Table 2: Dataset statistics for simple online convex examples. We stream through each example,
providing a logistic loss over the binary label and linear predictor generated by an OCO learner. The
feature count includes an all-constant intercept column as well. Datasets were retrieved from Chang
and Lin [44].

Dataset Name Number of Examples Number of Features
gisette_scale 6000 5001
a9a 32561 124
cifar10 50000 3073

Table 3: Average cumulative online loss across datasets and algorithms, ranked from lowest (1st
place) to highest (6th place). Our proposal, S-Adagrad, is in bold.

Place 1 2 3 4 5 6
cifar1i0 Alg. RFD-SON S-Adagrad Adagrad OGD Ada-FD FD-SON
Loss  0.297 0.297 0.303 0.308 2.999 6 x 106
gisette Alg. S-Adagrad RFD-SON Ada-FD  Adagrad OGD FD-SON
Loss  0.158 0.167 0.196 0.209 0.224 2.432
a9a Alg.  Adagrad S-Adagrad OGD RFD-SON Ada-FD FD-SON
Loss  0.332 0.333 0.335 0.335 0.354 0.539

A Online Convex Examples

In this section, we evaluate the performance of S-Adagrad in the classical online convex optimization
setting.

‘We consider three different datasets, summarized in Tbl. 2. For each dataset, we evaluate several
works based on the frequent directions sketch, Ada-FD [26], FD-SON [27], RFD-SON [43]. As
baselines we also add online gradient descent (OGD) and diagonal Adagrad [2]. For each dataset,
we consider the online convex loss of a logistic binary classification loss over a linear learner on the
features in each dataset augmented with a constant feature for the intercept.

For methods which require a nonzero diagonal initial regularizer 4/, namely FD-SON and Ada-
FD, we tune & in 107%,107°,--- 1 and the learning rate 1 over the same range as well, for 49
hyperparameters total. For methods which have § = 0 (Adagrad, OGD, S-Adagrad, RFD-SON), we
instead tune 7 on 49 points spaced evenly on the same logarithmic scale, [107°, 1] to fairly allocate
hyperparameter training budget. Note that the variant of RFD-SON, RFD, which sets § = 0 is the
main variant evaluated by Luo et al. [43]. The sketch size was fixed to be 10 throughout.

We sort and display cumulative average regret in Tbl. 3 and Fig. 4. S-Adagrad is the only method to
consistently place among the top three across all datasets. We suspect that a combination of allowing
0 = 0 (removing inductive bias about regularization; notice in Tbl. 3 that Ada-FD and FD-SON,
the two methods with § > 0, routinely place last) and the ability to deal with the effectively zero
exp-concavity constant of the logistic loss [45] explain S-Adagrad’s performance.

IThe regret of Ada-FD is expressed in terms of dynamic run-time quantities which do not admit a universal
bound in terms of Gr; we display its regret for the specific case of Observation 2 instead (a detailed look at its
regret is given in Appendix B.3).
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Figure 4: Cumulative average regret curves for logistic loss as a function of percent of dataset
completion in a single online pass, resummarizing Tbl. 3 visually.
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B Proof details

Notation. Let ||-|| denote the ¢ norm for a vector. Let ||-||op,
Frobenius norm of a matrix, respectively. For a positive definite matrix A, we use ||z]|4 = Vz T Az

to denote the matrix norm induced by A, and ||z||* = V2T A~1x to denote the dual norm of the
induced matrix norm. For a matrix A, A~ is the inverse of A if A is full rank; otherwise, A~! is
taken to be the Moore-Penrose pseudoinverse. Finally, vec () denotes the row-major vectorization of
a given matrix, and ® denotes the Kronecker product between two matrices

-|| F denote the operator norm and the

B.1 Reduction from Non-convex Optimization to Online Convex Optimization

In this section, we give more details for the reduction of non-convex optimization to online convex
optimization for completeness. We use the framework of [6], though many related results exist in the
optimization literature. The algorithm is stated in Algorithm 4, where we optimize the non-convex
function f by iteratively optimizing subproblems f; that are strongly convex. Given any OCO
algorithm A, in each episode, we first construct f; and then use A to optimize it for N time steps.
We state the convergence guarantees in terms of the adaptive ratio, defined below.

Algorithm 4 Reduction from Non-convex optimization to Online Convex Optimization

1: Input: initial x1, time horizon 7, episode length N, smoothness parameter L, online convex
optimization algorithm A.

2: fort=1,...,7do
3:  Construct fy(x) = f(x) + Lz — x|
4:  Initialize A to start at x, and set z% = xy.
5 forn=1,...,Ndo ~ ~
6: Play 27, receive stochastic gradient Vf;(z7), construct gi*(x) = Vfi(22) T (z).
7: Update 27t = A(g}, ..., 7).
8:  end for
9:  Update z,41 = & S0 o,
10: end for

11: Output iterate x4« = argminge(pq) |V (@)]].

