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Figure 1: We disentangle robot learning via two decoupled components: a visual forward dynamics
model pretrained on large-scale mixed videos via video generation, and an inverse dynamics model
pretrained on mixed videos through self-supervised action representation. Then they are coupled
during fine-tuning in an end-to-end manner to adapt to downstream tasks. This decoupled pretraining
paradigm unleashes the potential of massive action-free videos for policy learning, while retaining
robot-specific action grounding, leading to improved success rates across diverse benchmarks.

ABSTRACT

Vision-language-action (VLA) models have shown great potential in building
generalist robots, but still face a dilemma–misalignment of 2D image forecasting
and 3D action prediction. Besides, such a vision-action entangled training manner
limits model learning from large-scale, action-free web video data. To address
these issues, we propose DeFI, a novel framework that Decouples visual Forward
and Inverse dynamics pretraining to exploit respective data sources, wherein video
generation and action prediction are disentangled. We introduce the Foundation
Forward Dynamics Model (FFDM), pretrained on diverse human and robot videos
for future prediction, and the Foundation Inverse Dynamics Model (FIDM), trained
via self-supervised learning to infer latent actions from unlabeled video transitions.
These models are then integrated into a unified architecture for end-to-end fine-
tuning on downstream tasks. In this manner, FFDM and FIDM first shine separately
and then cooperate for mutual benefit. Extensive experiments on CALVIN ABC-D
and SimplerEnv demonstrate state-of-the-art performance, with DeFI achieving
an average task length of 4.51 for CALVIN, 51.2% success rate on SimplerEnv-
Fractal benchmark and 81.3% success rate in real-world deployment, significantly
outperforming prior methods.

1 INTRODUCTION

Vision-language-action (VLA) models (Zitkovich et al., 2023; Kim et al., 2024; Black et al., 2024)
have emerged as a promising framework for generalist robots, leveraging the strong visual and
language understanding of VLMs (Karamcheti et al., 2024; Beyer et al., 2024) to generate actions
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with the supervision of massive action-labeled data. A promising line of work (Tian et al., 2024;
Zhao et al., 2025; Zhang et al., 2025c) seeks to integrate visual forecasting with action reasoning
into an end-to-end architecture, implicitly learning a coupled representation of forward and inverse
dynamics, and presents a more impressive success than conventional VLA. However, this paradigm
faces two inherent challenges: (i) the competing objectives of 2D video forecasting and 3D action
prediction yield unstable training (Tian et al., 2024); (ii) more critically, they hinder the model
from fully exploiting these massive action-free human/web videos. We argue that human videos
are indispensable for scaling VLA: they are orders of magnitude larger and more diverse than robot
demonstrations, and inherently contain rich motion priors across embodiments and tasks. Unlocking
their potential is therefore crucial for building truly generalist and scalable robotic agents.

Alternatively, another strategy attempts to bypass this problem by employing a video prediction
model pretrained on human and robot videos for forward dynamics learning (Black et al., 2023; Du
et al., 2024; Bu et al., 2024a; Hu et al., 2024; Feng et al., 2025), followed by a simple model for
inverse action inference. This strategy reduces dependence on costly action-labeled data and inherits
priors from large video generators trained on large-scale corpora. Yet it often overlooks a critical
point: accurate action inference is as important as accurate future prediction, which still needs
sufficient data for pretraining to unleash its full ability. For instance, VPP (Hu et al., 2024) omits
the inverse dynamics component entirely, while Vidar (Feng et al., 2025) includes one but treats it
contemptuously, without a scalable pretraining recipe—the performance gain stems largely from a
powerful video generator (Bao et al., 2024) rather than principled action reasoning. As a result, the
inverse dynamics module becomes the bottleneck, unable to fully exploit the predictive power of the
forward model and ultimately limiting overall policy performance.

Considering all the above factors, we explore designing an approach to achieve a win-win effect w.r.t.
2D video forecasting and 3D action prediction. To this end, we propose DeFI, a novel paradigm that
disentangles robot learning by decoupling forward and inverse dynamics knowledge pretraining
to leverage distinct data sources, then integrating them into a unified, end-to-end architecture to
adapt to downstream tasks. Conceptually, both the forward and inverse dynamics modules are
pretrained on mixed human and robot data, yet they extract complementary knowledge: the forward
dynamics model focuses on capturing motion-level regularities from 2D video forecasting, while
the inverse dynamics model emphasizes 3D action reasoning grounded in state transitions. This
first separation enables each module to specialize while still benefiting from heterogeneous data,
and the following integration yields a scalable and generalizable policy framework. As shown in
Figure 1, we first pretrain a visual foundation forward dynamics model (FFDM) built on a video
generation model using a mixture of human videos and robot demonstrations. By predicting future
video clips conditioned on the current observation and instruction, this FFDM could learn implicit
forward dynamics. Crucially, we emphasize inverse dynamics pretraining is as important as forward
dynamics learning. We therefore introduce a foundation inverse dynamics model (FIDM) with a
carefully designed self-supervised recipe that scales to action-free human videos. We cast implicit
action inference as a self-supervised representation learning problem: a future video reconstruction
objective serves as a proxy that compels the model to distill meaningful latent action codes from
visual transitions. This formulation unlocks the use of heterogeneous data to learn inverse dynamics
at scale, complementing separated forward-dynamics.

