
A More Implementation Benchmarks422

Figure 5: Forward mixed (d/dx1dx2...dxk)
partial derivative computation speed, 3 layers
MLP

Figure 6: Forward mixed (d/dx1dx2...dxk)
partial derivative computation speed, 4 layers
MLP

As the number of MLP layers increases, the low order derivative computation becomes faster (relative423

to PyTorch naive implementation), where as the higher order derivative computation becomes slower.424

This is because our implementation uses the Python for loop. Our implmentation is faster than the425

baseline in most of the case.426

Figure 7: Forward + Backward mixed
(d/dx1dx2...dxk) partial derivative compu-
tation speed, 3 layers MLP

Figure 8: Forward + Backward univariate
(d/dx1dx1...dx1) partial derivative computa-
tion speed, 3 layers MLP

When considering the backward time as well as the forward time, our implementation is still steadily427

faster than the baseline. It is worth noting that our method is even faster when calculating univariate428

partial derivative instead of mixed partial derivative, because the number of python for-loop iterations429

is small.430

B STSC and ST-Hawkes Introduction and Simulation Parameters431

We use the same parameters as Zhou et al. [2022].432

The STSCP’s and the STHP’s kernels g0(s) and g2(s, sj) are prespecified to be Gaussian:433

g0(s) :=
1

2π
|Σg0|−

1
2 exp

(
−1

2
(s− [0, 0])Σ−1

g0 (s− [0, 0])T
)

g2(s, sj) :=
1

2π
|Σg2|−

1
2 exp

(
−1

2
(s− sj)Σ

−1
g2 (s− sj)

T

)
The STSCP is defined on S = [0, 1]× [0, 1], while the STHP is defined on S = R2. The STSCP’s434

kernel functions are normalized according to their cumulative probability on S. Table 3 shows the435

12

simulation parameters. The STSCP’s spatial domain is discretized as an 101× 101 grid during the436

simulation.437

Table 3: Parameter settings for the synthetic dataset
α β µ Σg0 Σg2

ST-Hawkes DS1 .5 1 .2 [.2 0; 0 .2] [0.5 0; 0 0.5]
DS2 .5 .6 .15 [5 0; 0 5] [.1 0; 0 .1]
DS3 .3 2 1 [1 0; 0 1] [.1 0; 0 .1]

ST-Self Correcting DS1 .2 .2 1 [1 0; 0 1] [0.85 0; 0 0.85]
DS2 .3 .2 1 [.4 0; 0 .4] [.3 0; 0 .3]
DS3 .4 .2 1 [.25 0; 0 .25] [.2 0; 0 .2]

C Model Setup Details438

We list out the detailed hyperparameter settings in Table 4. The same set parameters are used across439

all datasets, except the learning rate. This demonstrate our model is robust to hyperparameters.440

Name Value Description

Optimizer Adam -
Learning rate - Depends on dataset, [0.0002, 0.004]
Momentum 0.9 Adam momentum

Epoch 50 / 100 50 for synthetic dataset and 100 for real-world dataset
Batch size 128 -
Activation tanh Activation function in L and M (intensity parameter networks)
nprodnet 2 / 10 Number of product nets to sum in L and M

2 for synthetic dataset and 10 for real-world dataset
bias true L and M use bias in their linear layers

Table 4: Hyperparameter settings for training AutoSTPP on all datasets.

D Forward-pass Algorithm for Automatic Integration441

Function: dnforward(f, n, x, dims), partition(n, k) finds all k-subset partitions of n

Data: n, dimension of f(x), x, a tensor of shape (batch, dim),
dims, list of dimensions to derive, layers, composite functions in f
Result: ddimsf/dxdims

Initialize dictionary dnf, mapping from dims to ddimsf/dxdims, empty list pd
if dims is one dimensional then

