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Abstract

This paper studies the problem of model training under Federated Learning when
clients exhibit cluster structure. We contextualize this problem in mixed regres-
sion, where each client has limited local data generated from one of k unknown
regression models. We design an algorithm that achieves global convergence from
any initialization, and works even when local data volume is highly unbalanced –
there could exist clients that contain O(1) data points only. Our algorithm first runs
moment descent on a few anchor clients (each with Ω̃(k) data points) to obtain
coarse model estimates. Then each client alternately estimates its cluster labels
and refines the model estimates based on FedAvg or FedProx. A key innovation
in our analysis is a uniform estimate on the clustering errors, which we prove by
bounding the VC dimension of general polynomial concept classes based on the
theory of algebraic geometry.

1 Introduction

Federated learning (FL) [MMR+17] enables a massive number of clients to collaboratively train
models without disclosing raw data. Heterogeneity in clients renders local data non-IID and highly
unbalanced. For example, smartphone users have different preferences in article categories (e.g.
politics, sports or entertainment) and have a wide range of reading frequencies. In fact, distribution
of the local dataset sizes is often heavy-tailed [DDPM13, FAC, FHK12].

Existing methods to deal with data heterogeneity can be roughly classified into three categories: a
common model, fully personalized models, and clustered personalized models; see Section 2 for
detailed discussion. Using a common model to serve highly heterogeneous clients has fundamental
drawbacks; recent work [SXY21] rigorously quantified the heterogeneity level that the common
model can tolerate with. Fully personalized models [SCST17, MNB+21] often do not come with
performance guarantees as the underlying optimization problem is generally hard to solve. In this
work, we focus on clustered personalized models [SMS20], i.e., clients within the same cluster share
the same underlying model and clients across clusters have relatively different underlying models.
The main challenge is that the cluster identities of the clients are unknown. We target at designing
algorithms that simultaneously learn the clusters and train models for each cluster.

A handful of simultaneous clustering and training algorithms have been proposed [MMRS20,
XLS+21, LLV21, GCYR20], mostly of which are heuristic and lack of convergence guarantees
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[MMRS20, XLS+21, LLV21]. Towards formal assurance, [GCYR20] studied this problem through
the lens of statistical learning yet postulated a number of strong assumptions such as the initial model
estimates are very close to the true ones, linear models, strong convexity, balanced and high-volume of
local data. Their numerical results [GCYR20] suggested that sufficiently many random initializations
would lead to at least one good realization satisfying the required closeness assumption. However, the
necessary number of random initializations scales exponentially in both the input dimension and the
number of clusters. Besides, in practice, it is hard to recognize and winnow out good initialization. In
this work, following [GCYR20], we adopt a statistical learning setup. In particular, we contextualize
our problem as the canonical mixed regression, where each client has a set of local data generated
from one of k unknown regression models. Departing from standard mixed regression, in which each
client keeps one data point only [MN19, LL18], in our problem the sizes of local datasets can vary
significantly across clients. We only make a mild assumption that there exist a few anchor clients
(each with Ω̃(k) data points) and sufficiently many clients with at least two data points. Similar mixed
regression setup with data heterogeneity has been considered in [KSS+20] in a different context of
meta-learning; the focus there is on exploring structural similarities among a large number of tasks in
centralized learning. On the technical side, their analysis only works when the covariance matrices of
all the clusters are identical and each client has Ω(log k) data points. Please refer to Remark 1 for
more detailed technical comparisons.

Contributions The main contributions of this work are summarized as follows:

• We design a two-phase federated learning algorithm to learn clustered personalized models
in the context of mixed regression problems. In Phase 1, the parameter server runs a
federated moment descent on a few anchor clients to obtain coarse model estimates based
on subspace estimation. In each global iteration of Phase 2, each client alternately estimates
its cluster label and refines the model estimates based on FedAvg or FedProx. The algorithm
works even when local data volume is highly unbalanced – there could exist clients that
contain O(1) data points only.

• We prove the global convergence of our algorithm from any initialization. The proof is
built upon two key ingredients: 1) We develop a novel eigengap-free bound to control the
projection errors in subspace estimation; 2) To deal with the sophisticated interdependence
between the two phases and across iterations, we develop a novel uniform estimate on the
clustering errors, which we derive by bounding the VC dimension of general polynomial
concept classes based on the theory of algebraic geometry. Our analysis reveals that the
final estimation error is dominated by the uniform deviation of the clustering errors, which
is largely overlooked by the previous work.

2 Related Work

FedAvg [MMR+17] is a widely adopted FL algorithm due to its simplicity and low communication
cost. However, severe data heterogeneity could lead to unstable training trajectories and land in
suboptimal models [LSZ+20, ZLL+18, KKM+20]. Based on the number of models trained, existing
methods to deal with data heterogeneity can be roughly classified into three categories.

A Common Model: To limit the negative impacts of data heterogeneity on the obtained common
model, a variety of techniques based on variance reduction [LSZ+20, LXC+19, KKM+20] and
normalization [WLL+20] have been introduced. Their convergence results mostly are derived under
strong technical assumptions such as bounded gradient and/or bounded Hessian dissimilarity which
do not hold when the underlying truth in the data generation is taken into account [LSZ+20, LXC+19,
KKM+20]. In fact, none of them strictly outperform others in different instances of data heterogeneity
[LDCH21]. Besides, the generalization errors of the common model with respect to local data are
mostly overlooked except for a recent work [SXY21], which shows that the common model can
tolerate only a moderate level of model heterogeneity.

Fully Personalized Models: [SCST17] proposed Federated Multi-Task Learning (MTL) wherein
different models are learned for each of the massive population of clients [SCST17, MNB+21].
Though conceptually attractive, the convergence behaviors of Federated MTL is far from well-
understood because the objective is not jointly convex in the model parameters and the model
relationships [SCST17, AEP08, AZB05]. Specifically, [SCST17] focused on solving the subproblem
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of updating the model parameters only. Even in the centralized setting, convergence is only shown
under rather restricted assumptions such as equal dataset sizes for different tasks (i.e. balanced local
data) [AZB05] and small number of common features [AEP08]. Moreover, the average excess error
rather than the error of individual tasks is shown to decay with the dominating term O(1/

√
n), where

n is the homogeneous local dataset size [AZB05]. Despite recent progress [TJJ21, DHK+20], their
results are mainly for linear representation learning and for balanced local data. Parallel to Federated
MTL, model personalization is also studied under the Model-Agnostic Meta-Learning (MAML)
framework [FMO20, JKRK19] where the global objective is modified to account for the cost of
fine-tuning a global model at individual clients. However, they focused on studying the convergence
in training errors only– no characterization of the generalization error is given.

Clustered Personalized Models: Clustered Federated Learning (CFL) [SMS20, GCYR20, GHYR19,
XLS+21, MMRS20, LLV21] can be viewed as a special case of Federated MTL where tasks across
clients form cluster structures. In addition to the algorithms mentioned in Section 1, i.e., which
simultaneously learn clusters and models for each cluster, other attempts have been made to integrate
clustering with model training. [SMS20] hierarchically clustered the clients in a post-processing
fashion. To recover the k clusters, Ω(k) empirical risk minimization problems need to be solved
sequentially – which is time-consuming. [GHYR19] proposed a modular algorithm that contains one-
shot clustering stage, followed by k individual adversary-resilient model training. Their algorithm
scales poorly in the input dimension, and requires local datasets to be balanced and sufficiently large
(i.e., n ≥ d2). Moreover, each client sequentially solves two empirical risk minimization problems.
To utilize information across different clusters, [LLV21] proposed soft clustering. Unfortunately,
the proposed algorithm is only tested on the simple MNIST and Fashion-MNIST datasets, and no
theoretical justifications are given.

3 Problem Formulation

A FL system consists of a parameter server (PS) and M clients. Each client i ∈ [M ] keeps a
dataset Di = {(xij , yij)}ni

j=1 that are generated from one of k unknown regression models. Let

N =
∑M

i=1 ni. The local datasets are highly unbalanced with varying ni across clients. If ni = Ω̃(k),
we refer to client i as anchor client, which corresponds to active user in practice. Anchor clients play
a crucial rule in our algorithm design. We consider the challenging yet practical scenario wherein a
non-anchor client may have O(1) data points only.

We adopt a canonical mixture model setup: For each client i ∈ [M ],

yi = ϕ(xi)θ
∗
zi + ζi, (1)

where zi ∈ [k] is the hidden local cluster label, θ∗1 , · · · , θ∗k are the true models of the clusters,
ϕ(xi) ∈ Rni×d is the feature matrix with rows given by ϕ(xij), yi = (yij) ∈ Rni is the response
vector, and ζi = (ζij) ∈ Rni is the noise vector. Note that the feature map ϕ can be non-linear
(e.g. polynomials). The cluster label of client i is randomly generated from one of the k components
from some unknown p = (p1, . . . , pk) in probability simplex ∆k−1. That is, P {zi = j} = pj for
j ∈ [k]. In addition, ∥θ∗j ∥2 ≤ R for each component. The feature covariate ϕ(xij) is independent and
sub-Gaussian αId ⪯ E[ϕ(xij)ϕ(xij)

⊤] ⪯ βId. We assume that the covariance matrix is identical
within the same cluster but may vary across different clusters, i.e., E[ϕ(xij)ϕ(xij)

⊤] = Σj if zi = j.
The noise ζij is independent and sub-Gaussian with E[ζij ] = 0 and E[ζ2ij ] ≤ σ2.

Our formulation accommodates statistical heterogeneity in feature covariates, local models, and
observation noises [KMA+21]. For the identifiability of the true cluster models θ∗j ’s, we assume a
minimum proportion and a pairwise separation of clusters. Formally, let ∆ = minj ̸=j′ ∥θ∗j − θ∗j′∥2
and pmin = minj∈[k] pj . For ease of presentation, we assume the parameters α, β = Θ(1), σ/∆ =
O(1), and R/∆ = O(1), while our main results can be extended to show more explicit dependencies
on these parameters with careful bookkeeping calculations. Note that even under these assumptions,
we still allow R, ∆, σ to scale with model dimension d. Also, the assumption R/∆ = O(1) basically
requires the radius of θ∗j ’s is on the same scale as their pairwise separation. It rules out the extreme
setting where θ∗j ’s themselves are extremely large while their pairwise separations are tiny.

Notations: Let [n] ≜ {1, . . . , n}. For two sets A and B, let A⊖B denote the symmetric difference
(A − B) ∪ (B − A). We use standard asymptotic notation: for two positive sequences {an} and

3



{bn}, we write an = O(bn) (or an ≲ bn) if an ≤ Cbn for some constant C and sufficiently large n;
an = Ω(bn) (or an ≳ bn) if bn = O(an); an = Θ(bn) (or an ≍ bn) if an = O(bn) and an = Ω(bn);
Poly-logarithmic factors are hidden in Ω̃. Given a matrix A ∈ Rn×d, let A =

∑r
i=1 σiuiv

⊤
i denote

its singular value decomposition, where r = min{n, d}, σ1 ≥ · · · ≥ σr ≥ 0 are the singular values,
and ui (vi) are the corresponding left (right) singular vectors. We call U = [u1, u2, . . . , uk] as
the top-k left singular matrix of A. Let span(U) = span{u1, . . . , uk} denote the k-dimensional
subspace spanned by {u1, . . . , uk}.

4 Main Results

We propose a two-phase FL algorithm that enables clients to learn the model parameters θ∗1 , . . . , θ
∗
k

and their clusters simultaneously:

(i) Coarse estimation via FedMD. Run the federated moment descent algorithm to obtain coarse
estimates of model parameters θ∗i ’s.

(ii) Fine-tuning via iterative FedX+clustering. In each iteration, each client first estimates its cluster
label and then refines its local model estimate via either FedAvg or FedProx (which we refer to as
FedX) [MMR+17, LSZ+20].

FedMD and FedX+clustering are detailed in the pseudocode in Phase 1 and Phase 2, respectively.

4.1 Federated moment descent

With multiple clusters and sub-Gaussian features, simple procedures such as power method will no
longer provide a reasonably good coarse estimation. The reasons are two-fold: 1) With sub-Gaussian
features, it is difficult to construct a matrix whose leading eigenspace approximately aligns with
the space spanned by the true model parameters (θ∗1 , . . . , θ

∗
k); 2) Even this is achievable, there still

remains significant ambiguity in determining the model parameters from their spanned subspace.

The key idea of the first phase of our algorithm is to leverage the existence of anchor clients.
Specifically, the PS chooses a set H of nH anchor clients uniformly at random. Each selected
anchor client i ∈ H maintains a sequence of estimators {θi,t} that approaches θ∗zi , achieving
∥θi,t − θ∗zi∥2 ≤ ϵ∆ for some small constant ϵ > 0 when t is sufficiently large.