During fine-tuning, we couple the pretrained forward and inverse dynamics models into a unified
system that supports end-to-end optimization. This design leverages modality-specific strengths while
preserving the benefits of end-to-end learning, enabling strong generalization without relying on mas-
sive robot-demonstration datasets. Our comprehensive evaluation, spanning CALVIN ABC-D (Mees
et al., 2022b) and SimplerEnv-Fractal (Li et al., 2024b) underscores the framework’s efficiency,
scalability, and generalization, positioning it as a promising pathway toward next-generation gen-
eralist robotic policies. Also, multiple ablation studies are conducted to validate that disentangled
robot learning via separate forward and inverse dynamics pretraining could fully exploit the prior
knowledge of human videos.

In summary, our main contributions are three-fold: (i) A decoupled pretraining paradigm that breaks
the reliance of conventional end-to-end VLAs on scarce action annotations, enabling us to exploit
abundant, easily available unlabeled video data to learn general physical-world dynamics and action
representations; (ii) We devise a concise architecture that integrates the separately pretrained forward
and inverse dynamics models into a single framework. This design fully leverages action-free
human video data while enabling end-to-end fine-tuning on downstream tasks with robot action
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data (iii) DeFI sets a new state of the art on the CALVIN ABC-D benchmark (4.51 average task
length), outperforming prior methods by up to 4.2%, and boosts SimplerEnv-Fractal benchmark to
51.2% success rate and real-world experiments to 81.3% success rate. Ablation studies confirm each
component’s contribution. Furthermore, benefited by pretraining, we only need a few task data to
achieve efficient downstream generalization.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS

With the vigorous development of Large Language Models (Liu et al., 2023; Karamcheti et al., 2024;
Beyer et al., 2024) and the emergence of large-scale robot datasets (O’Neill et al., 2023; Ebert et al.,
2021; Khazatsky et al., 2024; Deng et al., 2025), VLA has become a trend in robot learning. RT
series (Brohan et al., 2023; Zitkovich et al., 2023; Belkhale et al., 2024) is the pioneering attempt to
fine-tune the MLLM on robot demonstration datasets, resulting in strong accuracy and generalization.
Based on this, many studies concentrate on improving the accuracy (Kim et al., 2024; Black et al.,
2024; Qu et al., 2025; Liang et al., 2025) and extend to navigation tasks (Zhang et al., 2024b;a).
Additionally, many researchers propose to employ multiple knowledge predictions as a multimodal
Chain of Thought (COT) to advance the action reasoning ability of VLA. Concretely, prior efforts
take several forms. One line of work first plans high-level subtasks and then outputs low-level
actions (Belkhale et al., 2024; Lin et al., 2025). Another uses subgoal images or short visual rollouts
that anticipate how the scene should evolve (Tian et al., 2024; Zhao et al., 2025; Cen et al., 2025;
Wang et al., 2025). A third condition policies on object-centric signals (e.g., bounding boxes) that
capture manipulation-relevant dynamics (Deng et al., 2025; Intelligence et al., 2025). Others learn
latent future embeddings or actions that compactly encode forthcoming motor intentions (Bu et al.,
2025a; Lyu et al., 2025; Zhang et al., 2025c). Despite these advances, a central dilemma remains: the
misalignment between future-knowledge forecasting and 3D action prediction. Moreover, entangling
vision and action during training hampers scaling to action-free web videos. In contrast, DeFI unlocks
the potential of large-scale, action-free videos by decoupling the forward and inverse dynamics
pretraining, then cooperating in an end-to-end manner for mutual benefit.

2.2 ROBOT LEARNING FROM VIDEOS

Research that leverages videos for robot learning typically falls into four branches. First, methods
that learn from explicit human hand/motion labels (e.g., hand pose, keypoints, contact/trajectory
annotations) and transfer these priors to manipulation (Bi et al., 2025; Luo et al., 2025; Kareer et al.,
2024); such labels provide clean supervision but are expensive to scale and brittle under embodiment
or camera shifts. Second, methods that pretrain the policy on mixed videos and then fine-tune on
downstream tasks (Li et al., 2025; Luo & Lu, 2025; Wu et al., 2024). These methods solely explore
using the implicit forward dynamics knowledge in videos to initialize the weights of VLA. Third,
methods that extract latent actions from human videos to pretrain large VLA models (Ye et al., 2024;
Yang et al., 2025; Bjorck et al., 2025; Chen et al., 2025; 2024b), converting video dynamics into
compact tokens to amortize over human-scale data. However, this route is indirect—the latents
must be consumed by sizable policy models that are costly to pretrain and fine-tune, and the learned
codes are not guaranteed to align with the action manifold needed for execution across embodiments.
Fourth, video-as-policy approaches pretrain a video or latent feature generator on mixed data to
imagine future observations and then train a lightweight controller to track those futures (Wen et al.,
2024; Hu et al., 2024; Feng et al., 2025; Collins et al., 2025; Black et al., 2023; Du et al., 2024; Zhang
et al., 2025a; Tan et al., 2025; Xie et al., 2025); while these methods exploit abundant action-free
footage to learn forward dynamics, a prediction-to-control gap remains. In contrast, our proposed
paradigm treats the inverse dynamics model as equally important, and similarly leverages large-scale
action-free video data to train it, thereby completing the transfer from prediction to control.

3 METHODOLOGY

As shown in Figure 2, our core idea is to decouple policy learning into two independent knowledge
modules: a visual foundation forward dynamics model that predicts instruction-conditioned future
visual states from the current state and instruction in Section 3.1, and a foundation inverse dynamics

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Stage I. Decoupled Pretraining

DINO Encoder

Foundation Inverse 
Dynamics Model

Instruction

Observation

Decoder

𝑒!"#𝑒!