Definition 7. (Adaptive ratio.) Let A be an algorithm, and consider a convex function f. Given a
stochastic gradient oracle with variance bounded by o2, let 2 4 be the output of A with at most T’
oracle calls, and let z* € argmin, f(x). Define the adaptive ratio of A as

flza) — f(z¥)
|21 —2*|F

pa(f) =

The adaptive ratio captures the performance of A relative to SGD. For certain algorithms, such as
AdaGrad [2], the adaptive ratio can be as small as %. For more discussions on this notion see [6].

Theorem 8. (Theorem A.2 in [6]) Consider a non-convex function f, and suppose f is L-smooth
and bounded: |V? f(z)|l2 < L and max,,, f(z) — f(y) < M. Additionally suppose we have access
to a stochastic gradient oracle with variance bounded by 0. Let jn = max; i 4(f¢). Then Algorithm

2 2
4runwith T = 2ML gnd N = 48‘6‘2” returns a point xy« such that

E[[Vf ()

I<e.

The total number of calls to the stochastic gradient oracle is bounded by T - N = O(p20? /e*).

B.2 Proof of Lem. 1

Proof. Let Hy € RT*4 denote the matrix of stacked gradients, where the ¢-th row of Hrp is g;. Then
H:,THT = G, and FD iteratively sketches Hp. Let Hy = UXVT be the SVD of Hy, and let

Hrp g = UgpXy VkT denote the best rank-k approximation of Hr, where Uy, V}, are the first & columns
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of the matrices, and X, is the upper left k£ x &k submatrix of ¥. By the proof of Theorem 1.1 in [13],
we have

d T d d
. HHT —HTkHQF . Zi:k-‘rl /\i(HTHT) . Zz k+1
pror S pin T = min SR i Z;
where the last inequality follows by choosing k = ¢ — 1. O

B.3 Proof of Observation 2

Proof. Let ¥ = E [gig/ | denote the covariance of the gradients, and A; = \;(¥) denote its i-th
eigenvalue. By definition, g; has the following distribution: g; = w; with probability \;. At iteration
t, we have the current sketch G;_; € R¢%4 and we receive the new gradient g;. Ada-FD uses
G¢—1 + 01 as their preconditioner.

We first show that under the distribution of the cost functions, if G;_; has rank ¢ — 1, then
E [pt|Gt,1] >3 i Let Gy = UXVT be the SVD of G;_1, and v; be the i-th row of
V e RE=1Xd Let Ny = W\ {v1,...,v,_1} be the set of basis vectors not in the row space of
Gy_1, then |[Ny_1| = r — €+ 1. If g € span(vy,...,vp), then p; = 0; otherwise p; = 1, with
probability 7. cn. A =D, A

We proceed to bound the probability that G;_; has rank £/ < ¢ — 2. Note that this event is equivalent
to having fewer than £ — 1 distinct vectors drawn from W. Let I; be the indicator variable for drawing
w; in the first ¢ — 1 rounds, then we can obtain the expected number of distinct vectors as follows

E zr:le zi]E[Ii]:il_(l_)\ t—1
=1 i=1 i=1

We consider the random variable » — Y _._, I;, and by Markov’s inequality,

- S (1—A)t o=t
Plr—) L>r—t+2| < < :

Note that this is exactly the probability of having fewer than £ — 1 distinct vectors in the first t — 1

draws. We conclude that for ¢ > logr/A, + 1, P [rank(Gy—1) = ¢ — 1] > 5. This implies that

E [ps] > >"i_, Xi/2 after an initial log number of rounds, and assuming 7' > 2log r/\,,

T T T T
Elzpt] >E Z Pt ZZZ/\i-
t=1 t=T/2+1 i=/

Similarly,

ElZ\/E]ZE Z VP >*Z%

t=T/2+1

where the second inequality holds because p; = O or 1, s0 /p; = p; forall . The quantities ZtT:l Pt

and Zthl /Pt correspond to Ar and Zle +/o¢ in Theorem 1 of [26], respectively. Therefore,
under our setting, the expectation of the upper bound in Theorem 1 is at least

1+ o p? [Z
% tr(GA/?) E|> vl (1)
t=1
If we can tune §, then the max function evaluates to at least 1, and
DT
(1 )>nE[tr(G1/2)}+ ZA >nE[«/tr(GT} Z/\ —nf+ ZA“

where the last equality holds because tr(Gr) = Et:l llg¢||3 = T. Optimizing 7, we conclude that
the regret upper bound for Ada-FD is Q(7"3/*) in expectation.

nE |max {1,

O
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B.4 Proof details for Section 4.1, S-AdaGrad

B.4.1 Proof of Theorem 3
The following observations are made of Algorithm 1:

Observation 9. Denote by U, 4 [Ut; Utﬂ If each M, is of rank 1, then

G+ AT =Gt + M+ 2N,

where Ny = U (U) "