At high-level, we hope to have θi,t move along a well calibrated direction ri,t that decreases the
residual estimation error ∥Σ1/2

zi (θ∗zi − θi,t)∥22, i.e., the variance of the residual ⟨ϕ(xij), θ
∗ − θi,t⟩. As

such, we like to choose ri,t to be positively correlated with Σzi(θ
∗
zi − θi,t). However, to estimate

Σzi(θ
∗
zi − θi,t) solely based on the local data of anchor client i, it requires ni = Ω̃(d), which is

unaffordable in typical FL systems with high model dimension d and limited local data. To resolve
the curse of dimensionality, we decompose the estimation task at each chosen anchor client into two
subtasks: we first estimate a k-dimensional subspace that Σzi(θ

∗
zi − θi,t) lies in by pooling local

datasets across sufficiently many non-anchor clients; then we project the local data of anchor client i
onto the estimated subspace and reduce the estimation problem from d-dimension to k-dimension.

The precise description of our Phase 1 procedure is given as below. For ease of notation, let
ε(x, y, θ) ≜ (y − ⟨ϕ(x), θ⟩)ϕ(x).

In Step 9, PS estimates the subspace that the residual estimation errors {Σj(θ
∗
j − θi,t)}kj=1 lie in, in

collaboration with clients in St. In particular, for each anchor client i ∈ H , define

Yi,t =
1

m

∑
i′∈St

ε(xi′1, yi′1, θi,t)ε(xi′2, yi′2, θi,t)
⊤

We approximate the subspace spanned by {Σj(θ
∗
j − θi,t)}kj=1 via that spanned by the top-k left

singular vectors of Yi,t. To compute the latter, we adopt the following multi-dimensional general-
ization of the power method, known as orthogonal-iteration [GVL13, Section 8.2.4]. In general,
given a symmetric matrix Y ∈ Rd×d, the orthogonal iteration generates a sequence of matrices
Qt ∈ Rd×k as follows: Q0 ∈ Rd×k is initialized as a random orthogonal matrix Q⊤

0 Q0 = I and
Y Qt = Qt+1Rt+1 with QR factorization. When t is large, Qt approximates the top-k left singualr
matrix of Y , provided the existence of an eigen-gap λk > λk+1. When k = 1, this is just the the
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Phase 1: Federated Moment Descent (FedMD)

1 Input: nH , k,m, ℓ, T, T1, T2 ∈ N, α, β, ϵ,∆ ∈ R, θ0 ∈ Rd with ∥θ0∥2 ≤ R

2 Output: θ̂1, . . . , θ̂k
3 PS chooses a set H of nH anchor clients uniformly at random;
4 for each anchor client i ∈ H do
5 θi,0 ← θ0;
6 for t = 0, 1, . . . , T − 1 do
7 PS selects a set St of m clients from [M ] \

(
H ∪

(
∪t−1
τ=0Sτ

))
;

8 PS broadcasts {θi,t, i ∈ H} to all clients i′ in St; /* where ∪−1
τ=0Sτ = ∅ */;

9 PS calls federated-orthogonal-iteration (St, {ε(xi′1, yi′1, θi,t), ε(xi′2, yi′2, θi,t)}i′∈St ,
k, T1) to output Ûi,t for each anchor client i ∈ H; /* described
in Algorithm 3 */

10 PS sends Ûi,t to each anchor client i ∈ H;
11 Each anchor client i calls power-iteration(Ai,tA

⊤
i,t, T2) to output (β̂i,t, σ̂

2
i,t) with Ai,t

defined in (2);
12 if σ̂i,t > ϵ∆ then
13 θi,t+1 ← θi,t + ri,tηi,t and reports θi,t+1, where ri,t = Ûi,tβ̂i,t and

ηi,t = ασ̂i,t/(2β
2);

14 else
15 θi,t+1 ← θi,t and reports θi,t+1;

16 PS computes the pairwise distance ∥θi,T − θi′,T ∥2 for every pair of anchor clients i, i′ ∈ H ,
assigns them in the same cluster when the pairwise distance is smaller than ∆/2, and
outputs θ̂j to be the center of the estimated j-th cluster for j ∈ [k].

power-iteration and we can further approximate the leading eigenvalue of Y by the Raleigh quotient
Q⊤

t Y Qt. When Y is asymmetric, by running the orthogonal iteration on Y Y ⊤, we can compute
the top-k left singular matrix of Y . In our setting, the orthogonal iteration can be implemented in a
distributed manner in FL systems as shown in Algorithm 3 in the Appendix D.1.

In Step 11, each anchor client i estimates the residual error Σzi(θ
∗
zi−θi,t) by projecting ε(xij , yij , θi,t)

onto the previously estimated subspace, that is, Û⊤
i,tε(xij , yij , θi,t). This reduces the estimation from

d-dimension to k-dimension and hence Ω̃(k) local data points suffice. Specifically, define

Ai,t =
1

ℓ

∑
j∈Di,t

(
Û⊤
i,tε(xij , yij , θi,t)

)(
Û⊤
i,tε(x̃ij , ỹij , θi,t)

)⊤
, (2)

where Di,t consists of 2ℓ local data points (xij , yij) and (x̃ij , ỹij) freshly drawn from Di at iteration
t. Client i runs the power-iteration to output β̂i,t and σ̂2

i,t as approximations of the leading left
singular vector and singular value of Ai,t, Then anchor client i updates θi,t+1 by moving along the
direction of the estimated residual error ri,t with an appropriately chosen step size ηi,t.

We show that θi,T is close to θ∗zi for every anchor client i ∈ H and the outputs θ̂j are close to θ∗j up
to a permutation of cluster indices.
Theorem 1. Let ϵ ∈ (0, 1/4) be a small but fixed constant. Suppose that

m ≥ p−2
minΩ̃(d), ℓ = Ω̃(k), T = Ω(1) , T1 = Ω(k log(Nd)) , T2 = Ω(log(Nd)) . (3)

With probability at least 1−O(nHT/N10), for all initialization θ0 with ∥θ0∥2 ≤ R,

sup
i∈H

∥∥θi,T − θ∗zi
∥∥
2
≤ ϵ∆. (4)

Furthermore, when nH ≥ logN/pmin, with probability at least 1−O(nHT/N10),

d(θ̂, θ∗) ≤ ϵ∆, (5)
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where

d(θ̂, θ∗) ≜ min
π

max
j∈[k]

∥∥∥θ̂π(j) − θ∗j

∥∥∥
2
, where π is permutation over [k]. (6)

Note that in (6) we take a minimization over permutation, as the cluster indices are unidentifiable.

Phase 1 uses fresh data at every iteration. In total we need p−2
minΩ̃(d) clients with at least two data

points and Ω̃(1/pmin) anchor clients. This requirement is relatively mild, as typical FL systems have
a large number of clients with O(1) data points and a few anchor clients with moderate data volume.

We defer the detailed proof of Theorem 1 to Appendix D. A key step in our proof is to show the
residual estimation errors {Σj(θ

∗
j − θi,t)}kj=1 approximately lie in span(Ûi,t). Unfortunately, the

eigengap of Yi,t could be small, especially when θi,t gets close to θ∗zi ; and hence the standard
Davis-Kahan theorem [DK70] cannot be be applied. This issue is further exaggerated by the fact that
the convergence rate of the orthogonal iteration also crucially depends on the eigengaps [GVL13].
For these reasons, span(Ûi,t) may not be close to span{Σj(θ

∗
j − θi,t)}kj=1 at all. To resolve this

issue, we develop a novel gap-free bound to show that projection errors Û⊤
i,tΣj(θ

∗
j − θi,t) are small

for every j ∈ [k] (cf. Lemma 5).

Remark 1 (Comparison to previous work [LL18, KSS+20]). Our algorithm is partly inspired
by [LL18] which focuses on the noiseless mixed linear regression, but deviates in a number of crucial
aspects. First, our algorithm crucially utilizes the fact that each client chosen in St has at least two
data points and hence the space of the singular vectors of E [Yi,t] is spanned by {Σj(θ

∗
j −θi,t)}kj=1. In

contrast, [LL18] relies on the sophisticated method of moments which only works under the Gaussian
features and requires exponential in k2 many data points. Second, our algorithm crucially exploits
the existence of anchor clients and greatly simplifies the moment descent algorithm in [LL18].

Our algorithm also bears similarities with the meta-learning algorithm in [KSS+20], which also uses
clients collectively for subspace estimation and anchor clients for estimating cluster centers. However,
there are several key differences. First, [KSS+20] focuses on the centralized setting and relies on
one-shot estimation, under the additional assumption that the covariance matrix of features across all
clusters are identical. Instead, our moment descent algorithm is iterative, is amenable to a distributed
implementation in FL systems, and allows for covariance matrices varying across clusters. Second,
in the fine-tuning phase, [KSS+20] uses the centralized least squares to refine the clusters estimated
with anchor clients, under the additional assumption that Ω(log k) data points for every client. In
contrast, as we will show later, we use the FedX+clustering to iteratively cluster clients and refine
cluster center estimation.

Remark 2. (Data privacy risk) Compared to the standard FedAvg algorithm wherein only aggregated
local updates/gradients are broadcasted by the parameter server, the major step of our two-phase
algorithm that may leak additional privacy is Step 8 wherein the local model estimates of the anchor
clients are broadcasted to many other non-anchor clients. However, this privacy leakage is minor
and can be further mitigated by a simple privacy-preserving mechanism according to the following
considerations.

First, in our algorithm, each chosen non-anchor client only receives a collection of local model esti-
mates (without ID for anchor clients) from the parameter server, it does not know which broadcasted
model corresponds to which anchor client and hence cannot directly identify each individual anchor
client’s local true model. Second, we only choose a very few number of anchor clients (roughly on
the order of the number of clusters) and in practice these anchor clients are often specially recruited
by the PS; hence they can be made less concerned about privacy leakage through some incentivizing
schemes. Last but not least, we can better preserve the privacy of anchor clients by broadcasting
perturbed versions of their local models to each client. Specifically, fix any anchor client i, each
non-anchor client i′ receives θi′,i,t and θ̃i′,i,t that are equal to θi,t subject to two independent noise
perturbations. Then for the subspace estimation in Step 9, we can replace one θi,t by θi′,i,t and the
other by θ̃i′,i,t, in the definition of Yi,t. Crucially, Yi,t involves an average over m non-anchor clients;
hence these independent noise perturbations for different i′ will be averaged out. Since m is large,
this implies that the injected random noises can be made large without deteriorating too much the
accuracy of the subspace estimation, in a similar spirit as privatizing the model averaging step in
FedAvg. This gives a promising pathway to maintain anchor clients’ privacy; we leave rigorously
analyzing its privacy guarantee as future work.
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4.2 FedX+clustering

At the end of Phase 1, only the selected anchor clients in H obtained coarse estimates of their local
true models (characterized in (4)). In Phase 2, both anchor clients in H and all the other clients
(anchor or not) will participate and update their local model estimates.

Phase 2 is stated in a generic form for any loss function L(θ, λ;D), where θ = (θ1, . . . , θk) ∈ Rdk is
the cluster parameters, λ ∈∆k−1 represents the likelihood of the cluster identity of a client, and D
denotes the client’s dataset. This generic structure covers the idea of soft clustering [LLV21]. Note
that unlike Phase 1 where each anchor client i only maintains an estimate θi,t of its own model,
in Phase 2, each client i maintains model estimates θi·,t = (θi1,t, . . . , θik,t) for all clusters.

Phase 2: FedX+clustering
1 Input: θ = (θ1, . . . , θk) from the output of Phase 1, η, T ′.
2 Output: θ̂ = (θ̂1, . . . , θ̂k)
3 PS sets θT ← θ.
4 for t = T + 1, . . . , T + T ′ do
5 PS broadcasts θt−1 to all clients;
6 Each client i estimates the likelihood of its local cluster label by

λi,t ← arg min
λ∈∆k−1

L(θt−1, λ;Di); (7)

7 Each client i refines its local model based on either FedAvg or FedProx with
Li(θ) = L(θ, λi,t;Di), and reports the updated local parameters
θi·,t = (θi1,t, . . . , θik,t).

• FedAvg-based: it runs s steps of local gradient descent:

θi·,t ← Gsi (θt−1), where Gi(θ) = θ − η∇Li(θ)

• FedProx-based: it solves the local proximal optimization:

θi·,t ← argmin
θ

Li(θ) +
1

2η
∥θ − θt−1∥22

PS updates the global model as θt ←
∑M

i=1 wiθi·,t, where wi = ni/N .

In Phase 2, the local estimation at each client has a flavor of alternating minimization: It first runs a
minimization step to estimate its cluster, and then runs a FedAvg or FedProx update to refine model
estimates. To allow the participation of clients with O(1) data points only, at every iteration the
clients are allowed to reuse all local data, including those used in the first phase. Similar alternating
update is analyzed in [GCYR20] yet under the strong assumption that the update in each round is
over fresh data with Gaussian distribution. Moreover, the analysis therein is restricted to the setting
where the model refinement at each client is via running a single gradient step, which is barely used
in practice but much simpler to analyze than FedAvg or FedProx update.

