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S0. Contents of Supplementary Materials
The supplementary zip folder contains the following:
• A PDF document providing additional details on our

method, including training specifics, and extended visu-
alizations of our results.

• A video folder showcasing animations of our results.
• A link to our project page https://sangluisme.
github.io/TwoSquared/.

S1. Training and Inference Details
TwoSquared (ours). Given a pair of images, we use Hun-
yuan3D [50] for obtaining their 3D reconstruction. It first
encodes each image into a latent space and then decodes
each code into a Signed Distance Field (SDF) to gener-
ate a textureless mesh using marching cubes. Finally, a
high-resolution texture is added to the generated mesh us-
ing the texture painting module conditioned on the input im-
age. This whole process of obtaining textured meshes takes
around 3 minutes per input image. Then we downsample
the mesh to around 4000 vertices and use Diff3F [11] to
compute the feature for each vertex. This procedure takes
5 minutes per frame. We feed the per-vertex feature to our
correspondence-estimation block to get one-to-one corre-
spondences, which takes around 1 minute. Then we train
our Velocity Net for 8,000 epochs, which takes less than

2 minutes. Therefore, each pair of inputs takes roughly 17
minutes to train. Our velocity field is continuous in time,
and inference can happen at arbitrary numbers of steps with-
out retraining. The inferring time to generate a mesh takes
less than 1 second. To infer the higher frame rates, we sug-
gest using T → < 2T to ensure satisfactory results.
DiffMorpher [64]: The morphing method takes two in-
put images and text descriptions to obtain a morphed se-
quence between source and target, taking 2 minutes to ob-
tain the intermediate images. Then, the generated images
of each timestep are fed through the 3D reconstruction net-
work. We remark that 3D reconstruction takes 3 minutes,
making this technique particularly slow at inference. In to-
tal, 20 minutes are needed to obtain deformed 3D shapes in
6 timesteps.
DreamMover [43]: The image morphing method takes 5
minutes to interpolate a pair of images. Same as DiffMor-
pher [64], this method leverages a pre-trained text-to-image
diffusion model and also requires a text prompt. The re-
sulting sequence of images is then fed to Hunyuan3D [50],
which takes 3 minutes for every frame. In our experiments,

it requires 23 minutes in total for a sequence of 5 timesteps.
V2M4 [6]: Given a single monocular video, V2M4 can
work in two ways: (i) using the entire video, where it pro-
cesses each frame to obtain a 4D animation, or (ii) using
only keyframes, where it processes the selected frames and
then applies linear interpolation on vertex positions to gen-
erate the skipped frames in 3D. To compare our results with
V2M4, we use the Consistent4D dataset [17], which con-
sists of monocular videos of 32 frames, as well as selected
sequences from 4D DRESS [53]. Following V2M4’s pre-
processing guidelines, we split the videos into 2D frames
and then remove the background. Since their methodology
is designed to work with different 3D generative backbones,
for a fair comparison, we adopt Hunyuan3D [50], which
they claim achieves the best results. Moreover, we chose
VGGT [52] for dense stereo reconstruction, as suggested
in their work. When V2M4 takes the entire video as input,
their method requires approximately 1 hour and 40 minutes.
In the keyframe setting with 7 keyframes, it requires about
50 minutes. Given that their methodology uses advanced
processing techniques such as 3D mesh generation, dense
stereo reconstruction, camera search, shape alignment and
registration, and global texture map synthesis and optimiza-
tion, they require a GPU with at least 40GB of memory.
Our method (other than satisfying the requirement for run-
ning Hunyuan3D [50] and DIFF3F [11]) only needs 2 to 4
GB of memory.

S2. Multi-pairs Training and Inferring
Training. As shown in Fig. S.1, if more than two
keyframes are available, our work can be easily extended
to work with multiple pairs. We obtain 3D meshes and
per-vertex features, the same as dealing with a single pair
to form the training data. Further, we extract the one fea-
ture vector per mesh F̂i → R1↑f from the feature Fi

we obtained using [11]. Then we concatenate the fea-
ture vector to the point coordinates and feed to our defor-
mation block., i.e., the training data we use has the form
{{{P0, F̂0}, {P1, F̂1}}, {{P1, F̂1}, {P2, F̂2}}, . . . }.
Inferring. In a multi-pair case, there are two inference
methods. The first is to evaluate the trained model per-pair,
i.e., start with each generated high-resolution mesh and only
deform within the current pair. That is, deform from S0 un-
til t = 1, start from S1 again, deform until t = 1, etc. This
approach best preserves the deformation. However, to most
effectively stay geometrically consistent, our method also
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Figure S.1. Multi-pair Pipeline of TwoSquared: Given multiple key frames input, we first generate a mesh for each image, then we
compute pair-wise sparse correspondences between mesh pairs. During training, we iteratively train over pairs. Different from the single
pair case, in the multi-pair case, we concatenate the extracted per-shape feature to the point coordinates and feed it to our deformation
block.

supports inferring using the starting mesh S0. From S0 de-
form until t = 1 and directly using the deformed mesh to
replace S1 and deform until t = 1, hence the geometry and
texture of the initial frame are carried consistently through-
out the deformation.