Proof. By definition of Algorithm 1, Giq = Bt_lBtT_1 is of rank at most £ — 1. Under the

assumption that M, is of rank 1, Gi_1 + M, is of rank at most £. Therefore, A¢+1:4¢ = 0. Then, we
have the following:

G+ M1 = Uy diag (A}, = XY U + 20T
— U, diag ()\Ef?e] - Afﬁ) Ul + 2 0,0 + N)
= Uy diag A} U + A\ N,
= U, diag AT, + AP N,
= Go1+ My + 2PN
O

Lemma 10. Let /\f:t) denote ZE:S /\y). Let G, o G, + /\y:t)l, G = ZZ:I M, where each M;

is of rank 1. Let the initial Gy = Gy = 0, then the following relation between Gy and Gy holds for
all t:

t
Gi=Gi+ > AN, .

s=1

Proof. The lemma follows from induction on ¢. Base case Gy = G holds by definition. Suppose
the above equation holds for ¢ — 1. Then,

ét _ Gt + )\§1:t)I = Gt—l + Mt + )\gt)Nt + )\§1:t—1)]—

= étfl + Mt + )\ét)Nt
t—1
=5 Gro1 + 3 AN, + My + AN,

s=1
t
=G+ Y AN,
s=1

where =; follows from Observation 9 and =, follows from induction hypothesis. O

Remark 11. Note that the above lemma immediately provides an approximate isometry Gy =Gy <
G;.

Now, we return to the proof of Thm. 3.

Proof. First, we make the following observation of Algorithm 2:

Observation 12. By specification of Algorithm 1,2, g; € span(G.), Vt.
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We follow the standard AdaGrad [2, 15] analysis. By algorithm specification,

Y1 — 2" =xp — 2" —77G 1/29“

éi/Q(ytﬂ —z") = Gt/2(33t -z ) - nétlmé;l/zgt =1 éim(% - fU*) — NGt
where =; follows from Observation 12.

With standard AdaGrad analysis, we can bound regret Regret, above by the sum of the diameter
bound and the gradient bound:

T
77
72”125 1’*” s1/2_gie 52 |gtHFt—1/2 .

Rp Rg

Note that by algorithm specification, we have V¢,
Gi =G+ pred =1 Gio1 + gig! + 0N = Gy + gig)

where =; follows from the proof of Lemma 10. In particular, Gt > G’t,l.

Using Remark 11, the gradient norm term in the regret bound can be further bounded by
Re UZQJG 1/29t UzgtTG 1/2g <ntr (G1/2> )

where the last inequality follows from Lemma 10 of Duchi et al. [2].2 The diameter norm term in the
regret bound can be bounded by

D? ~1/2
Rp = 72”% -zl 22 g S %tf (GT )

D?
= % o <(GT + Pl:TI)l/Q)

D2
SQ —_— (tI‘ G;/2 + tr(plzTI)1/2) y
2n
where <, follows from monotonicity of G;’s, || - ||op < tr(-) for positive semidefinite matrices, and

linearity of tr(-), and <5 follows from that for X € R, X > 0, tr(X +oI)"/? < tr(X/?) +d\/o.
Combining, we have

d\/prr + tr GY?
Regret, < pl'T% T D? +ntr (G ) <ftr G1/2 +d p;T) ,
where the last equality is established by choosing n = \Qf O

B.4.2 Proof of Corollary 4
Proof. Following the proof of Theorem 3, we have

2 é1/2
Regret, < % + ntr G1/2
n

Denote the accumulated error term

T
E = ZptNt .
t=1

>The FTL-BTL lemma [46] alone is not sufficient to justify this inequality, at least interpreting G~

1/2 as

+
(G 1/ 2) . However, Duchi et al. [2] rely on concavity of X +— tr X 1/2 {0 show a semidefinite version of the
statement.
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Then, by Lemma 10 and sub-additivity of tr ((~)1/ 2) [471,

2

D D?
Regret, < (2 + 17) tr G;/z + —
n

2n

where it remains to bound the last term. Let () be a matrix with column vectors ¢; that forms an
eigenbasis of £'/2; this diagonalizes E as well. Notice that

trEl/Q,

T
g (E) = ZPt%‘Tthl‘ )
t=1

and since
N (E) = (B'2)

7

that we can characterize

d d T V2
o0 tne)”

i=1 =1 \t=1

Denote u; ; = g; N;q;, since N is a rank-(d — /) projection, u¢|l; = d — £. Then tr E1/2 is upper

bounded by the value of the program

d T 1/2
max (Z pt”t,i)

=1 \t=1

d
s.t. Zum‘:d—ﬂ vt e [T] .
i=1

Note that

4 T 1/2
Z (Z ptut,i> <1

i=1 \t=1

d T
d Zzptut,i Z\/a

i=1 t=1

S

T d
> oY ui =2 \Vdprr(d—1)
=1 =1

where <; follows from Cauchy-Schwarz, and =5 follows from the constraint on Zle Ut 5.