In our analysis, we consider the square loss

L(θ, λ;Di) =
1

2ni

k∑
j=1

λj ∥yi − ϕ(xi)θj∥22 .

In this context, (7) yields a vertex of the probability simplex λij,t = 1{j = zi,t}, where

zi,t = arg min
j∈[k]
∥yi − ϕ(xi)θj,t−1∥2. (8)

The estimate zi,t provides a hard clustering label. Hence, in each round, only one regression model
will be updated per client.
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To capture the tradeoff between communication cost and statistical accuracy using FedAvg or FedProx,
we introduce the following quantities from [SXY21]:

γ ≜ η max
i∈[M ]

1

ni
∥ϕ(xi)∥22 , κ ≜

{
γs

1−(1−γ)s for FedAvg,
1 + γ for FedProx.

We choose a properly small learning rate η such that γ < 1. Here, κ ≥ 1 quantifies the stability of
local updates. Notably, κ ≈ 1 using a relatively small η.

For the learnability of model parameters, we assume that collectively there are sufficient data in
each cluster. In particular, we assume Nj ≳ d, where Nj =

∑
i:zi=j ni denotes the number

of data points in cluster j. To further characterize the quantity skewness (i.e., the imbalance of
data partition n = (n1, . . . , nM ) across clients), we adopt the χ2-divergence, which is defined as
χ2(P∥Q) =

∫ (dP−dQ)2

dQ for a distribution P absolutely continuous with respect to a distribution Q.

Let χ2(n) be the chi-squared divergence between data partition pn over the clients pn(i) = ni/N
and the uniform distribution over [M ]. Note that when data partition is balanced (i.e., ni = N/M for
all i), it holds that χ2(n) = 0.

We have the following theoretical guarantee of Phase 2, where s is the number of local steps in
FedAvg. Notably, s is an algorithmic parameter for FedAvg only. To recover the results for FedProx,
we only need to set s = 1.
Theorem 2. Suppose that k ≥ 2, η ≲ 1/s, and Nj ≳ d. Let ρ = minj Nj/N . If ν log(e/ν) ≲ ρ/κ,
then with probability 1− Cke−d, for all t ≥ T + 1 and all θT such that d(θT , θ∗) ≤ ϵ∆, where ϵ is
some constant, it holds that

d(θt, θ
∗) ≤ (1− C1sηρ/κ) d(θt−1, θ

∗) + C2sησν log
e

ν
, (9)

where

ν ≜
1

N

M∑
i=1

nipe(ni) + C

√
dk log k

M
(χ2(n) + 1), (10)

and pe(ni) = 4ke
−cni

(
1∧∆2

σ2

)2

. Furthermore, if t ≥ T + 1, for each client i, with probability
1− pe(ni), it is true that∥∥∥θ̂i,t − θ∗zi

∥∥∥
2
≲ ∆ · e−C1sηρ(t−T )/κ +

σκ

ρ
ν log

e

ν
,

where θ̂i,t is client i’s estimate of its own model parameter at time t.

Notably, θ̂i,t is the zi,t-th entry of θi·,t. Theorem 2 shows that the model estimation errors decay
geometrically starting from any realization that is within a small neighborhood of θ∗. The parameter
ν captures the additional clustering errors injected at each iteration. It consists of two parts: the first
term of (10) bounds the clustering error in expectation which diminishes exponentially in the local
data size and the signal-to-noise ratio ∆/σ; the second term bounds the uniform deviation of the
clustering error across all initialization and iterations. Note that if the cluster structure were known
exactly, we would get an model estimation error of θ∗j scaling as

√
d/Nj . However, it turns out that

this estimation error is dominated by our uniform deviation bound of the clustering error and hence is
not explicitly shown in our bound (9). In comparison, the previous work [GCYR20] assumes fresh
samples at each iteration by sample-splitting and good initialization independent of everything else
provided a prior; hence their analysis fails to capture the influence of the uniform deviation of the
clustering error.

In passing, we briefly comment on the key assumption ν log(e/ν) ≲ ρ/κ. As aforementioned, the
clustering error ν consists of two parts shown in (10): the first term decays exponentially in the
local dataset size and the signal-to-noise ratio and hence is very small in most typical scenarios; the
second term is on the order of dk log k/M when the quantity skewness (imbalance of data partition)
is of a constant order. Finally, ρ captures imbalance of cluster sizes, which is typically of a constant
order, and we can choose a small enough step size to ensure κ is close to 1. Thus the key assumption
ν log(e/ν) ≲ ρ/κ roughly translates to ν being a subconstant, which further means that M (the
number of clients) needs to be larger than d (the model dimension) by polylog factors. This is often
satisfied in the typical FL applications which involve a very large collection of clients.
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4.2.1 Analysis of global iterations

Without loss of generality, assume the optimal permutation in (6) is identity. In this case, if zi,t = j,
then client i will refine θj,t−1. To prove Theorem 2, we need to analyze the global iteration of θt.
Following a similar argument to [SXY21] with a careful examination of cluster labels, we obtain the
following lemma. The proof is deferred to Appendix E.1.
Lemma 1. Let ϕ(x) be the matrix that stacks all ϕ(xi) vertically, and similarly for y. It holds that

θj,t = θj,t−1 − ηBΛj,t(ϕ(x)θj,t−1 − y), j ∈ [k], (11)

where B = 1
N ϕ(x)⊤P , P is a block diagonal matrix with ith block Pi of size ni × ni given by

Pi =

{∑s−1
ℓ=0(I − ηϕ(xi)ϕ(xi)

⊤/ni)
ℓ for FedAvg,

[I + ηϕ(xi)ϕ(xi)
⊤/ni]

−1 for FedProx,

and Λj,t is another block diagonal matrix with ith block being λij,tIni
.

Lemma 1 immediately yields the evolution of estiamtion error. Let Λj be the matrix with ith block
being 1{zi = j}Ini representing the true client identities. Plugging model (1), the estimation error
evolves as

θj,t − θ∗j = (I − ηKj)(θj,t−1 − θ∗j )− ηBEj,t(ϕ(x)θj,t−1 − y) + ηBΛjζ, ∀j ∈ [k], (12)

where Kj = BΛjϕ(x) and Ej,t = Λj,t − Λj . The estimation error is decomposed into three terms:
1) the main contribution to the decrease of estimation error; 2) the clustering error; and 3) the noisy
perturbation. Let Ij = {i : zi = j} be the clients belonging to jth cluster, and Ij,t = {i : zi,t = j}
be the clients with estimated label j. The indices of nonzero blocks of Ej,t are Ij ⊖ Ij,t indicating the
clustering errors pertaining to jth cluster.

For the ease of presentation, we introduce a few additional notations for the collective data over a
subset of clients. Given a subset I ⊆ [M ] of clients, let ϕ(xI) denote the matrix that vertically stacks
ϕ(xi) for i ∈ I , and we similarly use notations yI and ζI ; let PI be the matrix with diagonal blocks
Pi for i ∈ I . Using those notations, we have Kj = 1

N ϕ(xIj )
⊤PIjϕ(xIj ), which differs from the

usual covariance matrix by an additional matrix PIj . Therefore, the analysis of the first and third
terms on the right-hand side of (12) follows from standard concentration inequalities for random
matrices. In the remaining of this subsection, we focus on the second term, which is a major challenge
in the analysis. The proof details are all deferred to Appendix E.2.
Lemma 2. There exists a universal constant C such that, with probability 1− Ce−d,

∥BEj,t(ϕ(x)θj,t−1 − y)∥2 ≲ s(d(θt−1, θ
∗) + σ)ν log

e

ν
, ∀ j ∈ [k]. (13)

Lemma 2 aims to upper bound the error of

BEj,t(ϕ(x)θj,t−1 − y) =
1

N
ϕ(xSj,t

)⊤PSj,t
(ϕ(xSj,t

)θj,t−1 − ySj,t
), (14)

where Sj,t = Ij ⊖ Ij,t. The technical difficulty arises from the involved dependency between the
clustering error Sj,t and the estimated parameter θj,t−1 as estimating label zi,t and updating θj,t−1

use a common set of local data.

Proof Sketch of Lemma 2. It follows from the definition of zi,t in (8) that

∥ϕ(xi)θj,t−1 − yi∥2 ≤ ∥ϕ(xi)θzi,t−1 − yi∥2, ∀i ∈ Sj,t.

Then,

∥ϕ(xSj,t
)θj,t−1 − ySj,t

∥22 =
∑

i∈Sj,t

∥ϕ(xi)θj,t−1 − yi∥22 ≤
∑

i∈Sj,t

∥ϕ(xi)θzi,t−1 − yi∥22

≤
∑

i∈Sj,t

2
(
∥ϕ(xi)(θzi,t−1 − θ∗zi)∥

2
2 + ∥ζi∥22)

)
≤ 2

(
d(θt−1, θ

∗) · ∥ϕ(xSj,t
)∥2 + ∥ζSj,t

∥2
)2

. (15)

9



Hence, it suffices to upper bound ∥ϕ(xSj,t)∥2 and ∥ζSj,t∥2 given a small estimation error d(θt−1, θ
∗)

from the last iteration. To this end, we show a uniform upper bound of the total clustering error∑
i∈Sj,t

ni by analyzing a weighted empirical process. Using the decision rule (8), the set Sj,t can
be written as a function Sj(θt−1) with

1{i ∈ Sj(θ)} =


max
ℓ̸=j

1{Pjℓ[xi, yi](θ) ≥ 0} ≜ f I
j,θ(xi, yi), i ∈ Ij ,∏

ℓ ̸=j

1{Pℓj [xi, yi](θ) ≥ 0} ≜ f II
j,θ(xi, yi), i ̸∈ Ij ,

(16)

where
Pjj′ [xi, yi](θ) ≜ ∥yi − ϕ(xi)θj∥22 − ∥yi − ϕ(xi)θj′∥22.

Then we derive the following uniform deviation of the incorrectly clustered data points

sup
θ∈Rdk

∣∣∣∣∣
M∑
i=1

ni1{i ∈ Sj(θ)} −
M∑
i=1

niP {i ∈ Sj(θ)}

∣∣∣∣∣ ≤ CN

√
dk log k

M
(χ2(n) + 1) .

This is proved via upper bounds on the Vapnik–Chervonenkis (VC) dimensions of the binary function
classes

F I
j ≜ {f I

j,θ : θ ∈ Rdk}, F II
j ≜ {f II

j,θ : θ ∈ Rdk}. (17)
Using classical results of VC dimensions, those functions are equivalently intersections of hyper-
planes in ambient dimension O(d2), which yields an upper bound O(d2). However, the hyperplanes
are crucially rank-restricted as the total number of parameters in θ is dk. We prove that the VC dimen-
sions are at most O(dk log k) using the algebraic geometry of polynomials given by the celebrated
Milnor-Thom theorem (see, e.g., [Mat13, Theorem 6.2.1]).1 Consequently, ∥ϕ(xSj,t

)∥2, ∥ζSj,t
∥2 and

thus (15) can be uniformly upper bounded using sub-Gaussian concentration and the union bound,
concluding the proof of Lemma 2.

4.3 Global convergence

Combining Theorem 1 and Theorem 2, we immediately deduce the global convergence from any
initialization within the ℓ2 ball of radius R.

Theorem 3. Suppose the conditions of Theorem 1 and Theorem 2 hold. Let θ̂ be the output of our
two-phase algorithm by running Phase 1 with T = Θ(1) iterations starting from any initialization
θ0 with ∥θ0∥2 ≤ R, followed by Phase 2 with T ′ = Θ( κ

sηρ log
∆
ν ) iterations. Then with probability

1−N−9 − cke−d, it is true that

d(θ̂, θ∗) ≲
σκ

ρ
ν log

e

ν
, (18)

Furthermore, for each client i, with probability 1 − pe(ni), it holds that ∥θ̂i,T+T ′ − θ∗zi∥2 ≲
σκ
ρ ν log e

ν .

To the best of our knowledge, this is the first result that proves the global convergence of clustered
federated learning from any initialization. Our bound (18) reveals that the final estimation error
is dominated by the clustering error captured by ν, and scales linearly in κ which characterizes
the stability of local updates under FedAvg or FedProx. Moreover, Theorem 3 shows that Phase 1
converges very fast with only Θ(1) iterations and hence is relatively inexpensive in both computation
and communication. Instead, the number of iterations needed for Phase 2 grows logarithmically in
∆/ν and linearly in κ/(sηρ). Thus, by choosing s relatively large while keeping κ close to 1, FedAvg
enjoys a saving of the total communication cost.
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A Limitations

The limitations of our work are two-fold: 1) Our setup assumes exact cluster structure, where each
client belongs to a unique cluster. An interesting generalization is to consider more relaxed cluster
structure, where each client may belong to a mixture of multiple clusters. 2) Our study focuses on
the mixed regression model. The Phase 1 crucially relies on the regression setup. While the Phase
2 is described under the general risk minimization setup, our analysis has been restricted to mixed
regression. An interesting yet challenging future direction is to extend our algorithms and analysis to
more general clustered Federated Learning setting with general risk functions.

