−1(t), that is, t = OFPR(t), we have

OpenAUC =

∫ +∞

−∞
COTPR(t)OFPR′(t) dt

=

∫ +∞

−∞
F1(t)P [Y = 1] f0(t) dt

=P [Y = 1]

∫ +∞

−∞
F1(t)f0(t) dt

=P [Y = 1]P [X0 > X1|Y = 1]

=P [X0 > X1, Y = 1] .

(20)

Thus, we have

OpenAUC(f, r) = E
zk∼Dk
zu∼Du

[1 [yk = h(xk)]] · 1 [r(xu) > r(xk)] . (21)

C.2 Proof for Proposition 5

Proposition 5. Given a sample pair ((x1, C + 1), (x2, y2)), where y2 6= C + 1, for any (h, r) such
that R(x1) = 1, R(x2) = 0, h(x2) 6= y2, if (h̃, r̃) makes the same predictions as (h, r) expect that
R̃(x1) = 0, h̃(x1) = h(x2) and R̃(x2) = 1, we have OpenAUC(h̃, r̃) < OpenAUC(h, r).

Proof. Since R(x1) = 1, R̃(x1) = 0, we have r(x1) > r̃(x1). According to the definition of
OpenAUC,

OpenAUC(h, r)−OpenAUC(h̃, r̃)

=
1

NkNu

Nk∑
i=1

1 [yi = h(xi)] (1 [r(x1) > r(xi)]− 1 [r̃(x1) > r(xi)])

=
1

NkNu

Nk∑
i=1

1 [yi = h(xi)] · 1 [r(x1) > r(xi) > r̃(x1)]

≥ 0.

(22)

16

Note that the equality holds only if there exists no correctly-classified close-set sample between r(x1)

and r̃(x1). On one hand, this condition is not mild. On the other hand, in this case, (h̃, r̃) essentially
shares the same OSR performance with (h, r) since ranking open-set samples lower than misclassified
closed-set samples does not affect model performance on the OSR task. In a word, we can conclude
that OpenAUC(h̃, r̃) < OpenAUC(h, r) as long as the inconsistency property II happens.

C.3 Proof for Proposition 6

Proposition 6. Given a dataset S, for any (f, r) such that OpenAUC = k and any threshold tC+1

such that FPRC+1 = a 6= 0, we have TPRC+1 ≥ 1− (1− k)/a.

Proof. Let Nk and Nu denote the number of close-set samples and open-set samples. According to
the definition of OpenAUC, we have

1− OpenAUC ≥ 1− AUC ≥ FPC+1 · FNC+1

NuNk
, (23)

where the second inequlity holds the number of mis-ranked pair is greater than FPC+1 · FNC+1. Then,
since

FPRC+1 =
FPC+1

Nk
, TPRC+1 =

TPC+1

Nu
=
Nu − FNC+1

Nu
, (24)

we have
1− k ≥ FPRC+1 · (1− TPRC+1). (25)

Finally,
TPRC+1 ≥ 1− (1− k)/a. (26)

C.4 Proof for Proposition 7

Proposition 7. Given two close-set samples (x1, y1) and (x2, y2) and an open-set sample (x3, C+1),
if (h̃, r̃) makes the same predictions as (h, r) expect that h(x1) = h̃(x1) = y1, h(x2), h̃(x2) 6=
y2, r(x2) > r(x3) > r(x1), r(x3) = r̃(x3) and r̃(x2) = r(x1), r̃(x1) = r(x2), we have
OpenAUC(h̃, r̃) < OpenAUC(h, r).

Proof. As shown in Fig.3(c), we have

OpenAUC(h, r)− OpenAUC(h̃, r̃)

=
1

NkNu

Nu∑
j=1

1 [r(xj) > r(x1)]− 1 [r(xj) > r̃(x1)]

=
1

NkNu

Nu∑
j=1

1 [r(xj) > r(x1)]− 1 [r(xj) > r(x2)]

=
1

NkNu
|{(x, C + 1) : r(x2) > r(x) > r(x1)}|

≥ 1.

(27)

Then, we can conclude that OpenAUC(h̃, r̃) < OpenAUC(h, r).

C.5 Proof for Proposition 8

Proposition 8. Optimizing OpenAUC is equivalent to the following risk minimization problem:

min
f,r
R(f, r) = E

zk∼Dk
zu∼Du

[
1 [yk 6= h(xk)]︸ ︷︷ ︸

(a)

+1 [yk = h(xk)]︸ ︷︷ ︸
(b)

·1 [r(xu) ≤ r(xk)]︸ ︷︷ ︸
(c)

]
(14)

17

Table 3: The truth table for the proof of Proposition 8.