Combining, we have

Do 172 —O)py.
Vd(d 5),0217,7T+trGT D+ qteGY? = D (x/itrGlT/QJr d(d €)pm> ’

Regret, <
egret; < 5

where the last equality follows from the choice of step size n = %.

B.5 Proof details for Section 4.2, S-Shampoo
B.5.1 Proof of Theorem 5

Proof. First, we establish the following observation and lemma analogous to Observation 9 and
Lemma 10:

Observation 13 (Analogous to Observation 9). Let V;XLV," = L, | + GG/ be the eigen-
decomposition of the un-deflated sketch, where V; € R™ ™ Suppose rank(XF) = k, where
kell—1,0—1+r]. Write V; = [VtH V-], where V;H contain the first k columns of V;. Then by
definition
- — T
Li+pfI = Loy + GGl +pf V- (V) .
Analogously for the right conditioner, let W;SEW,T = R, + G/ Gy, and write Wy = [WtH Wi,
then
_ ~ T
R+ pitl = Ry_1 + G Gy + pfWi- (W) .
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Lemma 14. (Analogous to Lemma 10) Define NE = V- (th)T ,NE =Wt (W,})T, then

t t t ¢
itEZGsGZ—I—ZpSLNSL-&-EIm ) RtEZGZGs“‘Zp?NSR—i—EIn
s=1

s=1 s=1 s=1

We follow the shampoo proof in [5]. Let z; = vec (X;), g: = vec (G;), where vec (-) denote the
row-major vectorization of a given matrix.

Kronecker product ® obeys the following properties as shown in [5]:

Lemma 15 (Lemma 3,4 in Gupta et al. [5]). For matrices A, A’, B, B’ of appropriate dimensions
and vectors u,v, L € R™*™ R € R"*" G € R™*", the following properties hold:

1. (A® B)(A'® B") = (AA") ® (BB').
2. (AeB)T =AT®@B'.
3. AB=0,(A®B)'=A"1@ B L
4 A- A B> DB, thenA® B+ A ® B
5. tr(A® B) = tr(A) + tr(B).
6. W(uvT) =u® .
7. (L® RT)vec (G) = vee (LGR).
Then the shampoo update is

Ti41 = Ty — 77@%/4 ® Rtl/z;)*lgt

Let H 1/ 4 ® Rl/ * then by Lemma 15, f{t is monotone increasing with ¢, since it and Rt are
monotone by Observatlon 13. Thus, by standard analysis [15] for Online Mirror Descent (OMD), we
can break down the regret into the diameter bound and the gradient bound:

Regret; < Rp + R, where

T T
1 n
= 5 2 (e =2, =l =713, ) Be =3 > (laelz,)”
t=1 =1
We proceed to bound Rp and R separately. For Rp,
1 T
< 5 Z} e — 2™, g, , + lox — 2",
t=
1 &K - -
< om D H = Heallopllwe — ¥ |3 + oy — 2711,
T ~ ~
> wr(H, — Hyy) + |2y — =%,
where <; holds since H,’s are increasing in ¢, and we have for positive semidefinite matrices

tr(-) = [ - [lop-
Now we try to bound R¢. First, we have that
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Lemma 16 (Lemma 8 in Gupta et al. [5]). If G € R™*" with rank at most r, and g = vec (G), then
Ve >0, Vt,

1 t ¢ 1/2 t 1/2
elmn + > gs9) = (slm +y° GSGI> ® <€In +)° GIGS> .
s=1 s=1

s=1

Define M € R™>*™ MFE ¢ R™ " by

t
LdefZG GT-i-ZpLNL—FaL,“ Mthéfz:G;r +ZpRNR+5In,

then by Lemma 14, ) .
Ly= ML, R = ME .
Observe that in addition,

t
ML>5L,L+ZGG s M -el, +) GG, .
s=1 s=1

Again by Lemma 15,

t t
In® (eIn +y GZGS> = I ® MY, (eIm + ZGSGZ> ® I <M @I,

s=1 s=1

Combining, we have

el + - nggs < 1/2 (MtR)l/Q jii/2®ét1/2.