B Broad Impact

Federated Learning has gained tremendous popularity over the past few years and has been widely
deployed in products such as Apple’s Siri and Google’s Gboard. It opens up a world of new
opportunities for training machine learning models without compromising data privacy. Our paper
significantly advances the theory and algorithms for Federated Learning, providing important design
insights and key enabling technologies for efficient and personalized model training under FL. Our
study is highly interdisciplinary, bringing together ideas from statistics, optimization, and distributed
computation. We are unaware of any potential negative societal impacts of our work.

C Experimental results

In this section, we provide experimental results on synthetic data corroborating our theoretical
findings.

We consider the mixed linear regression with k = 3 clusters. The true model parameter for each
cluster θ∗1 , θ

∗
2 , θ

∗
3 are independently sampled from Gaussian distribution 2√

d
∗N (0, Id) with d = 100.

Then we generate the local dataset Di = {xij , yij}ni
j=1 for each client i according to the linear

regression model (1), where each xij
i.i.d.∼ N (0, Id) and ζij

i.i.d.∼ 0.2 ∗ N (0, 1).

We simulate our two-phase algorithm as follows. Phase 1 randomly selects ⌈3k log k⌉ anchors clients
and runs 5 iterations starting from a random initialization 2√

d
∗N (0, Id), followed by Phase 2 running

400 global iterations. We further adopt the following simplifications for ease of implementation. In
particular, Phase 1 reuses the local data on all participating clients, and all clients including anchor
clients participate in the subspace estimation subroutine in Algorithm 3. Finally, we implement all
orthogonal iterations by direct singular value decomposition.

We compare the performance of our two-phase algorithm with existing FL algorithms including (1)
vanilla FedAvg, (2) one-shot clustering, (3) IFCA, and (4) oracle iterative clustering.

(1) The vanilla FedAvg ignores the underlying cluster structure and learns a common model.
(2) In the one-shot clustering [GHYR19], first each client estimates its underlying model based on

its local data, then the PS clusters the locally estimated models via k-means, and finally within
each estimated cluster, we run FedAvg to obtain the model estimate for each cluster.

(3) The IFCA algorithm [GCYR20] is the same as Phase 2 of our algorithm.
(4) Oracle iterative clustering algorithm is an ideal implementation of IFCA initialized with the true

model parameters. Clearly, the oracle iterative clustering algorithm is infeasible in practice, but
we use it as a benchmark.

For each of the methods, we choose FedAvg with the number of local update steps s = 5. We
randomly initialize our two-phase algorithm, vanilla FedAvg, and IFCA.

In the following, we consider three federated learning settings with a total of N = 1000 data points
but at increasing levels of data heterogeneity.

C.1 Balanced local data and balanced cluster partition

In this configuration, we consider balanced local data and balanced cluster partition. Specifically, we
let M = 200, ni = 50 for i ∈ [M ], and p1 = p2 = p3 = 1/3. That is, this configuration contains
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200 clients, each with 50 data points. For each client, it belongs to one of the 3 clusters with equal
probability 1/3.
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Figure 1: Balanced local data and balanced cluster partition.

In the left panel of Fig. 1, we show the performance of our two-phase algorithm, where the second
phase is based on FedAvg for different local steps s or FedProx. We see that during the first 5 rounds
(Phase 1), the errors quickly (exponentially with a large rate) converge to a relatively small value.
Starting from iteration 6 (upon entering Phase 2), the errors further decay exponentially fast (with
a smaller rate than Phase 1). These observations are consistent with our theoretical predictions.
We also notice that as the number of local steps s increases, FedAvg converges faster, while the
final estimation errors stay almost the same. This is because the data partition is perfectly balanced,
so the local updates of FedAvg are relatively stable with κ ≈ 1; hence according to Theorem 2
and Theorem 3, the convergence rate increases proportionally to s, while the final estimation does
not change.

The right panel of Fig. 1 shows that our method significantly outperforms vanilla FedAvg and IFCA,
and quickly converges to the same estimation error attainable by the oracle algorithm. Note that
FedAvg does not converge to small errors due to lack of model personalization in the presence of
model heterogeneity. The performance of IFCA is highly dependent on the quality of initialization.
With a random initialization, IFCA gets stuck on an error floor. The one-shot clustering algorithm
performs well in this setting. This is because the local data partition and cluster partition are perfectly
balanced, so each client can well estimate its underlying model solely based on its local data and the
PS can correctly cluster all the locally estimated models via k-means.

C.2 Unbalanced local data and balanced cluster partition

In this configuration, we consider unbalanced local data but balanced cluster partition. Specifically,
we let M = 920, ni = 10 for i = 1, · · · , 900, and ni = 50 for i = 901, · · · , 920. That is, this
configuration contains 920 clients, with each of the first 900 clients keeps 10 data points, and each of
the remaining 20 clients keeps 50 data points. For each client, it belongs to one of the 3 clusters with
equal probability 1/3.

The left panel of Fig. 2 stays almost the same as that of Fig. 1. The only noticeable difference is
that in this setting with unbalanced local data, as s increases, the convergence rate of FedAvg only
slightly improves, while the final estimation error also gets slightly inflated. This is because with
unbalanced local data, the local updates of FedAvg for data-scarce clients become unstable, leading
to a larger value of κ.

The right panel of Fig. 2 shows that our method still significantly outperforms vanilla FedAvg
and IFCA, and quickly converges to the same estimation error attainable by the oracle algorithm.
Although this time IFCA eventually also converges to the oracle estimation error, it still gets stuck
on an error floor for a long time. The one-shot clustering algorithm no longer performs as well as
before. This is because here the local data partition is unbalanced, so data-scarce clients cannot well
estimate their underlying models solely based on their local data and the PS is likely to incorrectly
cluster them. Since in one-shot clustering, the clustering is done only once and fixed throughout the
remaining process, these clustering errors cannot be corrected.
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Figure 2: Unbalanced local data and balanced cluster partition.

C.3 Unbalanced local data and unbalanced cluster partition

In this configuration, we consider unbalanced local data and unbalanced cluster partition. Specifically,
we let M = 920, ni = 10 for i = 1, · · · , 900, and ni = 50 for i = 901, · · · , 920. That is, this
configuration contains 920 clients, with each of the first 900 clients keeps 10 data points, and each of
the remaining 20 clients keeps 50 data points. For each client, it belongs to one of the 3 clusters with
probability p1 = 0.2, p2 = 0.3, p3 = 0.5.
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Figure 3: Unbalanced local data and unbalanced cluster partition.

The left panel of Fig. 3 stays almost the same as that of Fig. 2, except that convergence rates get
smaller. This is consistent with our theoretical prediction in Theorem 2, which shows that the
convergence rate is proportional to ρ (roughly the same as pmin).

The right panel of Fig. 3 shows that our method significantly outperforms vanilla FedAvg, IFCA, and
one-shot, and quickly converges to the same estimation error attainable by the oracle algorithm. Note
that one-shot clustering performs poorly in this case, because with unbalanced local data partition
and unbalanced cluster partition, the one-shot clustering suffers from a large amount of errors in the
initial clustering based on locally estimated models.

D Analysis of Phase 1

In this section, we present the analysis of our federated moment descent algorithm as described
in Phase 1.

D.1 Subspace estimation via federated orthogonal iteration

Recall that Phase 1 aims to estimate the subspace that the residual estimation errors {Σj(θ
∗
j−θi,t)}kj=1

lie in via the federated-orthogonal iteration. We can show that E [Yi,t] is of rank at most k
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and the eigenspace corresponding to the non-zero eigenvalues is spanned by {Σj(θ
∗
j − θi,t)}kj=1.

Specifically, we first prove that Yi,t is close to E [Yi,t] in the operator norm and then further deduce
that {Σj(θ

∗
j − θi,t)}kj=1 approximately lie in the subspace spanned by the top-k left singular vectors

of Yi,t.

Let Ui,t ∈ Rd×k denote the top-k left singular matrix of Yi,t. To approximately compute Ui,t in the
FL systems, we adopt the following federated-orthogonal iteration algorithm. Suppose that Y
admits a decomposition over distributed clients, that is, Y = 1∑

i∈S ni

∑
i∈S
∑

j∈ni
aijb

⊤
ij , where S

is a set of clients, and {(aij , bij)}ni
j=1 are computable based on the local dataset Di. Algorithm 3

approximates the top-k left singular matrix of Y . It can be easily verified that Algorithm 3 effectively
runs the orthogonal iteration on Y Y ⊤.

Algorithm 3: Federated orthogonal iteration
1 Input: A set S of clients i with {(aij , bij)}i∈S,j∈[ni], k ∈ N, and even T ∈ N
2 Output: QT ∈ Rd×k

1: PS initializes Q0 ∈ Rd×k as a random orthogonal matrix Q⊤
0 Q0 = I.

2: for t = 0, 1, . . . , T − 1 do
3: PS broadcasts Qt to all clients in S.
4: if t is even then
5: Each client i ∈ S computes an update Qi,t =

1
ni

∑ni

j=1 bija
⊤
ijQt and transmits it back to

the PS.
6: PS updates Qt+1 =

∑
i∈S wiQi,t, where wi = ni/

∑
i∈S ni.

7: else
8: Each client in S computes an update Qi,t =

1
ni

∑ni

j=1 aijb
⊤
ijQt and transmits it back to the

PS.
9: PS applies the QR decomposition to obtain Qt+1:∑

i∈S
wiQi,t = Qt+1Rt+1.

10: end if
11: end for

Recall that Phase 1 is called for each anchor client i ∈ H and each global iteration t, and that Ûi,t

is the output of federated-orthogonal iteration in Step 9 of Phase 1, which approximates Ui,t.
Based on the above discussion, we can show that the residual estimation errors {Σj(θ

∗
j − θi,t)}kj=1

approximately lie in the subspace spanned by the k columns of Ûi,t.

Proposition 1 (Subspace estimation). If T1 ≥ Ck log(Nd) for some sufficiently large constant C,
then with probability at least 1−N−10,∥∥∥(Ûi,tÛ

⊤
i,t − I

)
Σj

(
θ∗j − θi,t

)∥∥∥2
2
≤ O

((
δ2i,t + σ2

)
ξ1/pj

)
, ∀j ∈ [k],

where δi,t = maxj∈[k] ∥θ∗j − θi,t∥2 and ξ1 =
√

d
m logN + d

m log3 N.

We postpone the detailed proof to Appendix D.4. One key challenge in the analysis is that the
eigengap of E [Yi,t] could be small, especially when θi,t is close to θ∗zi ; and hence the standard Davis-
Kahan theorem cannot be applied. This issue is further exaggerated by the fact that the convergence
rate of the orthogonal iteration also crucially depends on the eigengaps. To resolve this issue, one
key innovation of our analysis is to develop a gap-free bound to show that the projection errors
Û⊤
i,tΣj(θ

∗
j − θi,t) are small for every j ∈ [k] (cf. Lemma 5).

D.2 Moment descent on anchor clients

Recall that in Step 11 of Phase 1, each anchor client i ∈ H runs the power-iteration to output β̂i,t

and σ̂2
i,t as approximations of the leading left singular vector and singular value of Ai,t, respectively.
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Then anchor client i updates a new estimate θi,t+1 by moving along the direction of the estimated
residual error ri,t with an appropriately and adaptively chosen step size ηi,t. The following result
shows that σ̂2

i,t closely approximates the squared residual error ∥Σj(θ
∗
zi − θi,t)∥22. Moreover, the

residual error decreases geometrically until reaching a plateau.
Proposition 2. Fix an anchor client i and suppose T2 ≳ log(Nd). There exists a constant C > 0
and an event Ei,t with P {Ei,t} ≥ 1−O(N−10) such that on event Ei,t∣∣∣∥∥Σj(θ

∗
zi − θi,t)

∥∥2
2
− σ̂2

i,t

∣∣∣ ≤ C(δ2i,t + σ2)(ξ1/pzi + ξ2), (19)

where ξ2 =
√

k
ℓ logN + k

ℓ log
3 N. Furthermore, if∥∥Σzi

(
θ∗zi − θi,t

)∥∥2
2
≥ C(ξ1/pzi + ξ2), (20)

then ∥∥Σzi

(
θ∗zi − θi,t+1

)∥∥2
2
≤
(
1− α2

8β2

)∥∥Σzi

(
θ∗zi − θi,t

)∥∥2
2
, (21)

We postpone the proof to Appendix D.5. The key ingredient in the proof of geometric decay (21) is
to show that the descent direction ri,t is approximately parallel to the residual error Σzi(θ

∗
zi − θi,t)

under condition (20)

D.3 Proof of Theorem 1

Now, we are ready to prove our main theorem on the performance guarantee of Phase 1. Let Ei,t
denote the event under which the statement of Proposition 2 holds. Let E = ∪i∈H ∪Tt=1 Ei,t. By the
union bound, P {E} ≥ 1−O(nHT/N10). In the following, we assume event E holds.

