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1 ABSTRACT
This document supplements our main submission "IC-Mapper:
Instance-Centric Spatio-Temporal Modeling for Online Vectorized
Map Construction". We first conducted further exploration and ab-
lation studies on the design of each module, then summarized some
important details during the model training process, and finally
provided visual images to illustrate the entire process of online map
construction.

2 ADVANCED EXPLORATION OF MODULE
DESIGN AND FUNCTIONALITY

2.1 Reflections on End-to-End Map Tracking
Tasks

The primary goal of the tracking task is to ascertain the matching
relationships between map instances across consecutive frames,
thereby laying the foundation for subsequent instance-centered
map construction. To avoid complex post-processing, we have im-
plemented an end-to-end detection and tracking network frame-
work. Generally, joint training of multiple tasks on a shared net-
work can lead to reduced accuracy in individual tasks. However, as
demonstrated by the experimental results in the main paper, our
designed temporal tracking module achieves good performance in
both detection and tracking tasks. This section will compare the im-
plementation details of different end-to-end tracking networks and
further analyze the reasons behind their performance disparities.

2.1.1 Comparison of Different TemporalModeling Design Approaches.
Figure 1 provides the implementation details of three temporal
modeling approaches. Figure 1(a) displays the temporal modeling
method used by StreamMapNet, which maintains the features of
the TopK scoring instances from the historical sequence and com-
bines them with the initial queries of the current frame to perform
the detection task. Since the TopK instance selection mechanism
does not explicitly calculate the matching relationships between
instances, this method primarily uses implicit temporal modeling
to enhance detection performance. Figure 1(b) illustrates the su-
pervised training method in MOTR, where once each instance is
matched to the corresponding ground truth object, it is locked in
for subsequent training, and only newly generated detection in-
stances perform Hungarian matching with the remaining labels.
Our proposed IC-Mapper combines these designs. As shown in
Figure 1(c), we retain the TopK transmission mechanism to ensure
detection performance and introduce an additional learnable as-
sociation module to calculate the matching relationships between
detection instances and historical tracking instances. This module
is supervised using cross-entropy loss, and specific design details
can be referred to in the main paper.

Table 1: Comparison of Detection and Tracking Metrics Between
MOTR and Our IC-Mapper.

Method MOTA MOTP ID-switch mAP
StreamMapNet - - - 34.1
MOTR-track 0.40 5.08 2.38 22.7

IC-Mapper(Ours) 0.55 3.18 1.82 35.0

2.1.2 Analysis of the Reasons for the Decline in MOTR Detection
Performance. As shown in Table 1, using a similar end-to-end de-
tection and tracking model, our proposed IC-Mapper surpasses
the MOTR[2] approach in all detection and tracking metrics. Com-
pared to the original StreamMapNet, our method also achieves an
improvement of nearly one point in mAP.

We attribute the performance disparity primarily to two reasons:
1. During the training phase, MOTR assigns fixed true labels based
on IDs to tracking instances for supervised training. This causes
early errors in matching to accumulate over subsequent frames,
thereby affecting detection performance. 2. In detection tasks for dy-
namic targets, the same instance typically appears as the same box
shape over time, showing little deformation. However, as shown
in Figure 3, road elements often cover a large area, leading to sig-
nificant deformation of the same instance across different frames,
resulting in substantial variations. In MOTR, the network has to de-
code different feature shapes using the same tracking query, which
increases the learning burden. In contrast, implicitly incorporating
historical query features using the TopK method avoids this issue
and maintains high detection accuracy. Building on this, we intro-
duce an additional module to perform explicit tracking tasks, thus
achieving good detection and tracking performance.

2.2 Further Exploration of Spatial Fusion
Module Potential

The fusion module primarily integrates current detection results
with historical maps, using spatial continuity of instances to en-
hance map feature detection accuracy within localized perception
patches. In the main paper, we use the point set output from the
current detector as the initial query, and compute cross-attention
with the corresponding sampled point set from the historical map to
achieve feature fusion. To further explore the potential of the fusion
module, as shown in Figure 2, we introduce deformable attention
computed between the BEV features generated by the detection
module and the instance point set, and evaluate the detection accu-
racy before and after fusion.