Ik Iu 1− Ik · Iu ¬Ik + Ik · ¬Iu
1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1

Proof. Given any pair of close-open sample pair (xk,xu), let Ik and Iu indicate whether the events
yk = h(xk) and r(xu) > r(xk) happen, respectively. Then, according to the definition of the
OpenAUC risk, we have

R(f, r) = E
zk∼Dk
zu∼Du

[1− Ik · Iu] . (28)

Meanwhile, the right-hand side of Eq.(14) can be denoted as

E
zk∼Dk
zu∼Du

[¬Ik + Ik · ¬Iu] . (29)

Then the proof completes by Tab.3.

D Implementation details

Infrastructure. All the experiments are carried out on an ubuntu server equipped with Intel(R)
Xeon(R) Silver 4110 CPU and an Nvidia(R) TITAN RTX GPU. We implement the codes via python
(v-3.8.11), and the main third-party packages include pytorch (v-1.9.0) [46], numpy (v-1.20.3) [47],
scikit-learn (v-0.24.2) [48] and torchvision (v-0.10.1) [49].

Backbone and Optimization Method. We adopt the widely-used VGG32 model as the backbone
[1, 2, 5, 13, 14], expect that ResNet50 [50] are utilized in CUB. Besides, the score function follows
Def.1. According to the empirical results in [14], we train the model with a batch size of 128 for 600
epochs except TinyImageNet and CUB, for which we use 64 and 32, respectively. Meanwhile, we
adopt an initial learning rate of 0.1 for all datasets except TinyImageNet and CUB, for which we use
0.01 and 0.001, respectively. We train with a cosine annealed learning rate, restarting the learning rate
to the initial value at epochs 200 and 400. Besides, the RandAugment and label smoothing strategy
provided by [14] is utilized for all experiments.

Generation of Open-set Samples. As elaborated in Sec.4.4, we utilize manifold mixup to generate
open-set samples. Specifically, we first shuffle the received batch B, which produces a mini-batch B′.
Then, mixup is conducted on the pairs in B × B′, where × denotes pointwise product of two sets.
Finally, the metric is calculated on the pairs in B × B̃, where B̃ is the batch generated by the mixup
operation. Note that we expect the instances in each pair from B ×B′ to have different class labels,
so that the mixup examples (i.e., B̃) can be located somewhere outside the close-set domain. Hence,
we eliminate the pairs from the same classes. Note that we only mixup the pairs at the same slot
of B and B′, and the metric is evaluated on the pairs at the same slot of B and B̃. Hence, the time
complexity is O(|B|), rather than O(|B|2). According to the empirical results in [11], we set α = 2
as the default value. Meanwhile, the hyperparameter λ is searched in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
Efficient Caculation of OpenAUC. During the test phase, open-set samples are available. Benefiting
from the pairwise formulation, we can calculate OpenAUC efficiently. Specifically, we first mask
each close-set sample xk that has been misclassified on the close-set. Specifically, we have

r̃(xk)←
{
ε+maxxu∈Su r(xu), h(xk) 6= yk
r(xk), otherwise

18

where Su denotes the open-set, and ε > 0 is a small constant. In this way, we have

OpenAUC(f, r) =
1

NkNu

Nk∑
i=1

Nu∑
j=1

I[yi = h(xi)] · I[r(xj) > r(xi)]

=
1

NkNu

Nk∑
i=1

Nu∑
j=1

I[r̃(xj) > r̃(xi)]

= AUC(r̃).

In other words, OpenAUC degenerates to the traditional AUC, and common tools such as scikit-
learn can boost the computation.

E More empirical results

In this section, we present the empirical results on fine-grained datasets. For a comprehensive
evaluation, we provide the model performances on multiple metrics such as Close-set Accuracy, AUC,
OpenAUC, Error Rate@95%TPR, and Open-set F-score. All the results are recorded in Tab.4-5,
where (E/M/H) corresponds to the results on the Easy/Medium/Hard split of open-set classes. Note
that we report the open-set F-score under the optimal threshold. Besides, we did not analyze Error
Rate@95%TPR in Sec.3 since it is a metric for novelty detection, and little OSR work adopted it as a
metric. From the results, we have the following observations:

• The proposed method outperforms the competitors on novelty-detection metrics such as
AUC and Error Rate@95%TPR, especially on the Medium and Hard splits. Moreover:
(1) The improvement on AUC comes from the AUC-based term in the proposed objective,
which is consistent with our theoretical expectation. (2) The result on Error Rate validates
Prop.6 that optimizing Open-AUC reduces the upper bound of FPR. Recall that

ErrorRate ↓= 1−Acc ↑= 1− TP + TN

TP + TN + FP + FN
,

TPR =
TP

TP + FN
, TNR ↑= 1− FPR ↓= TN

TN + FP
.