𝑎!→!"#%

𝑒!"#

𝑂!"#

Stage II. Coupled Finetuning

(a). Pretraining forward dynamics from videos (b). Pretraining inverse dynamics from videos

Foundation Forward 
Dynamics Model

Future FramesCLIP

Cutting the Bread

Foundation 
Inverse 

Dynamics Model

Action
Adapter

𝑂!

Observation

Action

(c). End-to-end finetuning

Foundation Forward 
Dynamics Model

CLIP

Figure 2: Overall framework of DeFI. Stage I (Decoupled pretraining): (a) A visual foundation
forward dynamics model is pretrained with human and robot videos via a video generation objective,
predicting future frames from current observations and instructions. (b) In parallel, a foundation
inverse dynamics model is pretrained in a self-supervised manner to map pairs of observations
(ot, ot+n) into latent actions, capturing inverse dynamics knowledge without explicit action labels.
Stage II (Coupled finetuning): The forward and inverse models are coupled, and a diffusion-based
adapter is used to generate executable robot action sequences. This two-stage framework unleashes
the rich priors of human videos while grounding them in robot data for scalable policy learning.

component that infers the latent actions responsible for observed visual changes in Section 3.2. Each
module is pretrained on large, heterogeneous datasets to absorb complementary priors. We then
post-train them together to form a complete policy that maps instructions directly to actions, while
supporting end-to-end joint fine-tuning with a small amount of robot data in Section 3.3.

3.1 PRETRAIN FFDM TO LEARN FORWARD DYNAMICS

Given a current observation image ot and a task instruction l, the objective of the visual forward
dynamics model Fθ is to synthesize a short-horizon video ôt:t+H of length H + 1. We adopt the
stable video diffusion (SVD) model with a CLIP text encoder (Radford et al., 2021) and pretrain it on
mixed datasets. The model is composed of three components: (i) a video VAE (E ,D) (2D or 3D) that
defines the latent space, (ii) a denoiser ϵθ (U-Net/Transformer with temporal attention) trained under
a latent-diffusion objective. We denote the diffusion timesteps by s ∈ {1, . . . , S}, distinct from the
prediction horizon H . With a variance schedule {βs}Ss=1, define αs = 1 − βs and ᾱs =

∏s
i=1 αi.

The forward (add noise) process over the latent video sequence is as follows:

q
(
z
(s)
t:t+H | z

(0)
t:t+H

)
= N

(√
ᾱs z

(0)
t:t+H , (1− ᾱs)I

)
, ϵ ∼ N (0, I), (1)

where the ϵ denotes the Gaussian noise. The conditioning context is formed from the current
observation and instruction:

ct =
(
zt, ftext(l)

)
, zt = E(ot), (2)

where zt is obtained by encoding the current image. The denoiser is optimized via noise prediction
(optionally with v-parameterization):

Ldiff(θ) = E
z
(0)
t:t+H , s, ϵ

∥∥∥ ϵ− ϵθ
(
z
(s)
t:t+H , s, ct

)∥∥∥2
2
. (3)
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During the inference stage, starting from Gaussian noise, a sampler (e.g., DDIM or DPM-Solver)
generates the latent forecast:

ẑt:t+H = Fθ(zt, ftext(l)).

Nevertheless, fully denoising an entire explicit video remains computationally expensive, as most of
the cost is wasted on reconstructing pixel-level details irrelevant to manipulation. In contrast, the
key signal for control lies in motion dynamics rather than appearance. Recent research (Zhu et al.,
2025; Hu et al., 2024) further suggests that a generative model’s features after a single denoising step
already contain sufficient motion information to guide downstream action planning. Inspired by this,
we freeze the pretrained FFDM and restrict the denoising process to a single step, yielding efficient
predictions of future latent embeddings. Notably, for a robot with multiple camera views, such as a
third-view and a wrist camera, we predict the future videos for each view independently.

3.2 PRETRAIN FIDM TO LEARN INVERSE DYNAMICS

To learn the knowledge of inverse dynamics from mixed videos in a fully unsupervised manner, we
develop a proxy task to pretrain the foundation inverse dynamics model Iθ. Specifically, we start with
a pair of consecutive video frames ot, ot+n, separated by a frame interval n, then extract a pair of
latent states et and et+n using the DINOv2 (Oquab et al., 2024) visual encoder. We ensure a uniform
time interval of approximately 1 second across diverse datasets. The foundation inverse dynamics
model consists of an encoder built upon a spatial-temporal Transformer (Xu et al., 2020) with causal
temporal masks, and a VQ-VAE codebook that enables vector-quantized action representation. We
concatenate a set of learnable action queries qa ∈ RN×d with predefined dimension d, along the
sequence dimension with the DINO embeddings of the current and future frames as well as the
instruction embeddings extracted by T5 (Raffel et al., 2020), and feed them into the FIDM:

ãLt→t+n = Iθ
(
et, et+n, l, qa

)
,

Following LAPA (Ye et al., 2024), we train the model using the VQ-VAE objective (Van Den Oord
et al., 2017), which implicitly quantizes the latent actions. The nearest quantized representation is
retrieved from a discrete embedding codebook:

âLt→t+n = VQθ

(
ãLt→t+n

)
.

This formulation allows the latent action zt to be represented as discrete tokens from a vocabulary
space |C|, making it straightforward for vision-language models to predict actions. The quantized
latent action is then passed to a decoder composed of Spatial Transformers, which predicts the DINO
features of the future frame. We use the MSE loss of predicted latent embeddings êt+n and et.