We first prove (4). Fix any anchor client i and omit the subscript i for simplicity. We further assume
it belongs to cluster j, i.e., zi = j. Define

t∗ = min{inf{t ≥ 0 : σ̂t ≤ ϵ∆}, T}.

By definition,

σ̂t > ϵ∆, ∀ 0 ≤ t ≤ t∗ − 1. (22)

Moreover, by the update rule of our algorithm, θT = θt∗ . Thus, it suffices to bound ∥θt∗ − θ∗j ∥2.

We claim that for all 0 ≤ t ≤ t∗,∥∥Σj

(
θ∗j − θt

)∥∥2
2
≤
(
1− α2

8β2

)t ∥∥Σj

(
θ∗j − θ0

)∥∥2
2

(23)

∥θt∥2 ≤ (1 + 2β/α)R. (24)

If t∗ = T , then by (23) we immediately get that∥∥Σj

(
θ∗j − θt∗

)∥∥
2
≤
(
1− α2

8β2

)T/2 ∥∥Σjθ
∗
j

∥∥
2
≤ exp

(
−Tα2/(16β2)

)
βR ≤ ϵ∆,

where the last inequality holds by choosing T = 16β2

α2 log βR
ϵ∆ .

If t∗ < T, then by (24) and ∥θ∗j ∥2 ≤ R for all j ∈ [k], it follows that δt ≤ 2(1 + β/α)R. Therefore,
by (19) ∣∣∣∥∥Σj(θ

∗
j − θt)

∥∥2
2
− σ̂2

t

∣∣∣ ≤ C(δ2t + σ2)(ξ1/pj + ξ2) ≤ ϵ2∆2/2, (25)

where the last inequality holds by choosing m = Ω̃(d/p2min) and ℓ = Ω̃(k) and invoking the standing
assumption that R = O(∆) and σ = O(∆). It immediately follows that∥∥Σj(θ

∗
j − θt∗)

∥∥2
2
≤ σ̂2

t∗ + ϵ2∆2/2 ≤ 3

2
ϵ2∆2,

where the last inequality holds by the stopping rule of our algorithm so that σ̂t∗ ≤ ϵ∆.
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In both cases, we get that∥∥θ∗j − θt∗
∥∥
2
≤ 1

α

∥∥Σj(θ
∗
j − θt∗)

∥∥
2
≤ 2ϵ∆

α
= ϵ′∆

for ϵ′ = 2ϵ/α. This proves (4).

Now, it remains to prove the claim (23)–(24) by induction. The base case t = 0 trivially holds as
∥θ0∥2 ≤ R. Now, suppose the induction hypothesis holds for an arbitrary t where 0 ≤ t ≤ t∗ − 1,
we prove it also holds for t+ 1. In view of (25),∥∥Σj(θ

∗
j − θt)

∥∥2
2
≥ σ̂2

t − ϵ2∆2/2 > ϵ2∆2/2 ≥ C(δ2t + σ2)(ξ1/pj + ξ2),

where the second inequality holds due to (22). Therefore, the condition (20) is satisfied. Hence, by
applying Proposition 2, we get that∥∥Σj

(
θ∗j − θt+1

)∥∥2
2
≤
(
1− α2

8β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2
≤
(
1− α2

8β2

)t+1 ∥∥Σj

(
θ∗j − θ0

)∥∥2
2
.

where the second inequality holds by the induction hypothesis (23). Hence

α2
∥∥θ∗j − θt+1

∥∥2
2
≤
∥∥Σj

(
θ∗j − θt+1

)∥∥2
2
≤
∥∥Σj

(
θ∗j − θ0

)∥∥2
2
≤ 4β2R2.

It follows that
∥θ∗j − θt+1∥2 ≤

2β

α
R

and hence ∥θt+1∥2 ≤ (1 + 2β/α)R. This completes the induction proof.

Finally, we prove (5). Note that by standard coupon collector’s problem, we deduce that if nH ≥
log(k/δ)/pmin, then with probability at least 1− δ, H ∩ {i : zi = j} ≠ ∅ for all j ∈ [k]. To see this,
note that

P {H ∩ {i : zi = j} ≠ ∅, ∀j ∈ [k]} ≥ 1−
∑
j∈[k]

P {H ∩ {i : zi = j} = ∅}

≥ 1− k (1− pmin)
nH

≥ 1− k exp (−pminnH) ≥ 1− δ.

Therefore, as long as ϵ′ < 1/4, we have for two anchor clients i, i′ ∈ H

∥θi,T − θi′,T ∥2 ≤
∥∥θi,T − θ∗zi

∥∥
2
+
∥∥∥θi′,T − θ∗zi′

∥∥∥
2
≤ 2ϵ′∆, if zi = zi′

∥θi,T − θi′,T ∥2 ≥ ∆−
∥∥θi,T − θ∗zi

∥∥
2
−
∥∥∥θi′,T − θ∗zi′

∥∥∥
2
≥ (1− 2ϵ′)∆, if zi ̸= zi′ .

Thus, by assigning anchor clients i, i′ ∈ H in the same cluster when ∥θi,T − θi′,T ∥2 ≤ ∆/2 we can
exactly recover the k clusters of the clients users. In particular, let ẑi denote the estimated cluster
label of anchor client i ∈ H. Then there exists a permutation π : [k]→ [k] such that π(ẑi) = zi for
all i ∈ H. Let θ̂j denote the center of the recovered cluster j, that is

θ̂j =
∑
i∈H

θi,T1{ẑi = j}/
∑
i∈H

1{ẑi = j}.

Then we have ∥θ̂π(j) − θ∗j ∥2 ≤ ϵ′∆ for all j ∈ [k]. This finishes the proof of (5).

D.4 Proof of Proposition 1

In the following analysis, we fix an anchor client i ∈ H and omit the subscript i for ease of
presentation. Crucially, since St and Dt are freshly drawn, all the global data and local data used in
iteration t+ 1 are independent from θt. Hence, we condition on θt and St in the following analysis.
Note that

E [Yt] =
1

m

∑
i′St

Ezi′

[
Σzi′

(
θ∗zi′ − θt

)(
θ∗zi′ − θt

)
Σzi′

]
=

k∑
j=1

pjΣj

(
θ∗j − θt

) (
θ∗j − θt

)⊤
Σj ,

where pj is the probability that a client belongs to the j-th cluster.

Let Ut ∈ Rd×k denote the left singular matrix of Yt. We aim to show that the collection of Σj(θ
∗
j −θt)

for j ∈ [k] approximately lie in the space spanned by the k columns of Ut. As such, we first show
that Yt is close to E [Yt] in operator norm.
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Lemma 3. With probability at least 1− 3N−10,

∥Yt − E [Yt]∥2 ≤ O
((
δ2t + σ2

)
ξ1
)
,

where δt = maxj∈[k] ∥θ∗j − θt∥2 and ξ1 =
√

d
m logN + d

m log3 N.

Proof. Let εi = (yi1 − ⟨ϕ(xi1), θt⟩)ϕ(xi1) and ε̃i = (yi2 − ⟨ϕ(xi2), θt⟩)ϕ(xi2). Note that

Yt − E [Yt] =
1

m

m∑
i=1

εiε̃
⊤
i − E

[
εiε̃

⊤
i

]
.

Let ai = εi/
√
δ2t + σ2 and bi = ε̃i/

√
δ2t + σ2. We will apply a truncated version of the Matrix

Bernstein’s inequality given in Lemma 13. As such, we first check the conditions in Lemma 13 are
all satisfied. Note that

E
[
∥εi∥22

]
= E

[∥∥(⟨ϕ(xi1), θ
∗
zi − θt⟩+ ζi

)
ϕ(xi1)

∥∥2
2

]
= E

[∥∥⟨ϕ(xi1), θ
∗
zi − θt⟩ϕ(xi1)

∥∥2
2

]
+ E

[
∥ζi1ϕ(xi1)∥22

]
.

By the sub-Gaussianity of ϕ(xi1), we have

E
[
∥ζiϕ(xi1)∥22

]
≤ σ2E

[
∥ϕ(xi1)∥22

]
= O(σ2d)

and further by Cauchy-Schwarz inequality,

E
[∥∥⟨ϕ(xi1), θ

∗
zi − θt⟩ϕ(xi1)

∥∥2
2

]
≤
√
E
[
⟨ϕ(xi1), θ∗zi − θt⟩4

]√
E
[
∥ϕ(xi1)∥42

]
= O

(
δ2t d
)
.

Combining the last three displayed equation gives that E
[
∥ai∥22

]
≤ O (d) . The same upper bound

also holds for E
[
∥bi∥22

]
.

Moreover,
∥∥E [aia⊤i ]∥∥2 = supu∈Sd−1 E

[
⟨ai, u⟩2

]
. Note that for any u ∈ Sd−1,

E
[
⟨ai, u⟩2

]
=

1

δ2t + σ2
E
[
r2i ⟨ϕ(xi1), u⟩2

]
≤ 1

δ2t + σ2

√
E [r4i ]

√
⟨ϕ(xi1), u⟩4 ≤ O (1) ,

where ri = yi1−⟨ϕ(xi1), θt⟩ . Combining the last two displayed equations gives that
∥∥E [aia⊤i ]∥∥2 =

O (1) . The same upper bound also holds for
∥∥E [bib⊤i ]∥∥2 . Finally, by the sub-Gaussian property of

ϕ(xi1), we have
P {∥ϕ(xi1)∥2 ≥ s1} ≤ exp

(
O(d)− Ω(s21)

)
and

P

{
|ri|√
δ2t + σ2

≥ s2

}
≤ exp

(
−Ω

(
s22
))

.

Choosing s1 = C
√
sd1/4 and s2 =

√
s/(Cd1/4) for a sufficiently large constant C, we get that for

all s ≥
√
d,

P {∥ai∥2 ≥ s} ≤ P {∥ϕ(xi1)∥2 ≥ s1}+ P

{
|ri|√
δ2t + σ2

≥ s2

}

≤ exp
(
O(d)− Ω(Cs

√
d)
)
+ exp

(
−Ω

(
s√
d

))
≤ exp

(
−Ω

(
s√
d

))
.

The same bound holds for P {∥bi∥2 ≥ s}. Applying the truncated version of the Matrix Bernstein’s
inequality given in Lemma 13 yields the desired result.
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The following result shows the geometric convergence of orthogonal iteration. Let Y = UΛU⊤

denote the eigenvalue decomposition of Y with |λ1| ≥ |λ2| ≥ · · · |λd| and the corresponding
eigenvectors ui’s. Define U1 = [u1, . . . , uk] and U2 = [uk+1, . . . , ud].

Lemma 4. [GVL13, Theorem 8.2.2] Assume |λk| > |λk+1| and cos(γ) = σmin(U
⊤
1 Q0) for γ ∈

[0, π/2]. Then ∥∥QtQ
⊤
t − U1U

⊤
1

∥∥
2
≤ tanh(θ)

∣∣∣∣λk+1

λk

∣∣∣∣t , ∀t.

Finally, we need a gap-free bound that controls the projection errors.
Lemma 5 (Gap-free bound on projection errors). Suppose M ∈ Rd×d satisfies that∥∥∥∥∥M −

k∑
i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ϵ,

where xi ∈ Rd for 1 ≤ i ≤ k. Let Qt be the output of the orthogonal iteration running over MM⊤.
Assume that ∥xi∥2 ≤ H for all 1 ≤ i ≤ k. There exists a universal constant C > 0 such that for any
ϵ > 0 and t ≥ Ck log dNH

ϵ , we have with probability at least 1−O(N−10),∥∥QtQ
⊤
t xi − xi

∥∥
2
≤ 3
√
ϵ, ∀1 ≤ i ≤ k.

Proof. Let σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 denote the singular values of M . Then by assumption on M
and Weyl’s inequality, σk+1 ≤ ϵ. We divide the analysis into two cases depending on the value of σ1.
Let δ > 0 be some parameter to be tuned later.

Case 1: σ1 ≤ (1 + δ)
k
ϵ. In this case, by Weyl’s inequality,

∥xi∥22 ≤

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ∥M∥2 +

∥∥∥∥∥M −
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

≤ ϵ
(
1 + (1 + δ)

k
)
.

Thus, ∥∥QtQ
⊤
t xi − xi

∥∥
2
≤ ∥xi∥2 ≤

√
ϵ
(
1 + (1 + δ)

k
)

Case 2: σ1 > (1 + δ)
k
ϵ. Then by the pigeonhole principle there must exist 1 ≤ p ≤ k such that

σp/σp+1 > 1 + δ. Choose
ℓ = max {p : σp/σp+1 > 1 + δ} .