Compute f(x), store intermediate outputs to dictionary
pd← [all zeros but one at deriving dimension]

else
for subdims ∈ combination(dims, len(dims)-1) do

Call dnforward(n, x, subdims), store intermediate outputs to dictionary
end
pd← [all zeros]

end

442

13

for layer ∈ layers do
if layer is linear then

pd append last pd ×WT , W is the linear weight
else if layer is activation then

if dims is one dimensional then
termsum← last pd × activation first order derivative with input f

else
termsum← 0
for order ∈ 0... len(dims) do

if order = 0 then
term← last pd

else
term← 0
for part ∈ partition(dims, order + 1) do

temp← 1. for subdims ∈ part do
temp← temp × dictionary value for key subdims
term← term + temp

end
termsum← termsum + term

end
end
termsum← termsum × activation nth order derivative with input f

end
end

pd append termsum
end
return last pd

E Universal Approximation Theorem for Derivative Network443

Consider an AutoInt integral network with the form

g(x) = C · (σ ◦ (A · x+ b)), A ⊆ Rk×n, b ⊆ Rk, C ⊆ Rk

where σ denotes a R→ R continuous non-polynomial function applies elementwise to each compo-444

nent of input.445

The derivative network thus takes the form

g′(x) = C · (σ′ ◦ (A · x+ b) ◦Acol),

where Acol ⊆ Rk is a column of A that corresponds to the deriving dimension.446

Recall the universal approximation theorem [Daniels and Velikova, 2010], which says for every
compact K ⊆ Rn and f ∈ C(K,R), ε > 0, there exist A, b, C such that

sup
x∈K
∥f(x)− g(x)∥ < ε

Proposition E.1. (Universal Approximation Theorem for Derivative Network) for every compact447

K ⊆ Rn and f ∈ C(K,R), ε > 0, there exists A ∈ Rk×n, b ∈ Rk, C ∈ Rk, β ∈ R such that448

g(x) := C · (σ ◦ (Ax+ b))− βx

sup
x∈K
∥f(x)− g′(x)∥ < ε

Proof. Given the mapping f , by UAT there exists A, b, C that approximate f(x). Construct C̃ ∈ Rk

and β ∈ R, such that

C̃j =

{
Cj/Acol,j , Acol,j ̸= 0

0, Acol,j = 0
, and β =

∑
j|Acol,j=0

Cjσ(bj)

Then,449

14

sup
x∈K
∥f(x)− C · (σ ◦ (A · x+ b))∥

= sup
x∈K

∥∥∥∥∥∥f(x)−
k∑

j=1

Cj(σ(Aj · x+ bj))

∥∥∥∥∥∥
= sup

x∈K

∥∥∥∥∥∥f(x)−
k∑

j=1

C̃j(σ(Aj · x+ bj)Acol,j)−
∑

j|Acol,j=0

Cjσ(bj)

∥∥∥∥∥∥
= sup

x∈K
∥f(x)− C̃ · (σ′ ◦ (A · x+ b) ◦Acol)− β∥,

Note that C̃ · (σ′ ◦ (A ·x+ b) ◦Acol)−β =
d

dxcol

(
C̃ · (σ ◦ (Ax+ b))−βx

)
, which is the derivative450

net of a two-layer feedforward integral network.451

F Relationship between Number of ProdNets and Model Expressivity452

Figure 9: Training MSE for fitting a positive derivative network to sin(x) cos(y) sin(z) + 1

We applied ten summations of positive ProdNets to fit the non-multiplicative-decomposable function453

sin(x) cos(y) sin(z) + 1. Each ProdNet consisted of three MLP components, each with two hidden454

layers of 128 dimensions. All models were trained with a fixed learning rate of 0.005.455

Our results, shown in Figure 9, indicate that increasing the number of ProdNets generally improves456

the model’s performance in fitting the non-decomposable function. The model with the best MSE was457

produced by using 10 ProdNets, while the model with 2 ProdNets had the second-worst performance.458

This is intuitively sensible, as more linear terms are typically required to precisely express an arbitrary459

function. However, we observed that employing more ProdNets does not always lead to better460

performance, as demonstrated by the model with 8 ProdNets.461

15

	Introduction
	Related Work
	Methodology
	Spatiotemporal Point Process
	AutoInt Point Process
	Automatic Integration (AutoInt)
	AutoInt Point Processes as Consistent Estimators
	Triple Automatic Integration
	Imposing the 3D Non-negativity Constraint
	Model Training

	Experiments
	Experimental Setup
	Results and Discussion
	Implementation Benchmark

	Conclusion
	More Implementation Benchmarks
	STSC and ST-Hawkes Introduction and Simulation Parameters
	Model Setup Details
	Forward-pass Algorithm for Automatic Integration
	Universal Approximation Theorem for Derivative Network
	Relationship between Number of ProdNets and Model Expressivity