3.3 FINETUNING THE COUPLED FFDM AND FIDM IN AN END-TO-END MANNER

After pretraining, our foundation forward dynamics model (FFDM) Fθ learns to predict robotic arm
actions aligned with future video frames. To connect these predictions with control, we employ a
lightweight MLP that projects the predicted future latent embeddings onto the input manifold of the
inverse dynamics model, ensuring semantic consistency between dynamics prediction and the control
space. The foundation inverse dynamics model (FIDM) Iθ then uses these projected embeddings to
generate latent actions. Finally, a diffusion-based action adapter leverages the latent actions from
FIDM as guidance to translate them into executable action sequences, effectively bridging high-level
motion reasoning and low-level control.

4 EXPERIMENTS

In this section, we conduct extensive experiments on both simulated and real-world environments to
evaluate the effectiveness of DeFI as shown in Figure 3.

4.1 IMPLEMENTATION DETAILS

In the pretraining stage, we first train the foundation forward dynamics model on a diverse collection
of datasets spanning both human videos (Goyal et al., 2017; Grauman et al., 2022) and robotic
manipulation data (Mees et al., 2022b; O’Neill et al., 2023). In parallel, the foundation inverse
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b. SimplerEnv Google Robota. CALVIN ABC-D

c. Real-world Franka Robot

Figure 3: Experiments setup on CALVIN ABC-D, SimplerEnv Google Robot and real-world Franka
Robot. We evaluate DeFI across 3 simulation environments.

Table 1: CALVIN ABC-D results. We present the average success computed over 1000 rollouts for
each task and the average number of completed tasks to solve 5 instructions consecutively (Avg. Len.).
DeFI shows significant superiority over baselines. The best results are bolded. *We reproduced
results of π0 on CALVIN.

View Method 1 2 3 4 5 Avg. Len. ↑

Third View

SuSIE (Black et al., 2023) 87.0 69.0 49.0 38.0 26.0 2.69
CLOVER (Bu et al., 2024b) 96.0 83.5 70.8 57.5 45.4 3.53
UniVLA (Bu et al., 2025b) 95.5 85.8 75.4 66.9 56.5 3.80

DeFI 92.9 87.2 81.2 75.0 68.4 4.05

Multi-View

GR-1 (Wu et al., 2024) 85.4 71.2 59.6 49.7 40.1 3.06
OpenVLA (Kim et al., 2024) 91.3 77.8 62.0 52.1 43.5 3.27

Vidman (Wen et al., 2024) 91.5 76.4 68.2 59.2 46.7 3.42
π0∗ (Black et al., 2024) 93.8 85.0 76.7 68.1 59.9 3.92

UP-VLA (Zhang et al., 2025b) 92.8 86.5 81.5 76.9 69.9 4.08
Seer (Tian et al., 2024) 96.3 91.6 86.1 80.3 74.0 4.28
VPP (Hu et al., 2024) 96.5 90.9 86.6 82.0 76.9 4.33

DeFI 97.9 94.2 90.7 87.0 81.2 4.51

dynamics model is pretrained on large-scale human egocentric datasets, including Ego4D (Grauman
et al., 2022) and Open X-Embodiments (O’Neill et al., 2023). During fine-tuning, we freeze the
pretrained forward dynamics model to preserve its generalization capability and generate 16-frame
future predictions. All experiments are conducted on NVIDIA H100 GPUs. Detailed implementation
and training protocols are provided in Appendix A.2.

4.2 MANIPULATION BENCHMARKS ON CALVIN

Experiment setup and baseline. CALVIN (Mees et al., 2022b) is a simulated benchmark designed for
learning long-horizon, language-conditioned robot manipulation policies. It comprises four distinct
manipulation environments and provides over six hours of teleoperated play data per environment,
captured from multiple sensors including static and gripper-mounted RGB-D cameras, tactile images,
and proprioceptive readings. We focus on the challenging ABC-D setting, where the model is trained
in the ABC environment and evaluated in the unseen D environment, then report the success rate of
every track and the average length of 5 tasks. We compare our model with the latest state-of-the-art
generalist manipulation policies, including OpenVLA (Kim et al., 2024), Robovlm (Li et al., 2024a),
π0 (Black et al., 2024), GR1 (Wu et al., 2024), UP-VLA (Zhang et al., 2025b), Seer (Tian et al., 2024),
SuSIE (Black et al., 2023), CLOVER (Bu et al., 2024b) and VPP (Hu et al., 2024). For fairness, we
evaluate our approach in two setups: a static (third) view and a multi-view setting that combines
static and wrist cameras.

Quantitative results and analysis. As shown in Table 1, DeFI can be effectively adapted to tasks in
the CALVIN ABC-D environments under different view settings. Our method surpasses OpenVLA,
π0, and GR1, which directly project the RGB images into action signals, revealing that leveraging a
powerful forward dynamics model to predict future actions would benefit current action reasoning.
We compare with UniVLA, which extracts latent action labels from human videos, and then pretrains
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Figure 4: Data efficiency of DeFI’s performance
on CALVIN ABC-D using different proportions
of the action-labeled downstream data.
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Figure 5: Ablation study for the effectiveness of
decoupled forward and inverse pretraining.

the VLA model on the large-scale datasets. It demonstrates that decoupling forward and inverse
dynamics model pretraining is more effective than solely extracting latent action as pseudo labels
to pretrain VLA. Additionally, DeFI surpasses UP-VLA and Seer, which integrate the visual/latent
feature forecasting and action reasoning into a single VLA framework. The results demonstrate
that disentangling the forward and inverse dynamics models and pretraining them on mixed videos
separately would fully exploit the power of action-free videos and benefit the robot action reasoning.
Compared to methods that use video generation models’ predicted videos as input, like SuSIE,
CLOVER and VPP, our model significantly achieves more accurate control, demonstrating that
accurate action inference is as important as accurate future prediction and a powerful inverse
dynamics model leads to better performance. Furthermore, we can find that our method is more
effective in long-horizon tasks than previous methods, because our visual forward dynamics model
can predict future videos and leverage a powerful FFDM to resolve the actions.

