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A APPENDIX

A.1 MONGE PROBLEM

Define two discrete measures on two arbitrary sets X’ and )/, respectively, i.e.,

a:Zaic;xi, B:ij5yj,
i=1 j=1

where @ = (a;)}; € ¥" and b = (b;)72, € ¥™.

We continue to define a surjective map T : X — ) that associates each z; to y;, such that for all j € [m],
b =1 — Induced by mass transport, a transport of discrete probability measures can be denoted
in a compact push-forward form Ty = . Furthermore, the Monge problem is to seek an optimal T to
minimize the transportation cost with respect to a non-negative cost function ¢(x,y) (satisfying the three
properties of a legitimate distance metric) defined on X x ), i.e.,

mTin{Zc(xi,TxiﬂTua :B} (10)
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In particular, when n = m, then T is a bijection from source X to target ), and can induce a permutation
o € Perm(n), such that T'z; = y,(;).

Remark 4. Note that the Monge problem may not even have a solution when the measures o and 3 are not
compatible, which is always the case when the target measure has more points than the source measure, i.e.,
n < m. Besides, it is also the case when n = m and there is at least one points in the target measure with
the mass that does not match any point the source measure, i.e., 3 b;,s.t. b; # a;,Vi, and vice versa. We
leave more complex situations for the readers due to the deviation from our main topic.

A.2 CONVERGENCE OF ENTROPIC REGULARIZED OT

The following results given by [Peyré et al.|(2019), Proposition 4.1, indicating the relationship between the
original OT problem (I) and the entropic regularized OT (2).

Proposition 2 (Convergence of €). The unique solution P, converges to the optimal solution with maximal
entropy within the set of all optimal solutions of the OT problem (), namely
P. = argmin {~H(P) | (P,C) = L¢(a, b)}, (11)
PecU(a,b)

so that in particular
e—0

P. "V Lc(a,b).

On the other hand, we have
E— OO

P. —a®b=ab".

Remark 5. A key insight is, as € increases, the optimal coupling of the problem (|2) becomes less and less
sparse, which in turn has the effect of both accelerating computational algorithms, and leading to faster
statistical convergence. Besides, we can decrease the magnitude of € to restore the original OT problem.
In fact, the entropic regularization term provides a trade-off between the computational efficiency and the
sparsity of solution.
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A.3 FROM SUPERVISED LEARNING TO UNSUPERVISED LEARNING

Most of the content in this section is the reorganization of the seminal work of |Asano et al.| (2019). We
present the most relevant results here as an essential preliminary, in order to help the readers to clearly
understand our OT-LLP framework.

In the standard supervised learning, after mapped by a deep neural network (DNN) ®y(-), the high-level
representation ®y(x) is followed by the fully connected multi-layer perceptron (MLP) h,, to yield the class-
specific logits. Based on these logits, DNN obtains the corresponding posterlor class probabilities with a
softmax operation. Denote the multi-class classification head by g,, : RP — RX, then g, = softmax o h,.
In other words, the probabilistic output for an instance x can be summarized as

Ps(Y|X) = g (Pp(x)) = softmax o hy, (Py(x)) € 2K (12)

where ¢ = (¢, 0) is the parameters of the model. Furthermore, the representation part and head parameters
(0, ¢) of DNN are learned with a training dataset D = {(x1,¥1), (X2,92), -+, (Xn, y~n)|(Xi, yi) € X X
[K]}, by minimizing the average cross-entropy loss with respect to (6, ¢)

N
1 1
CE(y,p|D,0,p) = -5 § E I(y; = k)log p(k|xs,0,¢) = N > log p(yilxi, 0, ). 13)
1=1 k=1 =1

On the other hand, the standard semi-supervised learning normally leverages a transductive scheme to incor-
porate the information of unlabeled data through self-labeling framework. The key idea is, when the labels
are unavailable, we require a self-labeling mechanism to assign the labels automatically.