SCA(𝑄, 𝐹𝑏𝑒𝑣) =
𝑁𝑝∑︁
𝑗=1

DA(𝑄,P(𝑝, 𝑗), 𝐹𝑏𝑒𝑣), (1)

where 𝑄 represents the initial query encoding corresponding to
the current instance, 𝑝 is the position of 𝑗-th point of the instance,
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Figure 1: Three instance-level temporal modeling approaches. (a) In StreamMapNet[1], instance features are implicitly modeled temporally
using a Topk mechanism. (b) In MOTR[2], a tracking buffer is maintained to store track instances, and tracking instances are bound with
corresponding labels for calculating the detection loss. (c) We retain the Topk implicit temporal modeling from StreamMapNet and introduce a
temporal association module to calculate the matching relationships between detection instances and tracking instances.
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Figure 2: Building on the calculation of cross-attention with sam-
pled point sets from historical maps, we additionally introduce de-
formable cross-attention using the BEV intermediate features from
the detector and the current point set. This further enhances the
effectiveness of the fusion module.

P represents a learnable mapping function applied to the initial
coordinate point 𝑝 , 𝐹𝑏𝑒𝑣 is the BEV feature generated by the detector,
𝑁𝑝 is the number of reference points for each query, and 𝐷𝐴means
the operation of deformable attention.

t1 t2

t3 t4

Figure 3: We extracted four frames of localized vector map ground
truths from the same sequence, focusing on specific areas like the
road boundary labeled with ID 3.0 in a black box. This example
shows substantial variations in the shape of the same map instance
when observed at different times and positions.

We initially conduct joint training of the detection and temporal
association modules, then fix the parameters of the pre-trained
model and introduce different fusion modules for fine-tuning train-
ing. As shown in the Table 2, introducing historical sampled point
sets to the original model yields a slight improvement in detection
accuracy, which is further enhanced by integrating BEV features.
The accuracy gains from the fusion module are attributed to two
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Table 2: Comparison of Detection results of different fusionmodule
designs. ’w/o fusion represents the model pre-trained without fusion
module; ’fusion (points)’ means the fusion module only include
the attention operation with sampled points, ’fusion (points+bev)’
further introduces bev features in the fusion module.

Method mAP
w/o fusion 34.95

fusion (points) 34.99
fusion (points+bev) 35.32

factors: first, the integration of spatial-dimensional features into the
existing instance encoding introduces more priors; second, feature
encoding and decoding are performed on the basis of instance point
sets, which, combined with the previous instance-based encoding
and decoding, constructs a detailed map feature modeling process
from coarse to fine.

2.3 What affects the final mapping accuracy?
Since our task focuses on constructing a global vector map, the
initial intent behind designing the temporal association and spa-
tial fusion modules was to enhance the final mapping accuracy by
achieving higher detection precision and better association accu-
racy. Here, we conduct further experiments to verify the impact of
different detection and tracking accuracies on the final mapping
task.

Table 3: The impact of different detector performances on the final
mapping accuracy under the same tracker.

Detector mAP Tracker mCD
35.0 Post-track 5.35
34.6 Post-track 5.46

Table 4: The impact of different track performances on the final
mapping accuracy under the same detector.

Detector mAP MOTP mCD
35.0 2.4 4.7
35.0 3.7 5.6

In Table 3, we use the same post-processing tracker to test the
variation in final mapping accuracy (mCD) under different detection
accuracies. In Table 4, we fix the accuracy of the detector and adjust
the threshold to achieve different tracking performances, evaluating
the final mapping accuracy. The experimental results indicate that
both detection and tracking accuracies are positively correlated
with the final mapping accuracy. This finding strongly supports
the design of our end-to-end mapping framework and encourages
the community to design sub-modules with higher detection and
tracking performances to improve the final mapping metrics.