Data efficiency. Collecting robot data is both time-consuming and labor-intensive, making data
efficiency crucial for robot learning. We evaluate our method on the CALVIN ABC-D benchmark,
using 10%, 20%, 50%, and 100% of the available data to fine-tune pretrained policies. The results,
shown in Figure 4, demonstrate that our method consistently enhances policy performance across
varying data scales. Notably, under data-scarce conditions with only 10% of the training data, the
pretrained policy achieves an 18% relative improvement in average task length on CALVIN ABC-D
compared to VPP (Hu et al., 2024). Moreover, our method requires only about 60% of the data
on CALVIN ABC-D to surpass the previous state-of-the-art baseline. These results highlight the
potential of DeFI in scenarios with limited finetuning data and further push the upper bound of robot
learning by introducing massive low-cost human videos.

4.3 MANIPULATION BENCHMARKS ON SIMPLERENV-FRACTAL

Experiment setup and baseline. SimplerEnv (Li et al., 2024b) features WidowX and Google Robot
setups, providing diverse manipulation scenarios with varied lighting, colors, textures, and robot
camera pose conditions, thereby bridging the visual appearance gap between real and simulated
environments. We compare our model on the Fractal branch (Google Robot) with the latest state-of-
the-art generalist manipulation policies, including Octo (Team et al., 2024), TraceVLA (Zheng et al.,
2024), and OpenVLA (Kim et al., 2024).

Quantitative results and analysis. Table 2 presents the SimplerEnv experimental results on the
Fractal branch. DeFI also achieves state-of-the-art performance on Google robot multitasks, with
an average success rate of 51.2% and 45.4% on visual matching and variant aggregation settings,
respectively. However, DeFI underperforms on certain tasks. We attribute this to domain shift: the
visual FFDM is pretrained on real-world datasets (Fractal (Brohan et al., 2023)) and kept frozen
during finetuning, which restricts it to predicting real-world images. This mismatch propagates to the
inverse dynamics model, causing it to generate erroneous actions.
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Table 2: Evaluation results across different policies on SimplerEnv. We evaluate DeFI on 3 tasks
on the Google Robot in SimplerEnv.

SimplerEnv on Google Robot Tasks

Model
Visual Matching Variant Aggregation

Pick Coke Can Move Near Open/Close Drawer Avg. Pick Coke Can Move Near Open/Close Drawer Avg.

Octo-Base (Team et al., 2024) 17.0% 4.2% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1%
TraceVLA (Zheng et al., 2024) 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0%
OpenVLA (Kim et al., 2024) 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8%
DeFI 54.2% 60.7% 38.6% 51.2% 53.9% 58.2% 24.0% 45.4%

Table 3: Real-world evaluation with the Franka Robot across eight tasks.

Method
Success Rate (%)

Place Open Close Cut Stack Bowl Stack Cube Stack Bottle Pour Water Average

Diffusion Policy (Chi et al., 2023) 70.0 40.0 70.0 50.0 45.0 35.0 40.0 35.0 48.2
Octo-Base (Team et al., 2024) 55.0 35.0 60.0 20.0 30.0 25.0 30.0 20.0 34.4
OpenVLA (Kim et al., 2024) 50.0 40.0 65.0 40.0 30.0 35.0 45.0 45.0 43.8
DeFI 90.0 75.0 100.0 80.0 80.0 70.0 80.0 75.0 81.3

4.4 REAL-WORLD EXPERIMENTS

Experiment setup and baselines. As shown in Figure 6, we use the Franka Panda arm to conduct
experiments evaluating the effectiveness of our method in the real world. In our setup, two RealSense
D415 cameras capture RGB images: one provides a third-person view, and the other is mounted on
the gripper. We collected 1,600 trajectories for 8 tasks, as shown in Table 3. In the experimental
setup, each trial allows a maximum of 20 consecutive attempts. All objects are randomly positioned
on the table surface. A trial is considered successful if the robotic arm grasps the target object
within the specified attempts; in placement tasks, success further requires transferring the object
onto a designated plate. For fair comparison, we finetune Diffusion Policy (Chi et al., 2023), Octo-
Base (Team et al., 2024), OpenVLA (Kim et al., 2024) and DeFI on collected demonstration datasets.

Franka
Panda

More than
15 objects

RealSense
D415

Figure 6: Real-world robot setup.

Quantitative results and analysis. As presented in Table 3,
DeFI outperforms previous methods. Specifically, in simple
single-task scenarios (place, open, and close), all the policies
exhibit good performance(> 50%). However, in moderately
complex tasks (cut & stack), where the models need to make
the robot take or stack different colors and sizes of objects,
most policies, such as DP, Octo, and OpenVLA, struggle with
manipulation, frequently encountering issues like object and
order misidentification. Our method surpasses these approaches
thanks to the powerful prediction and generalization capabilities
of the pretrained visual foundation forward dynamics model.
Furthermore, in the complex long-horizon and accurate control
task (pour water), our method demonstrates strong performance,
accurately executing tasks like grasping up a teapot and pouring
water into a cup, which relies on the powerful pretrained inverse
dynamics model. Overall, DeFI achieves a higher average suc-
cess rate, showcasing robust real-world operation capabilities.