It follows that σℓ+1 ≤ (1 + δ)k−ℓϵ ≤ (1 + δ)kϵ. Let Uℓ = [u1, . . . , uℓ], where ui’s are the left
singular vectors of M corresponding to σi. Given the subspace span{u1, . . . , uℓ}, denote the unique
orthogonal decomposition of xi by xi = ΠW (xi) + e, where ΠW (xi) = UℓU

⊤
ℓ xi and e⊤uj = 0 for

all j ∈ [ℓ]. Let u = e/∥e∥2 ∈ Sd−1. Then,

∥∥UℓU
⊤
ℓ xi − xi

∥∥2
2
= u⊤xix

⊤
i u ≤ u⊤

(
k∑

i=1

xix
⊤
i

)
u = u⊤

(
k∑

i=1

xix
⊤
i −M

)
u+ u⊤Mu.

Note that

u⊤

(
k∑

i=1

xix
⊤
i −M

)
u ≤

∥∥∥∥∥
k∑

i=1

xix
⊤
i −M

∥∥∥∥∥
2

≤ ϵ.

Moreover,

u⊤Mu =
∑
j

σju
⊤ujv

⊤
j u =

∑
j≥ℓ+1

σju
⊤ujv

⊤
j u ≤ σℓ+1

∑
j≥ℓ+1

∣∣u⊤uj

∣∣ ∣∣v⊤j u∣∣
≤ σℓ+1

√ ∑
j≥ℓ+1

|u⊤uj |2
∑

j≥ℓ+1

∣∣v⊤j u∣∣2
≤ σℓ+1 ≤ (1 + δ)kϵ.
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Combining the last three displayed equations gives that∥∥UℓU
⊤
ℓ xi − xi

∥∥2
2
≤ ϵ

(
1 + (1 + δ)

k
)
.

Let Q̂t be the submatrix of Qt formed by the first ℓ columns. Since σℓ > σℓ+1, the space spanned by
Q̂t is the same space spanned by Qt if the orthogonal iteration were run with k replaced by ℓ. Thus,
applying Lemma 4 with k replaced by ℓ gives that∥∥∥Q̂tQ̂

⊤
t − UℓU

⊤
ℓ

∥∥∥
2
≤ tan(γ)(1 + δ)−t,

where cos(γ) = σmin(U
⊤
ℓ Q̂0) and Q̂0 is the submatrix of Q0 formed by its first ℓ columns. Apply-

ing Lemma 14, we get that tanh(γ) = O(N10d) with probability at least 1−O(N−10). Therefore,
when t ≥ (C/δ) log NdH

ϵ , we have∥∥∥Q̂tQ̂
⊤
t − UℓU

⊤
ℓ

∥∥∥
2
≤ ϵ/H.

Therefore, by triangle’s inequality,∥∥QtQ
⊤
t xi − xi

∥∥
2
≤
∥∥∥Q̂tQ̂

⊤
t xi − xi

∥∥∥
2

≤
∥∥UℓU

⊤
ℓ xi − xi

∥∥
2
+
∥∥∥(Q̂tQ̂

⊤
t − UℓU

⊤
ℓ

)
xi

∥∥∥
2

≤
√
ϵ
(
1 + (1 + δ)

k
)
+ ϵ.

Finally, choosing δ = 1/k and noting that (1 + δ)t ≤ e, we get the desired conclusions.

Applying Lemma 3 and Lemma 5 and invoking the assumption that T1 ≳ k log(Nd), we have with
probability at least 1−O(1/N),∥∥∥(ÛtÛ

⊤
t − I

)√
pjΣj

(
θ∗j − θt

)∥∥∥2
2
≤ O

((
δ2t + σ2

)
ξ1
)
,

or equivalently, ∥∥∥Û⊤
t Σj

(
θ∗j − θt

)∥∥∥2
2
≥
∥∥Σj

(
θ∗j − θt

)∥∥2
2
−O

((
δ2t + σ2

)
ξ1/pj

)
. (26)

D.5 Proof of Proposition 2

Similar to the proof of Proposition 1, for ease of exposition, we fix an anchor client i and omit the
subscript i for simplicity. We further assume client i belongs to cluster j, i.e., zi = j. Note that
crucially, the global data points on clients St are independent from the local data points on Dt. Thus,
in the following analysis, we further condition on Ût. Then

E [At] = Û⊤
t Σj

(
θ∗j − θt

) (
θ∗j − θt

)⊤
ΣjÛt.

Lemma 6. With probability at least 1− 3N−10,

∥At − E [At]∥2 ≤ O
((∥∥θ∗j − θt

∥∥2
2
+ σ2

)
ξ2

)
,

where ξ2 =
√

k
ℓ logN + k

ℓ log
3 N.

Proof. Note that

At − E [At] =
1

ℓ

∑
j∈Dt

Û⊤
t

(
εj ε̃

⊤
j − E

[
εj ε̃

⊤
j

])
Ût,

where εj = (yj − ϕ(xj))ϕ(xj) and ε̃j = (ỹj − ϕ(x̃j))ϕ(x̃j). Let aj = Û⊤
t εj/

√
∥θ∗j − θj∥22 + σ2

and bj = Û⊤
t ε̃j/

√
∥θ∗j − θj∥22 + σ2. The rest of the proof follows analogously as that of Lemma 3.
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Applying Lemma 6 and Lemma 5, when T2 ≳ log(Nd), we have with probability at least 1 −
O(N−10) ∣∣∣β̂⊤

t Û⊤
t Σj

(
θ∗j − θt

)∣∣∣2 ≥ ∥∥∥Û⊤
t Σj

(
θ∗j − θt

)∥∥∥2
2
−O

((∥∥θ∗j − θt
∥∥2
2
+ σ2

)
ξ2

)
.

Applying Proposition 1, we have with probability at least 1−O(N−10)∥∥∥Û⊤
t Σj

(
θ∗j − θt

)∥∥∥2
2
≥
∥∥Σj

(
θ∗j − θt

)∥∥2
2
−O

((
δ2t + σ2

)
ξ1/pj

)
.

Let Et denote the event such that the above two displayed equations hold simultaneously. Then
P {Et} ≥ 1−O(N−10). In the following, we assume event Et holds.

Combining the last two displayed equations yields that∥∥Σj

(
θ∗j − θt

)∥∥2
2
−O

((
δ2t + σ2

)
(ξ1/pj + ξ2)

)
≤
∣∣∣β̂⊤

t Û⊤
t Σj

(
θ∗j − θt

)∣∣∣2 ≤ ∥∥Σj

(
θ∗j − θt

)∥∥2
2
.

Moreover, since

σ̂2
t = β̂⊤

t Û⊤
t AtÛtβ̂t = β̂⊤

t Û⊤
t E [At] Ûtβ̂t + β̂⊤

t Û⊤
t (At − E [At]) Ûtβ̂t,

it follows that ∣∣∣∣σ̂2
t −

∣∣∣β̂⊤
t Û⊤

t Σj

(
θ∗j − θt

)∣∣∣2∣∣∣∣ ≤ O
((
δ2t + σ2

)
ξ2
)
.

Combining the last two displayed equations yields that∣∣∣σ̂2
t −

∥∥Σj

(
θ∗j − θt

)∥∥2
2

∣∣∣ ≤ O
((
δ2t + σ2

)
(ξ1/pj + ξ2)

)
.

This proves (19).

Under condition (20), we have∣∣∣β̂⊤
t Û⊤

t Σj

(
θ∗j − θt

)∣∣∣2 ≥ (1− α2

64β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2

(27)

and (
1− α2

32β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2
≤ σ̂2

t ≤
(
1 +

α2

32β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2

(28)

Now we show that θt converges to θ∗j . Note that(
θ∗j − θt+1

)⊤
Σ2

j

(
θ∗j − θt+1

)
=
(
θ∗j − θt

)⊤
Σ2

j

(
θ∗j − θt

)
− 2ηt

(
θ∗j − θt

)⊤
Σ2

jrt + η2t r
⊤
t Σ

2
jrt.

In view of (27), and recalling rt = Ûtβ̂t, we have ∥rt∥2 = 1 and under condition (20)〈
rt,Σj

(
θ∗j − θt

)〉2 ≥ (1− α2

64β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2
.

We decompose
Σj

(
θ∗j − θt

)
= atrt + btr

⊥
t ,

for some unit vector r⊥t that is perpendicular to rt. Since a2t + b2t = ∥Σj(θ
∗
j − θt)∥22, we have

|bt| ≤ α
8β ∥Σj(θ

∗
j − θt)∥2. Hence,(

θ∗j − θt
)⊤

Σ2
jrt =

(
atrt + btr

⊥
t

)⊤
Σjrt

≥ atα− |bt|β

≥

√
1− α2

64β2
α
∥∥Σj(θ

∗
j − θt)

∥∥
2
− α

8

∥∥Σj(θ
∗
j − θt)

∥∥
2

≥ α

2

∥∥Σj(θ
∗
j − θt)

∥∥
2
,
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where λmin(Σj) ≥ α and β ≥ maxj∈[k] ∥Σj∥2. It follows that(
θ∗j − θt+1

)⊤
Σ2

j

(
θ∗j − θt+1

)
≤
(
θ∗j − θt

)⊤
Σ2

j

(
θ∗j − θt

)
− ηtα

∥∥Σj

(
θ∗j − θt

)∥∥
2
+ η2t ∥Σj∥22 .

Recall the choice of step size ηt = ασ̂t/(2β
2). In view of (28), we get that(

θ∗j − θt+1

)⊤
Σ2

j

(
θ∗j − θt+1

)
≤
(
θ∗j − θt

)⊤
Σ2

j

(
θ∗j − θt

)
− α2

4β2

∥∥Σj

(
θ∗j − θt

)∥∥
2
σ̂t

≤
(
1− α2

8β2

)
∥Σj (θ

∗
i − θt)∥22 ,

Therefore, ∥∥Σj

(
θ∗j − θt+1

)∥∥2
2
≤
(
1− α2

8β2

)∥∥Σj

(
θ∗j − θt

)∥∥2
2
,

This proves (21).

E Analysis of Phase 2

Throughout the proof in this section, we assume without loss of generality that the optimal permutation
in (6) is identity.

E.1 Derivation of global iteration

Proof of Lemma 1. We first prove the result for FedAvg. By definition, we have

∇jLi(θ) =
λij,t

ni
ϕ(xi)

⊤(ϕ(xi)θj − yi),

where λij,t = 1{j = zi,t} and ∇j denotes the gradient with respect to θj . Then the one-step local
gradient descent at client i is

[Gi(θ)]j =
{
θj , j ̸= zi,t,

gi(θj) ≜ θj − ηiϕ(xi)
⊤(ϕ(xi)θ − yi), j = zi,t,

where ηi = η/ni. Iterating s steps yields that [SXY21]

gsi (θj) = (I − ηiϕ(xi)
⊤ϕ(xi))

sθj +

s−1∑
ℓ=0

(I − ηiϕ(xi)
⊤ϕ(xi))

ℓηiϕ(xi)
⊤yi

(a)
= θj −

s−1∑
ℓ=0

(I − ηiϕ(xi)
⊤ϕ(xi))

ℓηiϕ(xi)
⊤(ϕ(xi)θj − yi)

(b)
= θj − ηiϕ(xi)

⊤Pi(ϕ(xi)θj − yi),

where (a) used I−(I−X)s =
∑s

ℓ=0(I−X)ℓX , and (b) used (I−X⊤X)ℓX⊤ = X⊤(I−XX⊤)ℓ

and the definition of Pi. Then,

θij,t = [Gsi (θt−1)]j = λij,tg
s
i (θj,t−1) + (1− λij,t)θj,t−1

= θj,t−1 − ηiλij,tϕ(xi)
⊤Pi(ϕ(xi)θj,t−1 − yi).

We obtain the global iteration:

θj,t =

M∑
i=1

ni

N
θij,t = θj,t−1 −

η

N

M∑
i=1

λij,tϕ(xi)
⊤Pi(ϕ(xi)θj,t−1 − yi),

which is (11) using matrix notations.

The proof for FedProx is similar. The first order condition for the local proximal optimization is

ηiλij,tϕ(xi)
⊤(ϕ(xi)θij,t − yi) + (θij,t − θj,t−1) = 0, j ∈ [k].
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Therefore, if j ̸= zi,t, then θij,t = θj,t−1; if j = zi,t, then

θij,t = (I + ηiϕ(xi)
⊤ϕ(xi))

−1(θj,t−1 + ηiϕ(xi)
⊤yi)

(a)
= θj,t−1 − ηi(I + ηiϕ(xi)

⊤ϕ(xi))
−1ϕ(xi)

⊤(ϕ(xi)θj,t−1 − yi)

(b)
= θj,t−1 − ηiϕ(xi)

⊤Pi(ϕ(xi)θj,t−1 − yi),

where (a) used I−(I+X)−1 = (I+X)−1X , and (b) used (I+X⊤X)−1X⊤ = X⊤(I+XX⊤)−1

and the definition of Pi. The remaining steps are the same as those in FedAvg.