• Our method achieves comparable performances on the close-set accuracy and Open-set
F-score. This result is reasonable since compared with CE+, no more optimization is
conducted on the close-set samples in our new objective function.

• Benefiting from the improvement on open-set samples and the comparable performance on
close-set samples, the proposed method achieves the best performance on OpenAUC.

• Another observation is that the Open-set F-score shares similar values for all difficulty
splits. Note that the only difference among these splits comes from their open-set data.
This phenomenon shows that Open-set F-score cannot differentiate the performance on the
open-set. This is inevitable since this metric evaluates the open-set performance only in an
implicit manner. Hence, it again validates the necessity to adopt OpenAUC as the evaluation
metric.

To sum up, the empirical results on fine-grained datasets again speak to the efficacy of OpenAUC and
the proposed optimization method.

19

Table 4: Empirical results on CUB, where E/M/H corresponds to the results on the Easy/Medium/Hard
split of open-set samples. The best and the runner-up method on each metric are marked with red
and blue, respectively.

Close-set Accuracy AUC (E/M/H) OpenAUC (E/M/H)

Softmax 78.1 79.7 / 73.8 / 66.9 67.2 / 63.0 / 57.8
GCPL [31] 82.5 85.0 / 78.7 / 73.4 74.7 / 70.3 / 66.7
RPL [26] 82.6 85.5 / 78.1 / 69.6 74.5 / 69.0 / 62.4
ARPL [13] 82.1 85.4 / 78.0 / 70.0 74.4 / 68.9 / 62.7
CE+ [14] 86.2 88.3 / 82.3 / 76.3 79.8 / 75.4 / 70.8
ARPL+ [14] 85.9 83.5 / 78.9 / 72.1 76.0 / 72.4 / 66.8

Ours 86.2 88.8 / 83.2 / 78.1 80.2 / 76.1 / 72.5

Table 5: Empirical results on CUB, where E/M/H corresponds to the results on the Easy/Medium/Hard
split of open-set samples. The best and the runner-up method on each metric are marked with red
and blue, respectively.

Error@95%TPR (E/M/H) macro F-score (E/M/H) micro F-score (E/M/H)

Softmax 46.6 / 55.9 / 62.8 67.4 / 66.5 / 66.6 69.0 / 68.9 / 70.8
GCPL [31] 37.0 / 46.8 / 51.3 77.6 / 75.4 / 74.0 78.4 / 76.8 / 77.4
RPL [26] 39.5 / 53.5 / 64.0 75.4 / 73.3 / 72.4 76.7 / 75.2 / 76.6
ARPL [13] 37.6 / 49.9 / 62.7 75.3 / 73.1 / 72.2 76.6 / 75.0 / 76.5
CE+ [14] 28.4 / 42.1 / 52.3 82.6 / 80.3 / 78.3 83.3 / 81.6 / 81.4
ARPL+ [14] 48.7 / 60.6 / 67.8 80.8 / 79.0 / 77.3 81.7 / 80.4 / 80.4

Ours 28.1 / 39.7 / 47.6 82.2 / 79.7 / 78.1 83.0 / 81.2 / 81.1

20

	Introduction
	Preliminary
	Existing metrics for Open-set Recognition
	Open-set F-score and Youden's Index
	Normalized Accuracy
	The Area Under the ROC Curve (AUC)

	OpenAUC: a novel metric for Open-set Recognition
	Open Set Classification Rate (OSCR)
	The Definition of OpenAUC
	OpenAUC vs. Existing Metrics for OSR
	Learning Method for OpenAUC

	Experiments
	Protocol
	Results and Analysis

	Broad Impact
	Conclusion
	Related Work of AUC Optimization
	Proof for the Inconsistency Property
	Proof for Proposition 1
	Proof for Proposition 2
	Proof for Proposition 3

	Proof for OpenAUC
	Proof for Proposition 4
	Proof for Proposition 5
	Proof for Proposition 6
	Proof for Proposition 7
	Proof for Proposition 8

	Implementation details
	More empirical results