4.5 ABLATION STUDY

In this section, we investigate the following questions under the multi-view setting to thoroughly
evaluate the ability of our model:

Q1: What is the impact of the decoupled pretraining stage? As shown in Table 4 and Figure 5,
the FFDM without pretraining achieves an average task length of 3.28, benefiting from the prior
knowledge of the video generation model. However, it still suffers from limited prediction quality on
robot videos. Without pretraining, the FIDM achieves an average length of 4.16, while pretraining
the inverse dynamics branch provides stronger action guidance. Incorporating the full decoupled
pretraining further improves performance to 4.51. These results highlight the importance of large-
scale decoupled pretraining on robot and human data for stable optimization and better generalization.
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Table 4: Performance comparison with or with-
out decoupled pretraining.

Addition Type Task completed in a row

1 2 3 4 5 Len.

FFDM w/o pre 88.0 77.6 62.4 56.8 43.2 3.28
FIDM w/o pre 96.0 88.8 83.2 76.8 71.2 4.16

All w/ pre 97.9 94.2 90.7 87.0 81.2 4.51

Table 5: Performance comparison with or with-
out human videos.

Addition Type Task completed in a row

1 2 3 4 5 Len.

FFDM w/o h.v. 96.0 91.2 85.6 77.6 68.8 4.19
FIDM w/o h.v. 93.6 91.2 88.0 82.4 79.2 4.34

All w/ h.v. 97.9 94.2 90.7 87.0 81.2 4.51

Table 6: Performance comparison of different
FFDM settings. “5 Steps” indicates five denois-
ing steps in FFDM, while “DINO” denotes a
DINO-based generative model used as FFDM.

Method Task completed in a row

1 2 3 4 5 Len.

5 Steps 98.4 95.2 89.6 82.4 79.2 4.45
DINO 91.2 81.6 74.4 65.6 57.6 3.70
Ours 97.9 94.2 90.7 87.0 81.2 4.51

Table 7: Performance comparison of different
inverse dynamics model architectures.

Method Task completed in a row

1 2 3 4 5 Len.

MLP 89.6 80.8 66.4 56.0 48.8 3.42
Transformer 97.6 90.4 83.2 77.6 73.6 4.22

Ours 97.9 94.2 90.7 87.0 81.2 4.51

Q2: What impact does human video have? As shown in Table 5, the FFDM without human
videos achieves an average task length of 4.19. When the FIDM is used without human videos,
the performance improves slightly to 4.34. Incorporating human videos during pretraining further
increases the average task length to 4.51, yielding relative gains of +0.17 over FIDM and +0.32 over
FFDM. These results indicate that the massive scale and diverse human video data provide valuable
motion priors that complement robot demonstrations and enhance generalization.

Q3: How does the quality and format of the predicted image affect performance? As shown
in Table 6, we study the trade-off between generation quality and latency by varying the number of
denoising steps. While additional denoising slightly improves visual fidelity, it incurs a dispropor-
tionately large increase in latency, which is unfavorable for real-time control. In our DeFI, a single
denoising step requires approximately 150 ms per inference, whereas five denoising steps take around
250 ms, resulting in significantly slower performance. Notably, a single denoising step already cap-
tures sufficient semantic information about future frames, and further steps do not yield improvements
in manipulation performance. We also evaluate replacing the SVD-based video generation backbone
with a DINO-based generative model. Although DINO features converge faster during training and
are more consistent with the feature space of the FIDM, they cannot be seamlessly integrated into
existing video generation frameworks and leverage their pretrained knowledge, resulting in inferior
performance compared to the SVD baseline.

Q4: What impact do architectural variants of the inverse dynamics model have? As shown
in Table 7, to rigorously evaluate the impact of inverse dynamics model architecture on overall
policy performance, we compare FIDM against several common architectural variants: (i).a simple
multilayer perceptron (MLP) that directly maps concatenated current and future state embeddings to
actions, (ii).a Transformer that directly maps concatenated current and future state embeddings to
actions, and (iii).our FIDM, which discretizes the continuous action space via a causal transformer
with vector quantization using VQ-VAE. Our FIDM outperforms all alternatives. The MLP baseline
fails to capture complex actions, while the Transformer accumulates errors. These results demonstrate
that the design of the inverse dynamics model critically affects performance, and that our discrete
action space approach with self-supervised training effectively learns a structured latent action space
for precise action generation.

5 CONCLUSION

We presented DeFI, a framework that decouples visual forward and inverse dynamics pretraining to
reconcile the misalignment between 2D video forecasting and 3D action prediction while enabling
learning from large-scale, action-free web videos. DeFI comprises a Foundation Forward Dynamics
Model for future prediction from diverse human and robot videos and a Foundation Inverse Dynamics
Model that infers latent actions from unlabeled video transitions. The two models are integrated
into a unified architecture and fine-tuned end-to-end on downstream tasks, allowing them to first
specialize independently and then cooperate for mutual benefit. This method consistently enhances
both simulated and real tasks, showing that decoupling forward and inverse dynamics offers a scalable
and effective path for VLA systems trained on Internet-scale video.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large language models are used solely as a writing assistant for grammar refinement and expression
polishing. They do not contribute to research ideation, methodology design, experiments, or analysis.

A.2 IMPLEMENTATION DETAILS

FFDM Pretraining Details. For pretraining the foundation forward dynamics model, we use a
mixture of robot video datasets (Open X-Embodiment (O’Neill et al., 2023), CALVIN (Mees et al.,
2022b)) and human video datasets (Something-Something-v2 (Goyal et al., 2017), Ego4D (Grauman
et al., 2022)). To appropriately balance the contributions of different datasets, we adopt varying
sampling ratios. Detailed dataset information is provided in Table 9.