Define H; > 0Vt € [T] by

t 1/2
o def -
H, = (Tglmn + nggz> = \/;Ht .
s=1

The bound on R depends on the following lemma:

Lemma 17 (Lemma 2 in Gupta et al. [5]). Consider a sequence of vectors {g;}1_,. Given a function
®(-) over positive semidefinite matrices,

T T
S Ulgelizn)” <D (lgellie, ) + @(Hr) — (Ho) |
t=1 t=1

where

H>0

¢
H; = argmin { <Z gsg;r> CH™ '+ @(H)} .
s=1
Let ®(H) o tr(H) + retr(H ') and since
¢
argmin { (Z gsg;r> CH 4 <I>(H)} = argmin {tr(f{EH_l + H)} = H ,
H»0 = H»0

the above lemma gives

T

> (o) < 3 (loell, )+ @(r) - @(f) < 20x(fir) |

t=1 t=1
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which by inequality of H, and H, established above, gives

2 2

t=1

T T
def 1) < \2_ T « ) ; 3
Ra = 23 (ool ) < B> (llgely, ) < nv/rte(Hir) < nrta(fr) -
t=1

Combining the bound on Rp and R, the overall regret is

2 ~ ~ ~ ~
Regret;, < Rp + Rg < <§ + 777") tr(Hr) = V2rDtr(Hr) = V2rD tr(L1T/4) tr(R1T/4) .
n

by the choice of n = \/% and trace multplicative equality in Lemma 15. Finally, we have

() <o (28 e (o))

T 1/4
<, tr (Z GtG;r+€I> +m (pkp)

t=1
= o (L) m (o)

where <; follows from definition of L in Algorithm 3 and subadditivity of tr ((-)1/ 4) [47], <,
follows from Remark 11. Similarly,

tr (R;M) <tr (R;M) +n (pﬁ‘T) e .

B.5.2 Proof of Lemma 14

Proof. We will show the first inequality as the second inequality holds analogously. For ¢ = 0,
Ly = eI, by definition of algorithm. Suppose the first inequality holds for ¢. Consider ¢ + 1:
Liyr = Lesr + plyprIm
=1 Li + GGl + pai Neva + pligIm

= IN/t + Gt+1G:+1 + PtL+1Nt+1
t+1 t+1

=2 ZGSGZ + ZPSLNSL +5Im )
s=1 s=1

where > follows from Observation 13 and > follows from induction hypothesis. O
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Table 4: The search space for hyperparameters for tuning Shampoo on our NN architectures for the
Kronecker-factored covariance optimization. Note that the search space explores one less momentum,
not momentum directly. Label smoothing was only applied to ImageNet. We sample uniformly either
from linear or logscale among the ranges specified with 100 trials, and select the best one according
to validation accuracy.

Hyperparameter Range Log scale?
Learningratep  [10~%,1077] v
Weight decay [1072,1] v

Momentum 1 — 3;  [1072,107!] v
Label smoothing [0,0.2]

C Training Settings

For repeatable, standard evaluation on modern, competitive tasks we use init2winit [48] for Jax
[49] implementations of architectures in Flax [50] and standard dataset preprocessing built on top of
TFDS [51]. We rely on standard scientific packages for conducting our work [52, 53, 54, 55]. Our
source code will be released after publication.

Neural net architecture settings are taken from the default settings of the init2winit library at hash
e337ffe [48], which reference the MLCommons specifications provided at MLCommons(®) open
engineering consortium [56], including the MLPerf ResNet-50 variant [57], Conformer, and GNN.
The Distributed Shampoo implementation was run at hash 83e6e62 in the repository referenced by
Anil et al. [9].

Throughout, weight decay is applied using its decopled variant [58].

We requested a Shampoo tuning script from Dayma and Anil [59], Anil et al. [9], which fixed several
parameters for Shampoo outside the usual defaults. We tuned on a cluster of TPUv4s, with 16
TPUv4s per trial in data-parallel mode.

e Block size was already set to 1024. As mentioned in Sec. 5.2, we kept this change for
consistency in covariance factor size across architectures.

e Preconditioning was set to start 101 steps into training (start_preconditioning_step).

e Preconditioners were updated every 10 steps instead of every step for speed
(preconditioning_compute_steps is 10).

e The grafting type, which controls the per-tensor learning rate schedule, was set to
RMSPROP_NORMALIZED, which applies RMSProp [60] over unit-normalized gradients.

e moving_average_for_momentum was activated (so the final updates are computed as
B1pt + (1 — B1)ge, where p; is the momentum term and g is the preconditioned update.

e The virtual batch size, used to compute batch norm statistics, was set to 32 (the full per-step
minibatch size was 1024, but this enables data-parallel training).

Also from the provided script, we used a linear warmup rampup starting from 0 to the nominal learning
rate hyperparameter setting, followed by a cosine decay schedule, with the transition happening 5%
of the way into training (the learning rate monotonically increases, then montonically decreases, as
the cosine schedule has a quarter-period set to the number of training steps).

Then, we performed tuning using random hyperparameter search over the space defined in Tbl. 4.
‘We ran the batch sizes and number of steps provided in the scripts, which were 256, 512, 1024 for
Conformer, GNN, and ResNet-50, respectively, for about 162, 117, 199 epochs, respectively.

Shampoo is automatically configured with grafting parameters, which we search over [61].