E.2 Convergence analysis of Phase 2

We analyze the three terms on the right-hand side of (12) separately. The first term of (12) is the main
term due to the decreasing of estimation error, and the last term is the stochastic variation due to the
observation noise ζ. We have the following lemmas on the eigenvalues of Kj and the concentration
of the observation noise.

Lemma 7. There exists constants c and C such that, with probability 1− 2ke−d,

cα
sNj

κN
≤ λmin(Kj) ≤ λmax(Kj) ≤ Cβ

sNj

N
, ∀j ∈ [k].

Proof. Since ϕ(xIj ) of size Nj × d consists of independent and sub-Gaussian rows, by a covering
argument [Ver18, Theorem 4.6.1], with probability 1− 2e−d,

αNj − C(
√
dNj ∨ d) ≤ σ2

min(ϕ(xIj )) ≤ σ2
max(ϕ(xIj )) ≤ βNj + C(

√
dNj ∨ d),

where σmax and σmin denote the largest and smallest singular values, respectively, and C is an
absolute constant. By definition, Kj =

1
N ϕ(xIj )

⊤PIjϕ(xIj ), where PIj is a symmetric matrix. It is
shown in [SXY21, Lemma 3] that

s/κ ≤ λmin(PIj ) ≤ λmax(PIj ) ≤ s.

The conclusion follows from the condition Nj ≳ d and a union bound over j ∈ [k].

Lemma 8. Given the input features ϕ(x), there exists a constant C such that with probability at
least 1− k exp(−d),

∥BΛjζ∥22 ≤ C
σ2sd

N
∥Kj∥2, ∀ j ∈ [k].

Proof. Note that
∥BΛjζ∥22 = ζ⊤ΛjB

⊤BΛjζ = ⟨ΛjB
⊤BΛj , ζζ

⊤⟩.
Since E

[
ζζ⊤

]
⪯ σ2I , it follows that

E
[
∥BΛjζ∥22

]
= E

[
⟨ΛjB

⊤BΛj , ζζ
⊤⟩
]
≤ σ2Tr

(
ΛjB

⊤BΛj

)
= σ2Tr

(
BΛ2

jB
⊤) .

Recall that

BΛ2
jB

⊤ =
1

N2
ϕ(xIj )

⊤P 2
Ijϕ(xIj )

(a)

⪯ s

N2
ϕ(xIj )

⊤PIjϕ(xIj ) =
s

N
Kj , (29)

where (a) holds because ∥PIj∥2 ≤ s. Therefore,

E
[
∥BΛjζ∥22

]
= E

[
⟨ΛjB

⊤BΛj , ζζ
⊤⟩
]
≤ σ2sd

N
∥Kj∥2 .

Next, using Hanson-Wright’s inequality [RV+13], we get

P
{
⟨ΛjB

⊤BΛj , ζζ
⊤⟩ − E

[
⟨ΛjB

⊤BΛj , ζζ
⊤⟩
]
≥ δ
}

≤ exp

(
−c1 min

{
δ

σ2∥ΛjB⊤BΛj∥2
,

δ2

σ4∥ΛjB⊤BΛj∥2F

})
,
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where c1 > 0 is a universal constant. Note that

∥ΛjB
⊤BΛj∥2 = ∥BΛ2

jB
⊤∥2 ≤

s

N
∥Kj∥2,

∥ΛjB
⊤BΛj∥F = ∥BΛ2

jB
⊤∥F ≤ s∥Kj∥F ≤

s
√
d

N
∥Kj∥2 .

Therefore, by choosing δ = C σ2sd
N ∥Kj∥2 for a sufficiently large constant C, we get that with

probability at least 1− exp(−d),

⟨ΛjB
⊤BΛj , ζζ

⊤⟩ ≤ E
[
⟨ΛjB

⊤BΛj , ζζ
⊤⟩
]
+ δ ≤ (C + 1)σ2 sd

N
∥Kj∥2.

The conclusion follows from a union bound over all j ∈ [k].

Combining Lemmas 2, 7, and 8, next we prove Theorem 2.

Proof of Theorem 2. We prove the result conditioning on the high probability events in Lemmas 2, 7,
and 8 that happen with probability at least 1− Cke−d. We obtain from Lemma 7 that

∥I − ηKj∥2 ≤ 1− Cηsρ/κ.

Combining Lemmas 7 and 8 yields

∥BΛjζ∥2 ≲ sσ

√
d

N
.

Plugging the above upper bounds and Lemma 2 into (12), we get

∥θj,t − θ∗j ∥2 ≤
(
1− Cηs

(ρ
κ
− ν log

e

ν

))
d(θt−1, θ

∗) + Cηsσ

(√
d

N
+ ν log

e

ν

)
, ∀j ∈ [k].

Since ν log(e/ν) ≲ ρ/κ and ν ≳
√
d/N , we conclude (9).

Let θ̂i,t = θzi,t,t be client i’s estimate of its own model parameter. If client i is clustered correctly
such that zi,t = zi, where the success probability P{zi,t = zi} is shown in Lemma 10 (which can be
found in Appendix 2), it follows from (9) that, for t ≥ T + 1,

∥θ̂i,t − θ∗zi∥2 ≤ d(θt, θ
∗) ≤ (1− C1sηρ/κ)

t−T
d(θT , θ

∗) +
C2

C1

σκ

ρ
ν log

e

ν
.

The proof is completed.

E.2.1 Proof of Lemma 2

This subsection is devoted to the proof of Lemma 2 using the following road map:

d(θt, θ
∗) ↓ =⇒

∑
i:i∈Sj,t

ni ↓ =⇒ ∥ϕ(xSj,t)∥2, ∥ζSj,t∥2 ↓ =⇒ ∥BEj,t(ϕ(x)θj,t−1 − y)∥2 ↓ .

Specifically, a small estimation error d(θt, θ
∗) implies an upper bound on the total number of

incorrectly clustered data points
∑

i∈Sj,t
ni; then we upper bound ∥ϕ(xSt

j
)∥2 and ∥ζSt

j
∥2 using

sub-Gaussian concentration and the union bound; finally we conclude the result from (15).

We first upper bound
∑

i∈Sj,t
ni. Using (8), the set Sj,t = Ij ⊖ Ij,t is equivalently the union of

Ij − Ij,t =

{
i ∈ Ij : ∥yi − ϕ(xi)θj,t−1∥2 ≥ min

ℓ ̸=j
∥yi − ϕ(xi)θℓ,t−1∥2

}
,

Ij,t − Ij =

{
i ̸∈ Ij : ∥yi − ϕ(xi)θj,t−1∥2 ≤ min

ℓ ̸=j
∥yi − ϕ(xi)θℓ,t−1∥2

}
.

Therefore, Sj,t = Sj(θt−1), where Sj is defined in (16). The next lemma upper bounds the VC
dimensions of the binary function classes specified in (17).
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Lemma 9. For k ≥ 2, the VC dimensions of F I
j and F II

j are at most O(dk log k).

Proof. We focus on the proof for F I
j for a fixed j ∈ [k], and the proof for F II

j is similar. We count the
number of faces in the arrangement of geometric objects, which is also known as the number of sign
patterns. Specifically, here we define the sign patterns of binary functions g1(θ), . . . , gm(θ) as the set{

(g1(θ), . . . , gm(θ)) : θ ∈ Rdk
}
.

Suppose F I
j shatters m points denoted by (x1, y1), . . . , (xm, ym). Define binary functions

qi,ℓ(θ) ≜ 1{Pℓ,j [xi, yi](θ) ≥ 0}, gi(θ) ≜ max
ℓ ̸=j

qi,ℓ(θ).

It is necessary that the number of sign patterns of g1(θ), . . . , gm(θ) is 2m. Note that every Pℓ,j [xi, yi]
is a (dk)-variate quadratic function. By the Milnor-Thom theorem (see, e.g., [Mat13, Theorem 6.2.1]),
if m(k − 1) ≥ dk ≥ 2, the number of sign patterns of m(k − 1) binary functions q1,ℓ, . . . , qm,ℓ

for ℓ ̸= j is at most ( 100m(k−1)
dk )dk. Since each gi is the maximum of qi,ℓ over ℓ ̸= j, the number

of sign patterns of g1, . . . , gm is upper bounded by ( 100m(k−1)
dk )dk. Consequently, we obtain 2m ≤

( 100m(k−1)
dk )dk, and hence m ≲ dk log k. If instead, m(k − 1) < dk, then the conclusion m ≲

dk log k trivially holds.

Next we show the uniform deviation of the incorrectly clustered data points. Due to the quantity
skew, we consider a weighted empirical process Gj(θ) =

∑M
i=1 ni1{i ∈ Sj(θ)}. Since the local

data (xi, yi) on different clients are independent, for a fixed θ, the events {i ∈ Sj(θ)} as functions of
(xi, yi) are mutually independent. Using the binary function classes in (17), we have

E
[
sup
θ
|Gj(θ)− E[Gj(θ)]|

]

≤ E

 sup
f∈F I

j

∣∣∣∣∣∣
∑
i∈Ij

ni(f(xi, yi)− E[f(xi, yi)])

∣∣∣∣∣∣
+ E

 sup
f∈F II

j

∣∣∣∣∣∣
∑
i̸∈Ij

ni(f(xi, yi)− E[f(xi, yi)])

∣∣∣∣∣∣


≲
√

dk log k
∑
i∈Ij

n2
i +

√
dk log k

∑
i ̸∈Ij

n2
i

≤

√√√√2dk log k

M∑
i=1

n2
i , (30)

where the second inequality follows from the uniform deviation of weighted empirical processes in
Lemma 12 and the upper bound of VC dimensions in Lemma 9. Finally, we use the McDiarmid’s
inequality to establish a high-probability tail bound. Note that we can write

sup
θ
|Gj(θ)− E[Gj(θ)]| ≜ h(Z1, . . . , ZM )

as a function h of Zi = (xi, yi) with bounded differences: for any i, zi, z
′
i,

|h(z1, . . . , zi, . . . , zM )− h(z1, . . . , z
′
i, . . . , zM )| ≤ ni.

By McDiarmid’s inequality, we have

P {h(Z1, . . . , ZM )− E [h(Z1, . . . , ZM )] ≥ t} ≤ exp

(
− 2t2∑M

i=1 n
2
i

)
. (31)

Therefore, combining (30) and (31), and by a union bound, with probablity at least 1− k−dk,

sup
θ
|Gj(θ)− E[Gj(θ)]| ≲

√√√√dk log k

M∑
i=1

n2
i = N

√
dk log k

M
(χ2(n) + 1), ∀j ∈ [k]. (32)
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Lemma 10. Suppose ϵ ≤
√

α/β

3 ∆. Then,

sup
θ:d(θ,θ∗)≤ϵ

P[i ∈ Sj(θ)] ≤ 4k exp

(
−cniα

2

(
1 ∧ ∆2

σ2

)2
)
, ∀j ∈ [k],

where c is an absolute constant.

Proof. For i ∈ Ij , it follows from (16) and the union bound that

P {i ∈ Sj(θ)} ≤
∑
ℓ ̸=j

P {∥yi − ϕ(xi)θj∥2 ≥ ∥yi − ϕ(xi)θℓ∥2}

=
∑
ℓ ̸=j

P
{
∥ϕ(xi)(θ

∗
j − θj) + ζi∥2 ≥ ∥ϕ(xi)(θ

∗
j − θℓ) + ζi∥2

}
. (33)

For any u ∈ Rd, the ni-dimensional random vector ϕ(xi)u+ ζi has independent and (∥u∥22 + σ2)-
sub-Gaussian coordinates. Applying Bernstein inequality yields that

P
{∣∣∣∣ 1ni

∥ϕ(xi)u+ ζi∥22 −
(
E[ζ2i1] + ∥u∥

2
Σi

)∣∣∣∣ ≥ (∥u∥22 + σ2)t

}
≤ 2 exp

(
−cni(t ∧ t2)

)
, (34)

where Σi = E[ϕ(xi1)ϕ(xi1)
⊤]. Let u1 ≜ θ∗j − θj and u2 ≜ θ∗j − θℓ. By assumptions that

∥θℓ − θ∗ℓ ∥2 ≤ ϵ for all ℓ ∈ [k] and ∥θ∗j − θ∗ℓ ∥2 ≥ ∆ for ℓ ̸= j, we have ∥u1∥2 ≤ ϵ, ∥u2∥2 ≥ ∆− ϵ.
Applying the condition ϵ ≤ 1

3
√

β/α
∆ ≤ 1

3∆, we get

∥u2∥2Σi
− ∥u1∥2Σi

≥ α(∆− ϵ)2 − βϵ2 ≥ α∆2/3. (35)

Therefore, let m = E[ζ2i1] + (1− p) ∥u1∥2Σi
+ p ∥u2∥2Σi

with p =
∥u1∥2

2+σ2

∥u1∥2
2+∥u2∥2

2+2σ2 , and we obtain
from (34) that

P
{
∥ϕ(xi)(θ

∗
j − θj) + ζi∥2 ≥ ∥ϕ(xi)(θ

∗
j − θℓ) + ζi∥2

}
≤ P

{
1

ni
∥ϕ(xi)u1 + ζi∥22 ≥ m

}
+ P

{
1

ni
∥ϕ(xi)u2 + ζi∥22 ≤ m

}
≤ 4 exp

(
−cni(t ∧ t2)

)
,

where t =
∥u2∥2

Σi
−∥u1∥2

Σi

∥u1∥2
2+∥u2∥2

2+2σ2 ≳ α(1 ∧ ∆2

σ2 ) using the lower bound of seperation in (35). We conclude
the proof for i ∈ Ij from (33). Similarly, for i ∈ Iℓ with ℓ ̸= j, we have

P {i ∈ Sj(θ)} ≤ P {∥ϕ(xi)(θ
∗
ℓ − θℓ) + ζi∥2 ≥ ∥ϕ(xi)(θ

∗
ℓ − θj) + ζi∥2} .