FIDM Pretraining Details. For pretraining the foundation inverse dynamics model, we use a subset
of the Open X-Embodiment dataset (O’Neill et al., 2023) containing single-arm end-effector control.
Although actions and proprioceptive states are available in these robot datasets, we exclude them
during pretraining and rely only on episode frames and text instructions. We further incorporate
open-world human videos, specifically egocentric recordings of daily activities from the Ego4D
dataset (Grauman et al., 2022). Except for the SimplerEnv benchmark (Li et al., 2024b), which
replicates the environment of the Fractal dataset (Brohan et al., 2023), none of the downstream
evaluation environments (e.g., CALVIN (Mees et al., 2022b)) are seen during pretraining, thereby
requiring strong generalization capabilities from the model. The dataset composition and sampling
ratios are detailed in Table 10.

Coupled Finetuning Details For the coupled finetuning stage, we freeze the foundation forward
dynamics model while finetuning the foundation inverse dynamics model and the latent action adapter.
Training is conducted on the CALVIN-ABC dataset for evaluation on the CALVIN benchmark (Mees
et al., 2022b), and on the Fractal dataset (Brohan et al., 2023) for evaluation on the SimplerEnv
benchmark (Li et al., 2024b).

We summarize the training and model parameters of each component of DeFI in Table 8.

A.3 MODEL ARCHITECTURE

Foundation forward dynamics model. We adopt the open-sourced Stable Video Diffusion
(SVD) (Blattmann et al., 2023) as the foundation for the forward dynamics model. We further
enhance it by incorporating language instructions through CLIP (Radford et al., 2021) and adjusting
the output video resolution to 256× 256, aligning with the resolution of robot datasets (O’Neill et al.,
2023; Mees et al., 2022b).

Foundation inverse dynamics model. We adopt a Transformer architecture as the foundation
inverse dynamics model and train it in the DINO feature (Oquab et al., 2024) space to obtain
semantically rich representations, following prior work (Bu et al., 2025b). The pseudo-code for
the pretraining process is shown in Algorithm 1. Following previous works (Ye et al., 2024; Chen
et al., 2024b; Bu et al., 2025b), we use a Transformer decoder to reconstruct the features of future
frames when training the foundation inverse dynamics model. However, the Transformer decoder is
discarded during the fine-tuning stage of the coupled foundation forward dynamics model (FFDM)
and foundation inverse dynamics model (FIDM).

Diffusion-based action adapter. We adopt a Diffusion Transformer architecture as the action
adapter to decode latent action features into robot actions. The language instruction, encoded by
the CLIP encoder, is combined with the latent action features obtained from the foundation inverse
dynamics model and serves as conditioning for the action denoising process, which generates the
final robot actions.
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Table 8: Training and model parameters used in our DeFI.

Train parameter Value
GPU NVIDIA H100
Number of GPUs 8
Pretraining time of FFDM 3 days
Pretraining time of FIDM 1.5 days
Finetuning time on CALVIN 0.5 days
Training memory on CALVIN 64G
Inference memory on CALVIN 7G
Batch size 32
Learning rate 1× 10−4

Weight decay 1× 10−2

Optimizer AdamW
Pretraining epochs 20
Finetuning epochs 12

Model parameter Value
Foundation Forward Dynamics Model
Model type Stable Video Diffusion
Image size 256× 256
Predicted future frames 16

Foundation Inverse Dynamics Model
Model type Transformer
Feature dimension 768
Vocabulary size of VQ codebook 128
Number of layers 16

Action Adapter
Model type Diffusion Transformer
Feature dimension 384
Number of layers 12
Sampling steps 10
Action dimension 7

Algorithm 1: Foundation Inverse Dynamics Model Training
Input: Current frame ot, future frame ot+n, language instruction L
Output: Predicted DINO feature of ot+n

Ft ← DINOEncoder(ot) ; // DINO feature of current frame
Ft+n ← DINOEncoder(ot+n) ; // DINO feature of future frame
FL ← TextEncoder(L) ; // Instruction embedding
H ← Spatial-temporal Transformer(Ft, Ft+n, FL) ; // Foundation Inverse
Dynamics Model
A← VQ-VAE(H) ; // Latent action feature

F̂t+n ← TransformerDecoder(Ft, A) ; // Decoded future DINO feature

Lpred ← Loss(F̂t+n, Ft+n) ; // Prediction loss
LVQ ← Loss(H,A) ; // VQ-VAE loss
L ← Lpred + LVQ ; // Total loss

A.4 EXPERIMENTS

Real-world Experiments. As shown in Figure 12, success is recorded only if both the grasping
and placement operations are completed within the allowed attempts. For the articulated object
manipulation tasks(open & close), the microwave is randomly placed in front of the robotic arm.
The experiment is considered successful if the door displacement exceeds 5 cm, indicating effective
interaction. For the cutting task, the robot has to take the knife to cut the bread.
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Table 9: The foundation forward dynamics model of our DeFI is trained on a mixture of data from the
Open X-Embodiment (O’Neill et al., 2023) and CALVIN (Mees et al., 2022b) robot video datasets, as
well as the Ego4D (Grauman et al., 2022) and Something-Something-v2 (Goyal et al., 2017) human
video datasets. The proportions are normalized to sum to 100%.