D ResNet-50 Settings

For training ImageNet, we mostly inherited the settings of Appendix C for Shampoo tuning, but made
some minor modifications, namely adding of the second moment decay (83), widening the search
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Table 5: The search space for hyperparameters for tuning Shampoo on our architectures for ImageNet
hyperparameters. The same space was applied to S-Shampoo with a fixed sketch rank ¢ = 256 for
all tensors. Note that we search 1 — 31,1 — (33, and not the original hyperparameter. We sample
uniformly either from linear or logscale among the ranges specified with 256 trials, and select the
best one according to validation accuracy. (*) stands for a discrete uniform choice over four different
grafting rates, based on AdaGrad, RMSProp, and normalized versions of the two. The gradient
clipping norm is similarly discrete.

Hyperparameter Range Log?
Learning rate 7 [107%,1077] v
Weight decay [1073,0.1] v
Momentum 1 — 3; [1074,1071] v
2" moment 1 — £, [107%,1071] v
Label smoothing [0,0.2]
Dropout Rate [0,0.2]
Grafting Type (*)

Gradient Clip Ly~ {1,10,10% 10%}

Table 6: The search space for hyperparameters for tuning Adam on our architectures for ImageNet
hyperparameters. The same caveats as in Tbl. 5 apply. Also tuned with 256 trials.

Hyperparameter Range Log?
Learning rate 7 [10=%,1077] v
Weight decay y [1072,0.1] v
Momentum 1 — 3; [107%,1071] v
2" moment 1 — S35 [107%,1071] v
Label smoothing [0,0.2]
Dropout Rate [0,0.2]

Warmup Duration  [2%, 10%] of training
Gradient Clip Lo {1,10,10%,10%}

space, and, for computational reasons, performing a shortened run of only 66 epochs for tuning trials.
The architecture details remain the same. The learning rate schedule was stretched to this interval, so
warmup was still 5% of the duration, and cosine decay ended learning rate at O by the end of the 66
epochs of training. The full search space is elaborated on in Tbl. 5.

To tune Adam, a first order method, we considered mostly the same nominaly hyperparameters
(where (3 refers to second moment momentum now), except grafting, which instead we replaced
with a search over the warmup duration, summarized in Tbl. 6.

Full evaluation of the selected best hyperparameters for each setting was performed with the classical
90-epoch setting, with the learning rate schedule correspondingly stretched.

We provide the full training curves in Fig. 5.

E Conformer Settings

The Conformer architecture was used from the MLCommons specification as described in Appendix C,
with the following fixed additional settings: 1024 batch size, 100 epochs of training, 5% of training
used for linear warmup with cosine decay of learning rate. We fixed gradient clipping at a value of 10,
without which we noticed Adam curves were very volatile. We set the eigh parameter for Shampoo
to true (we found that it did not make a difference in a few sample runs’ loss curves, as an alternative
to the iterative p-th inverse root routine in Shampoo, but used it instead since we believe it has better
numerical stability). The hyperparameters we searched over for all optimizers are described in Tbl. 7.
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Figure 5: Full test set curves for imagenet.

Table 7: The search space for hyperparameters for tuning Shampoo, Adam, and S-Shampoo for
Conformer with fixed 256 rank. Here we fixed the grafting type to be RMSProp. During initial runs
of the baselines, we noticed that Adam preferred larger learning rates, so we changed and reran its
space for 7 to be 10x that of Shampoo, namely [10~%, 1072, still searching over logspace. We also
stopped any hyperparameter trial which did not go below 0.875 WER after 5000 training steps.

Hyperparameter Range Log?
Learning rate 7 1 |V
Momentum 1 — 51 |1 |
2" moment1 — B, [1073,1071] v
[1 |

v

Weight decay v
Dropout Rate [0,0.2]

F GNN Settings

The GNN architecture was used from the MLCommons specification as described in Appendix C,
with the following fixed additional settings: 1024 batch size, 30 epochs of training, 5% of training
used for linear warmup with cosine decay of learning rate, 0.05 dropout, and we set the eigh
parameter for Shampoo to true as in Appendix E.

Then we searched a hyperparameter space for Shampoo, Adam, and S-Shampoo as described in
Tbl. 8.
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Table 8: The search space for hyperparameters for tuning Shampoo and S-Shampoo for GNN with
fixed regularization settings (due to resource constraints, we only ran 128 samples from the grid
here). Here we fixed the grafting type to be RMSProp and did not use gradient clipping, unlike Tbl. 5,
based on a few trial runs of the Shampoo baseline from which we determined we could reduce the
hyperparameter space.

Hyperparameter Range Log?

Learning rate 7 [10-%,107%] v
Momentum 1 — 3;  [1073,0.5] v
2" moment 1 — B [1073,0.5] v

Weight decay [1073,0.5] v
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G Step-skipping

In this section, we provide some theoretical justification for step-skipping. We first derive the regret
bound of AdaGrad with step skipping, named Generic Epoch AdaGrad. The additional regret incurred
is expressed as an error term. Then, we describe a setting where the error term admits a simple bound,
showing that step-skipping incurs at most an extra log 7" time dependence on the regret.