To be concrete, suppose {(x1,y1), (X2,¥2)," (xl, y1)} is the labeled data, and {X;1,X;42, "+ , X4} 1S
the unlabeled data, i.e., D = {(x;,v:) }\_, U{xj ptu i—1+1- The representation part and head parameters (¢, 0)
are learned by minimizing the average cross-entropy loss £ on D

I+u K

Ep(x.v)(£(9(X),Y) = E(L(g(x),y)) = Z+UZZH k) log plj (xi). (14)
i=1 k=1

Although the formulation remains the same in (I3) and (T4), different to (T3) in supervised learning, the
transductive scheme in semi-supervised learning is to proceed joint optimization on (I4) with respect to
¢ = (0, ) and the labeling {yl }l, 141 of the unlabeled data simultaneously, according to the fully supervised
information in labeled data, i.e., alternately conducting optimization on the following two problems by fixing
the other parameters

I+u I+u
r{,}lgr; T Z log pl (x;) = Tt ; log(softmax o hy, (Pg(x;))y, (15)
and
+u K I+u K
min —— Z Z logp¢ X;)=—— Z Z k) log(softmax o hy, (®g(x;))k, (16)
velk] i=l+1 k=1 i=l+1 k=1
where ¥y = (Yi+1,Yi+2, "+ »Yi+u)T is the unknown labels for the unlabeled data.

The above formulation can be naturally extended to fully unsupervised learning scenario, with training data
D = {x1,X2, -+ ,Xn}, by performing the clustering and representation learning simultaneously. However,
the intact transfer of this mechanism without constraints on labeling will lead to degeneration to the final
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result: Assigning all the data points to a single (arbitrary) label. To avoid this issue, [Asano et al.| (2019)
introduce the following constrained self-labeling framework to solve the clustering.

First, the soft encoding of the labels is to utilize the probabilistic (non-mutually-exclusive) classifier to
inference the posterior distribution (pseudo-labeling), based on the following cross-entropy loss:

1 N K
CE(p.q) = =3 > > alulxi) logp(ylxi). 17

=1 y=1

To be concrete, for fixed p, the constrained minimization problem of ¢ according to CE(p, q) is

min CE(p,q)
a

al N (18)
st Y alylxi) = z.ayl) €0,1], ¥y € [K].
=1

Accordingly, we obtain a combinatorial programming and thus may appear very difficult to optimize. How-
ever, we can transfer to a standard optimal transport problem, and solve it quickly, thanks to the
Sinkhorn’s algorithm (Cuturi, |2013)). This can be concluded as the self-labeling step.

Formally, let Q = (Q;;) € R¥*Y and Q;; = ¢;(x;)/N. Similarly, let P = (P,;) € RE*Y and
P;; = pi(x;)/N. In addition, denote
1

1

Hence,
Ula,b) = {Q ERY | Qly =a, QTlk = b}.
Then, we can give an equivalent problem for with the following OT problem:

i ,—logP) = CE(p,q) + log N. 19
Qéﬁtﬂ,w@ ogP) (p,q) + log (19)

After updating ¢ in (18]), we can perform unconstrained optimization on C'E(p, q) with repect to the param-
eterin p, i.e., mqgn CE(py,q). The can be denoted as the representation learning step.

We can alternately conduct the above self-labeling and representation learning steps, to realize the unsuper-
vised classification.

A.4 THE NETWORK ARCHITECTURES USING IN THE EXPERIMENTS

In Table 2] we deliver the convolution neural network architecture used in our experiments for all the meth-
ods. More specifically, it is a 13-layer convolutional neural network, where Leaky ReL.U is chosen as the
activation function. Note that the network architecture is for the CIFAR-10 and CIFAR-100 dataset, while a
dense-based architecture is applied for the MNIST, K-MINST, and F-MNIST datasets as shown in Table E}
In detail, it is a fully connected network with 5 hidden layers. In particular, the Dense in the table means the
fully connected layer followed by ReL.U as the activation function.
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Table 2: The baseline architecture for CIFAR-10.
Input 32x32 RGB image

33 conv. 128 followed by LeakyReLU
33 conv. 128 followed by LeakyReLU
33 conv. 128 followed by LeakyReLU
2x?2 max-pooling with stride 2, dropout with p = 0.5
33 conv. 256 followed by LeakyReLU
33 conv. 256 followed by LeakyReLU
33 conv. 256 followed by LeakyReLU
2x?2 max-pooling with stride 2, dropout with p = 0.5
33 conv. 512 followed by LeakyReLU
1x1 conv. 256 followed by LeakyReLU
1x1 conv. 128 followed by LeakyReLU
Global Mean pooling
Dense 10
10-way Softmax

Table 3: The baseline’s architectures for MNIST, K-MNIST and F-MNIST.
Input 28 x 28 gray image
Dense 28 x28 — 1000 followed by ReLU

Dense 1000 — 500 followed by ReLU

Dense 500 — 250 followed by ReLU

Dense 250 — 250 followed by ReLU

Dense 250 — 250 followed by ReLU
Dense 250 — 10
10-way Softmax
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