Category Training dataset mixture Proportion

Robot Videos
Fractal (Brohan et al., 2023) 30%
Bridge (Ebert et al., 2021; Walke et al., 2023) 10%
CALVIN-ABC (Mees et al., 2022b) 30%

Human Videos Something-Something-v2 Goyal et al. (2017) 15%
Ego4D Grauman et al. (2022) 15%

Table 10: The foundation inverse dynamics model of our DeFI is trained on a mixture of data from
the Open X-Embodiment (O’Neill et al., 2023) robot video dataset and the Ego4D (Grauman et al.,
2022) human video dataset. The proportions are normalized to sum to 100%.

Category Training dataset mixture Proportion

Robot Video

Fractal (Brohan et al., 2023) 16.3%
Kuka (Kalashnikov et al., 2018) 7.4%
Bridge (Ebert et al., 2021; Walke et al., 2023) 8.0%
Taco Play (Mees et al., 2022a) 4.1%
Jaco Play (Dass et al., 2023) 0.7%
Berkeley Cable Routing (Luo et al., 2024) 0.4%
Roboturk (Mandlekar et al., 2018) 3.3%
Viola (Zhu et al., 2023b) 1.3%
Berkeley Autolab UR5 (Chen et al., 2024a) 1.6%
Toto (Zhou et al., 2023) 2.8%
Language Table (Lynch et al., 2023) 6.1%
Stanford Hydra Dataset (Belkhale et al., 2023) 6.2%
Austin Buds Dataset (Zhu et al., 2022) 0.4%
NYU Franka Play Dataset (Bardes et al., 2024) 1.2%
Furniture Bench Dataset (Heo et al., 2023) 3.4%
UCSD Kitchen Dataset (Darkhalil et al., 2022) 0.1%
Austin Sailor Dataset (Nasiriany et al., 2022) 3.0%
Austin Sirius Dataset (Liu et al., 2022) 2.3%
DLR EDAN Shared Control (Quere et al., 2020) 0.1%
IAMLab CMU Pickup Insert (Saxena et al., 2023) 1.3%
UTAustin Mutex (Shah et al., 2023) 3.0%
Berkeley Fanuc Manipulation (Zhu et al., 2023a) 1.1%
CMU Stretch (Mendonca et al., 2023) 0.2%
BC-Z (Jang et al., 2022) 10.3%
FMB Dataset (Lynch et al., 2023) 9.8%
Dobbe (Shafiullah et al., 2023) 2.0%

Human Video Ego4D (Grauman et al., 2022) 3.5%

A.5 INFERENCE LATENCY

As shown in Table 11, we evaluate the inference time of our model on the CALVIN (Mees et al.,
2022b) benchmark. The inference time of each component of the model is reported, averaged over
five runs.

A.6 DISCUSSIONS AND FUTURE WORK

Our model introduces a new framework that disentangles robot learning into a foundation forward
dynamics model and a foundation inverse dynamics model, enabling full utilization of large-scale
action-free videos from both humans and robots. This represents a fundamental improvement
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Table 11: The inference time of our DeFI is measured on an NVIDIA GeForce RTX 4090 GPU,
averaged over five runs.

Model part Inference time
Foundation Forward Dynamics Model 86.1ms
Foundation Inverse Dynamics Model 42.9ms
Action Adapter 24.3ms

�� ��+� �� ��+�

Robot Video Human Video

Figure 7: Qualitative attention heatmap results of the foundation inverse dynamics model on robot
and human videos.

over existing vision-language-action (VLA) architectures, particularly in scenarios where embodied
intelligence data is costly. For the limitation, our model does not incorporate a large language model,
and therefore lacks the ability to support language-based interaction. Interaction and embodied
reasoning (Qi et al., 2025; 2024) are crucial for complex robotic tasks. For future work, we aim to
integrate our FFDM and FIDM with a large language model as a foundation understanding module,
enabling the model to unify prediction, interaction, and action execution capabilities.

A.7 QUALITATIVE RESULTS

Heatmap of FIDM. As shown in Figure 7, we visualize the attention maps of the foundation inverse
dynamics model (FIDM) to demonstrate its ability to capture actions from both robot and human
videos. The results indicate that the model consistently attends to the robot arm or human arm across
different timesteps, enabling it to extract latent actions that guide the generation of executable actions.
This highlights the benefit of large-scale pretraining in grounding the model’s action understanding.

Qualitative results on the benchmark. As shown in Figure 8 and Figure 9, we visualize the
results of the CALVIN benchmark on long-horizon tasks. Our DeFI performs well on sequences
consisting of five consecutive tasks. Similarly, Figure 10 and Figure 11 present results on the
SimplerEnv benchmark for the tasks “pick coke can” and “close drawer”, where DeFI completes the
tasks coherently according to the given instructions.

Qualitative results on the real-world environments. As shown in Figure 12, we visualize the
results of the real-world environments across eight tasks.
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go push the red block left

grasp and lift the red block

store the grasped block in the sliding cabinet

push the sliding door to the right side

use the switch to turn off the light bulb

Figure 8: Qualitative results of the CALVIN long-horizon task.
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take the red block and rotate it to the right

push the sliding door to the right side

grasp and lift the red block

store the grasped block in the sliding cabinet

press the button to turn on the led light

Figure 9: Qualitative results of the CALVIN long-horizon task.
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Pick Coke Can

Figure 10: Qualitative results of SimplerEnv evaluation on Google Robot.
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Close Drawer

Figure 11: Qualitative results of SimplerEnv evaluation on Google Robot.
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Real-world experiments

Place the bread on the plate.

Cut the bread.

Stack bowl.

Stack bottle.

Open/Close the oven

Pour water.
Figure 12: Qualitative results of real-world experiments.
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