3 ABLATION STUDY OF CRITICAL
EXPERIMENTAL DETAILS

The trainingmethod has a significant impact onmodel performance.
This section summarizes several important experimental details to
help the community better understand and expand upon this work.

3.1 The impact of geometric metrics in the
temporal association module

We discovered that adjustments to geometric metrics during the
joint training of detection and tracking affect the performance
of both. We conducted an ablation study, as shown in the Table
5, where ’detach’ indicates that the gradients of reference points
used for calculating geometric metrics in the tracking module are
truncated. The experimental results indicate that the geometric
association component in the tracking module affects the accuracy
of the detector. A geometric associationmodule that allows gradient
backpropagation can achieve higher tracking performance but at
the expense of some detection accuracy.

Table 5: The impact of The impact of geometric metrics on the
detection and tracking performance. ’(detach)’ indicates that the
gradients of reference points used for calculating geometric metrics
in the tracking module are truncated.

Method Tracker mAP
MOTA↑ MOTP↓ ID-switch↓

Ours 0.54 3.17 1.81 34.95
Ours(detach) 0.54 3.89 4.73 35.13

3.2 The impact of single-frame pre-training
In the original StreamMapNet[1], the detector is pre-trained using
single-frame images, followed by training with multi-frame images.
However, in our framework, we found that eliminating the single-
frame pre-training phase after introducing the temporal association
module can lead to greater accuracy gains. Specific experimental
results are shown in the Table 6.

Table 6: Verify the impact of single-frame detection pre-training
on the final detection accuracy. "w/" denotes with, and "w/o" denotes
without.

Method mAP
w/ single pre-train 32.92
w/o single pre-train 34.95

3.3 The impact of multi-stage training methods
on results.

Overall, we adopted a two-stage training approach and experi-
mented with two different training strategies. The first strategy
involved jointly training the detection and tracking modules during
the first phase. We used the Adam optimizer across 8 GPUs with
an initial learning rate of 5e-4 for 24 epochs. In the second phase,
we froze the parameters of the detection and tracking modules and
fine-tuned the fusion module with an initial learning rate of 1e-4 for
another 24 epochs. The second strategy involved training the detec-
tion and tracking modules in the first phase with an initial learning
rate of 5e-4 for 16 epochs. In the second phase, we introduced the
fusion module and conducted joint training with an initial learning
rate of 3e-4 for 36 epochs. According to the detection accuracy
metrics presented in Table 7, the second training strategy yields
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Table 7: The impact of multi-stage training methods on results. ’1’
and ’2’ correspond to the two training strategies discussed in the
article. (In this experimental setup, the gradients of the reference
points in the temporal association module are truncated, resulting
in a higher mAP metric.)

Training Strategies mAP
1 35.13
2 36.31

greater benefits. However, this has not been proven to be the opti-
mal training strategy. Training strategies for such multi-module,
end-to-end networks require further exploration.

4 EXTENDED VISUALIZATION RESULTS
We demonstrated the sequence of input images along with the real-
time process of map detection and updating as shown in Figure 4,
5, 6, 7.
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Figure 4: The visualization results in scene-0001 for frame 1 and 6, with the left side displaying the input image. On the right
side, the top part shows the real-time detection results, while the bottom part illustrates the process of map updating by the
fusion module.
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Figure 5: The visualization results in scene-0001 for frame 12 and 18, with the left side displaying the input image. On the right
side, the top part shows the real-time detection results, while the bottom part illustrates the process of map updating by the
fusion module.
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Figure 6: The visualization results in scene-0001 for frame 24 and 36, with the left side displaying the input image. On the right
side, the top part shows the real-time detection results, while the bottom part illustrates the process of map updating by the
fusion module.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

T=39

Pred Map Gt Map

Figure 7: The visualization results in scene-0001 for frame 39, with the left side displaying the input image. On the right side,
the top part shows the real-time detection results, while the bottom part illustrates the process of map updating by the fusion
module. The bottom section displays a comparison between the final map reconstruction result for the entire scene-0001 and
the true global map labels.
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