G.1 Adversarial losses

Consider a generalized epoching AdaGrad with K fixed update points ¢, such that £, = 0 and
tg =1T.

Algorithm 5 Generic Epoch AdaGrad

1: Input: n, 7T, {tk}szl , Go > 0, convex closed set K.
2: Initialize: x;.
3. fork=1,...,K —1do

4: fort=1tp+1,--- ,tg41 do

5: Play x4, receive f; loss with gradient g,.
6: Update Gy = Gy—1 + 9:9; -

7: Update x441 = Uiz — nGt_k_l/Qgt].

8: end for

9: end for

Theorem 18. Generic Epoch AdaGrad (Alg. 5) with fixed update points {tk}le satisfies

D2 us
Rr<—uwG?+ 220G’ 206"+ a | .
N 2 k=1

where the error terms €y, are given by
e =t (G, 250G, Ay )

Sk = /000 exp (—TGikﬂ) Aj exp (—TG%]C/Q) dr

Ak = Gtk_Jrl - Gtk .

Proof of Theorem 18. First we start with the usual decomposition.

Lemma 19. Consider arbitrary adversarial convex losses f;. Without projection, the regret Ry
relative to a comparator x, with D = max ||x; — x.||,, for generic epoch AdaGrad with fixed
update points ty, is given by

D2 n K trt1
1/2 —1/2
RTS—trGT/ +§Z Z gtTGtk/gt.
N k=1t=tg+1

Proof of Lemma 19. This follows from the usual AdaGrad analysis since our preconditioners are
monotone Gy, = Gy, ;. O]

So we must turn our attention to the gradient bound. We start by noting the following lemmas
established in matrix analysis.

Lemma 20 (Corollary 4.1 in [62]). The map f(X) = X —1/2 is matrix convex over the positive
definite domain; i.e., for any two matrices A, B > 0 and any 0 € [0, 1], we have

0f(A)+(1—-0)f(B) = f(0A+ (1-0)B) .
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Lemma 21 (Theorem V.3.3, Exercise V.3.15 in [63]). Suppose a matrix convex function F(X) is
induced by applying f pointwise to its spectrum F(X) = U diag[f(A;;)|UT with f € C*(I) for
some I C Ry. Then

F(X)+0F(X)(A) X F(X+A),

if and only if F'(X) is matrix convex, and the linear transformation OF (X) is the derivative of F at

Matrix derivative computation [64, 65] shows that if F'(X) = X ~!/2 then
AF(X)(A) = —X~1/2 [(XW ® XU IA]l X712

where (X1/2@ X1/2)~1 A is the solution S to the continuous Lyapunov equation v X S+ SvX = A
as XPX =I®X+X®I. For X > 0, it is known from generic results about Sylvester’s equation
that the solution S is unique. Since —X is asymptotically stable in the Lyapunov sense,

S(X,A) = /000 exp(—7VX)Aexp(—mvVX) dr

With these results from matrix analysis and linear systems, we are ready to bound the gradient term
in Lemma 19. Consider a single term from the gradient bound in Lemma 19, Zi’ﬁ; +1 g G;ﬂl/ %0,
for fixed k.

With X = Gy, A = A, = Gy, — Gy,, and f(X) = X~Y/2 consider applying Lemma 21.
F(X) < F(X + Ay) — OF(X)(Ag), so overall

tet1

—1/2
S 06 e

t=tg+1

tht1

< Y ol |G- or @) A0)] 0

t=tp+1

trp41 tht1
= > 66 gt <8F<Gtk><Ak> > gl )

t=t;+1 t=t+1

tr41

= Y gtTGtM gt — tr (OF (G, ) (Ax) Ax)
t=ts+1

tr41

=Y 46 e (G;j/ 285Gy 2Ak)
t=tr+1

te+1

—1/2
S w6 e ten
t=tr+1

Lemma 22 (FTL-BTL with errors). Consider arbitrary ¢y for k € 0,1,--- /K. Let x, €
argmin Z?:o ¢ and suppose ¢r(xi—1) < ¢p(xk) + 0. Then VK,

K
Z¢k Th—1 SZ (zr) + 0k ,
— k=0

with §g = 0 and x_1 = x.

Assume Lemma 22 and take ¢y (X) = (Ag, X) for X = 0 and ¢o(X) = (Go, X) + tr X 1. Note
that

k k
D oi(X)=tr X1+ (45, X) .
§=0

Jj=0
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In particular, G;ki/lz = argminy, g Z?:o ¢;(X).

Furthermore, with 0;, = €y, the condition ¢ (G, ) < ¢r(Gy, ., ) + % is satisfied. Lemma 22 implies
Ktk

K-1
>3 a6 = Y e (6
k=1

k=1t=tr+1

= —00(G )+ Y o (65,17)

where G, def G). Lastly, since

K-1

K—-1
—1/2 1/2 —1/2 1/2
> o (6r) =G o (GT/ k§70j Ak> —2tr GY2,

k=0

we conclude with the desired bound for Rr. O]

Proof of Lemma 22. By induction on K. For K = 0, ¢g(z_1) = ¢o(x0), holding by definition.
Suppose that the hypothesis now holds for K; it then holds for K + 1.