The conclusion follows from a similar argument.

Let NI ≜
∑

i∈I ni denote the total number of data in a subset of clients I ⊆ [M ]. It follows from
(32) and Lemma 10 that, with probability 1− k−dk,

NSj,t
=
∑

i∈Sj,t

ni ≤ νN, (36)

where ν is defined in (10). Conditioning on total number of incorrectly clustered data points NI , the
next lemma upper bounds ∥ϕ(xI)∥2 and ∥ζI∥2.

Lemma 11. With probability 1− 4e−d,

sup
NI≤νN

1

N
∥ϕ(xI)∥22 ≲ ν log

e

ν
, sup

NI≤νN

1

N
∥ζI∥22 ≲ σ2ν log

e

ν
. (37)

Proof. Since ϕ(xij) are independent and sub-Gaussian random vectors in Rd, for a fixed I ⊆ [M ],
with probability at least 1− 2e−t,

∥ϕ(xI)∥22 ≤ βNI + C ′
(√

(d+ t)NI + (d+ t)
)
,
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for some absolute constant C ′ > 0. There are at most
(
N
νN

)
≤ exp(Nν log(e/ν)) many different I

with NI ≤ N ′. Hence, applying the union bound yields that, with probability at least 1− 2e−d,

sup
NI≤νN

∥ϕ(xI)∥22 ≲ Nν log
e

ν
,

where we used ν ≳ d
N . Since ζij are independent and sub-Gaussian with E[ζ2ij ] ≤ σ2, the second

inequality in (37) follows from a similar argument.

Conditioning on the high probability events of (36) and (37), we obtain

∥ϕ(xSj,t)∥2 ≲

√
Nν log

e

ν
, ∥ζSj,t∥2 ≲ σ

√
Nν log

e

ν
.

Since ∥PSj,t
∥2 ≤ s, we conclude from (14) and (15) that

∥BEj,t(ϕ(x)θj,t−1 − y)∥2 ≤
1

N
∥ϕ(xSj,t)∥2∥PSj,t∥2∥ϕ(xSj,t)θj,t−1 − ySj,t∥2

≲
s

N

(
d(θt−1, θ

∗)∥ϕ(xSj,t
)∥22 + ∥ϕ(xSj,t

)∥2∥ζSj,t
∥2
)

≲ s(d(θt−1, θ
∗) + σ)ν log

e

ν
.

E.2.2 Auxiliary lemma

Lemma 12. Consider a weighted empirical process Gn(f) =
∑n

i=1 λif(Xi) for binary functions
f ∈ F , where Xi’s are independent and the VC dimension of F is at most d. Then

E

[
sup
f∈F
|Gn(f)− EGn(f)|

]
≲

√√√√d

n∑
i=1

λ2
i .

Proof. Since Xi’s are independent, by symmetrization,

E

[
sup
f∈F
|Gn(f)− EGn(f)|

]
≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵiλif(Xi)

∣∣∣∣∣
]
,

where ϵi are i.i.d. Rademacher random variables. Next, by conditioning on Xi’s, we aim to apply
Dudley’s integral. Since ϵi are independent and 1-sub-Gaussian, for any f, g ∈ F , the increment∑

i ϵiλif(Xi)−
∑

i ϵiλig(Xi) is also sub-Gaussian with a variance parameter

n∑
i=1

λ2
i (f − g)(Xi)

2 =

(
n∑

i=1

λ2
i

)
∥f − g∥2L2(µn)

,

where µn denotes the weighted empirical measure 1∑
i λ

2
i

∑
i λ

2
i δXi

. Apply Dudley’s integral (see,
e.g., [Ver18, Theorem 8.1.3]) conditioning on Xi’s, we get that

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵiλif(Xi)

∣∣∣∣∣
]
≲

√√√√ n∑
i=1

λ2
i × E

[∫ 1

0

√
logN (F , L2(µn), ϵ)dϵ

]
,

where N (F , L2(µn), ϵ) denotes the ϵ-covering number of F under L2(µn). Finally, we can bound
the covering number by the VC dimension of F as (see, e.g., [Ver18, Theorem 8.3.18])

logN (F , L2(µn), ϵ) ≲ d log
2

ϵ
.

The conclusion follows.
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F Truncated matrix Bernstein inequality

Lemma 13. Let {ai : i ∈ [N ]} and {bi : i ∈ [N ]} denote two independent sequences of independent

random vectors in Rd. Suppose that E
[
∥ai∥22

]
= O(d), E

[
∥bi∥22

]
= O(d),

∥∥E [aia⊤i ]∥∥2 = O(1),∥∥E [bib⊤i ]∥∥2 = O(1), and

P {∥ai∥2 ≥ t} ,P {∥bi∥2 ≥ t} ≤ exp
(
−Ω

(
t/
√
d
))

, ∀t ≥
√
d.

Let

Y =

N∑
i=1

(
aib

⊤
i − E

[
aib

⊤
i

])
.

Then there exists a univeral constant C > 0 such that with probability at least 1− 3δ,

∥Y ∥2 ≤ C

(√
Nd log

1

δ
+ d log3(N/δ)

)
.

Proof. Given τ to be specified later, define event Ei = {
∥∥aib⊤i ∥∥2 ≤ τ}. It follows that

Y =

N∑
i=1

(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])
+

N∑
i=1

aib
⊤
i 1{Eci } −

N∑
i=1

E
[
aib

⊤
i 1{Eci }

]
and hence

∥Y ∥2 ≤

∥∥∥∥∥
N∑
i=1

(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

aib
⊤
i 1{Eci }

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

E
[
aib

⊤
i 1{Eci }

]∥∥∥∥∥
2

.

(38)
In the sequel, we bound each term in the RHS separately.

To bound the first term, we will use matrix Bernstein inequality. Let Yi = aib
⊤
i 1{Ei} −

E
[
aib

⊤
i 1{Ei}

]
. Then E [Yi] = 0 and

∥Yi∥2 ≤
∥∥aib⊤i 1{Ei}∥∥2 + ∥∥E [aib⊤i 1{Ei}]∥∥2 ≤ 2τ.

Moreover,
N∑
i=1

E
[
YiY

⊤
i

]
=

N∑
i=1

E
[(
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

]) (
aib

⊤
i 1{Ei} − E

[
aib

⊤
i 1{Ei}

])⊤]
=

N∑
i=1

(
E
[
aia

⊤
i ∥bi∥

2
2 1{Ei}

]
− E

[
aib

⊤
i 1{Ei}

]
E
[
aib

⊤
i 1{Ei}

]⊤)
Therefore,

N∑
i=1

E
[
YiY

⊤
i

]
⪯

N∑
i=1

E
[
aia

⊤
i ∥bi∥

2
2 1{Ei}

]
⪯

N∑
i=1

E
[
aia

⊤
i ∥bi∥

2
2

]
=

N∑
i=1

E
[
∥bi∥22

]
E
[
aia

⊤
i

]
⪯ O(Nd)I.

Moreover, YiY
⊤
i ⪰ 0. Hence,

∥∥∥∑N
i=1 E

[
YiY

⊤
i

]∥∥∥
2

= O(Nd). Similarly, we can show that∥∥∥∑N
i=1 E

[
Y ⊤
i Yi

]∥∥∥
2
= O(Nd). Applying matrix Bernstein inequality [Tro15], we get that with

probability at least 1− δ, ∥∥∥∥∥
N∑
i=1

Yi

∥∥∥∥∥
2

≲

√
Nd log

1

δ
+ τ log

1

δ
. (39)
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Next, we bound the second term in (38). Note that on the event ∩Ni=1Ei,
∥∥∥∑N

i=1 aib
⊤
i 1{Eci }

∥∥∥
2
= 0.

Note that

P {Eci } = P
{∥∥aib⊤i ∥∥2 > τ

}
≤ P

{
∥ai∥2 ≥

√
τ
}
+ P

{
∥bi∥2 ≥

√
τ
}
≤ 2e−Ω(

√
τ/d).

Hence by choosing τ = Cd log2 N
δ for some sufficiently large constant C, we get that P {Eci } ≤ δ/N .

Thus by union bound,

P
{
∩Ni=1Ei

}
≥ 1−

N∑
i=1

P {Eci } ≥ 1− 2δ. (40)

Finally, we bond the third term in (38). Note that∥∥∥∥∥
N∑
i=1

E
[
aib

⊤
i 1{Eci }

]∥∥∥∥∥
2

≤
N∑
i=1

∥∥E [aib⊤i 1{Eci }]∥∥2 ≤ N∑
i=1

E
[∥∥aib⊤i 1{Eci }∥∥2] .

Moreover,

E
[∥∥aib⊤i 1{Eci }∥∥2] = ∫ ∞

0

P
{∥∥aib⊤i 1{Eci }∥∥2 ≥ t

}
dt

=

∫ τ

0

P
{∥∥aib⊤i ∥∥2 ≥ τ

}
dt+

∫ ∞

τ

P
{∥∥aib⊤i ∥∥2 ≥ t

}
dt

= τ
δ

N
+

∫ ∞

τ

P
{∥∥aib⊤i ∥∥2 ≥ t

}
dt

By assumption, for t ≥ τ = Cd log2 N
δ ,

P
{∥∥aib⊤i ∥∥2 ≥ t

}
≤ P

{
∥ai∥2 ≥

√
t
}
+ P

{
∥bi∥2 ≥

√
t
}
≤ 2e−C′

√
t/d

for some universal constant C ′ > 0. It follows that∫ ∞

τ

P
{∥∥aib⊤i ∥∥2 ≥ t

}
dt ≤ 2

∫ ∞

τ

e−C′
√

t/ddt = 4d
(√

τ/d+ 1/C ′
)
e−C′
√

τ/d,

where the equality holds by the identity that
∫∞
τ

e−α
√
tdt = 2

α2 (
√
τα+ 1)e−α

√
τ . Therefore,

E
[∥∥aib⊤i 1{Eci }∥∥2] ≤ τ

δ

N
+ 4d

(√
τ/d+ 1/C ′

)
e−C′
√

τ/d = O

(
d

N
log2(N/δ)

)
. (41)

Plugging (39), (40), and (41) into (38) yields the desired conclusion.

G Bound on the largest principal angle between random subspaces

Let U ∈ Rd×ℓ denote an orthogonal matrix and Q ∈ Rd×ℓ denote a random orthogonal matrix
chosen uniformly at random, where ℓ ≤ d.

Lemma 14. With probability at least 1−O(ϵ),

σmin(U
⊤Q) ≳

ϵ√
ℓ(
√
d+ log(1/ϵ))

.

Proof. Since Q ∈ Rd×ℓ is a random orthogonal matrix, to prove the claim, without loss of generality,
we can assume U = [e1, e2, . . . , eℓ], where ei’s are the standard basis vectors in Rd. Let A ∈ Rd×ℓ

denote a random Gaussian matrix with i.i.d. N (0, 1) entries and write A =

[
X
Y

]
, where X ∈

Rℓ×ℓ and Y ∈ R(d−ℓ)×ℓ. Then U⊤Q has the same distribution as X(A⊤A)−1/2. It follows that
σmin(U

⊤Q) has the same distribution as σmin(X(A⊤A)−1/2). Note that

σmin

(
X(A⊤A)−1/2

)
≥ σmin(X)σmin

(
(A⊤A)−1/2

)
=

σmin(X)

σmax(A)
.

In view of [Ver10, Corollary 5.35], σmax(A) ≲
√
d + log(1/ϵ) with probability at least 1 − ϵ.

Moreover, in view of [Sza91, Theorem 1.2], σmin(X) ≥ ϵ/
√
ℓ with probability at least 1 − O(ϵ).

The desired conclusion readily follows.
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