K+1 K
D onleri) =Y k(@) + drr (@ria)
k= k=
0 0 N
> dra(eri) + ) on(eK)
k=0
K
> ¢ (Tr) = €1+ ) drlex)
k=
KO
> ¢k+1(TK) — €xt1 + Z br(TK—1) — €k
k=
e 0

> Z Or(xp—1) — €K
k=0

G.2 Simplifying the error

We want to simplify the term €, which is given by
€ = tr (thcl/ZSkG;cl/QAk) )

_ ~ 1/2 1/2
Sy = /0 exp (*TGtk ) A exp (*TGtk ) dr,
Ap =Gy, — Gy, -

Next, notice that X and exp (faX ’1) commute. Then along with linearity of trace, we can
established that
o0 2
€ = / tr [(exp (—Tthf) thkl/zAk) } dr .
0
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G.3 Towards simpler error

€x can be further simplified and bounded under additional assumptions. Namely,

Assumption 1. Suppose that w.p. at least 1 — § /2K for some fixed, universal 3 > 0, we have the

inequality Ay, < BGy, where Ay, d:efGtHl — Gy,-

Assumption 2. Suppose that w.p. at least 1 — § /2K, Gy, ’s are (0min, Omax)-Well-conditioned, i.e.
)\d(Gtk) Z Umintk and )\1 (Gtk) S Umaxtk-

Remark 23. As an example, consider the stochastic linear setting where at each iteration we receive

a loss function (g, z), and g;’s are independent, though not necessarily identically distributed,
and satisfies that 20,11 =< E[gig, | = Zmex [ and || g¢l|2 < /%% almost surely. Then, for T

sufficiently large and t51 — t,, = O(logT'), by matrix Chernoff bounds Assumption 1 and 2 are
satisfied.

First, VX, Y > 0, the following inequality hold:

Lemma 24. If X <Y and A = 0, then tr [(AX)Q} <tr [(AY)Q]

With Lemma 24, we can bound €. With probability at least 1 — § /2K,

€r = /oo tr {(exp (77‘Gi£2) Gt_kl/zAk>1 dr
0
< p? /OOO tr {(exp (—TG,}]C/2) Gtkl/zGtkf} dr
= p? /000 tr [(exp (—TG;]C/Q) Gif)Z] dr
=p3? /000 tr (exp <—27‘G2k/2> Gtk) dr ,

where the last step only holds since X and exp (fozX -1/ 2) commute.

Next, let A; denote the i-th largest eigenvalue and A\_; be the i-th smallest. Notice since
exp (77‘Gik/ 2) , Gi k/ * and G, . are simultaneously diagonalizable, and montonic matrix functions

preserve eigenvalue ordering, we have

Ai (exp (*QTG;C/Q)) = exp (727)\_1- ((Gtk_)l/Q)) ,
Ai (exp (—2TG%,{2> Gtk) =\ (exp (—QTthk/z)) Ai (Gy,) -

Returning to our €5 bound, rewriting the trace with eigenvalues, we have w.p. at least 1 — § /2K,

@ 3 o (2r6i) ) a
= p? Z Ai(Gy,) /Oo exp (—ZTA_i(Gtk)1/2> dr
i 0
G
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where <; follows from Tonelli’s Theorem. At this point, we apply Assumption 2 and get that w.p. at
least 1 — §/ K,

62
% = o 2
52
= Vv tkOmin Z

_ 52 Omax Z)\i(Gtk)l/z

Omin

:ﬂQ /Umax tr G1/2 .
Omin

Across all epochs, we then have w.p. at least 1 — 9,

Omin 1/2 1/2
< trGy " <logTtrGp~ .
—51/ - E €k E T og T tr

Altogether, since 3 is a universal constant, w.p. at least 1 — §,

D2 [ Omax
RT 5 7 tr G;/Q + Ui Zi lothr G;—/Q .

We conclude that in this case, the time dependency of Epoch AdaGrad’s regret is only log T" factor
worse than that of the original AdaGrad regret.

(tkamax)l/z)\i (Gtk )1/2

G.3.1 Proof of Lemma 24

First, for0 < X <Y, BXB < BY B, VB, since (Bac)T(Y — X)(Bz) > 0, Vz. By cyclic property
of trace and taking B = A'/2X,

tr (AXAX) = tr (Xl/QAXAXl/Q) < tr (Xl/QAYAXW) .
Continuing,

tr [ } tr X1/2AYAX1/2)

IN

tr Y1/2AYAY1/2)

7]

(

tr (Y1/2AXAY1/2)
(
4y

tr
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