S3. Correspondences Estimation Ablation
We propose to downsample the generated mesh, then es-
timate the correspondences on low-resolution meshes. In
this section, we show that downsampled meshes not only
accelerate the processing time but also lead to more ac-
curate correspondence estimation and eventually lead to
better results. We first show the correspondence quality
on Fig. S.2. In Fig. S.3, we obtain the correspondences in
high-resolution (HR) mesh (around 20k vertices) and sam-
ple from high resolution mesh to form the training point
cloud, then we evaluate the model on the high resolution
meshes to get the textured mesh deformation (first row), we
also show the tracked point cloud on the second row. Next,
we obtain correspondences on a low-resolution (LR) mesh
(around 4k vertices) and sample from the low-resolution
mesh to form the training point cloud. Then we infer di-
rectly on the high-resolution mesh to get the deformed, tex-
tured meshes (third row) and the tracked point cloud (fourth
row). The results indicate that obtaining correspondences
on a low-resolution mesh does not hinder the performance,
but even improves the result. Intuitively, the local geome-
try produced by the generative backbone cannot be reliably
matched between the two shapes, while we are more inter-
ested in a structural alignment.

S4. More Quantitative Evaluation
For sequences where the ground-truth intermediate shapes
are not available, we evaluate the generated results using
two geometric measurements. The first is the mesh area
standard deviation SAω, as introduced in the main paper.
The second is the geodesic distance deviation dgeoω. Since

Correspondences estimated on HR meshes Correspondences estimated on LR meshes

Figure S.2. Correspondences visualization: We visualize corre-
spondences we obtained using a high resolution (HR) mesh (left)
and a low resolution (LR) mesh. On high-resolution meshes, the
vertices are too clustered, which hinders the functional map opti-
mization step. While on low-resolution (LR) meshes, the vertices
are sparser, and it is easier to match similar features.
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Figure S.3. Mesh resolution ablation: We show the qualita-
tive results on correspondences estimated on different resolution
meshes. The first two rows are results that we obtain from cor-
respondence on high-resolution (HR) meshes. The last two rows
are results that we obtain from correspondence on low-resolution
(HR) meshes. Downsampling the mesh to estimate correspon-
dences not only accelerates the process but also improves the cor-
respondence quality that eventually leads to better results.

both methods generate mesh sequences with preserved ver-
tex order, we compute the geodesic distance matrix for



Seq. Method time (per pair) CD (→103) ↑ HD (→10) ↑ SAω(→10) ↑

Take19 HR mesh → 12 min 3.802 1.998 0.196
LR mesh → 1 min 1.451 1.996 0.201

Take2 HR mesh → 12 min 1.359 0.398 0.129
LR mesh → 1 min 0.924 0.267 0.120

Table S.1. Quantitative ablation on mesh resolution: We show
the effect of estimating correspondences using different mesh res-
olutions. Estimating on a low-resolution mesh not only speeds up
the process but also improves the results.

each mesh, measure the standard deviation at each vertex
across the sequence, and then average over all vertices.
The intuition is that under isometric deformations, geodesic
distances on the mesh should perserved. Therefore, a
smaller dgeoωindicates better preservation of geodesic dis-
tances throughout the generated sequence. We report the
value in Tab. S.2. Note that the results for V2M4 [6] are
obtained using the full video input, whereas our results are
produced using only sparse keyframes.

Seq. V2M4 [6] Ours
dgeoω(→10) ↑ SAω(→10) ↑ dgeoω(→10) ↑ SAω(→10) ↑

idling elephant 0.139 1.020 0.156 0.171
flying ironman 0.187 0.234 0.115 0.159
pecking blue jay 0.143 0.345 0.153 0.216
astronaut 0.152 1.272 0.158 0.292
triceratops 0.158 0.830 0.029 0.037
dancing robot 0.159 0.218 0.212 0.679

Table S.2. Quantitative ablation: We report both the geodesic
distance deviation dgeoω) and the surface area deviation SAω. Note
that the results for V2M4 [6] are obtained using the full video in-
put, whereas our results are produced using only sparse keyframes.
Despite this reduced input, our method achieves superior surface
area preservation and comparable performance in geodesic dis-
tance deviation.

S5. Morphed Images
We provide additional results to complement the experi-
ments presented in the main paper. As shown in Fig. S.4,
DiffMorpher [64] and DreamMover [43] successfully gen-
erate high-quality intermediate keyframes that are almost
identical to the ground-truth images. We then use these
three sequences as inputs to the 3D generation backbone to
produce intermediate shapes, which are visualized in Fig. 3.
While Fig. S.4 demonstrates that the image morphing meth-
ods can create visually plausible keyframes, it also high-
lights a key limitation: generating 4D sequences by inde-
pendently conditioning on each keyframe often introduces
artifacts and fails to maintain geometric and texture consis-
tency.

We also present the morphed images corresponding
to Fig. 7 in the main paper. As shown in Fig. S.5, Diff-

G
T

im
ag

e
D

iff
M

or
ph

er
[6

4]
D

re
am

M
ov

er
[4

3]

Figure S.4. Morphing results for 4D-DRESS. We show the
ground truth images and the morphed images using DiffMor-
pher [64], DreamMover [43] in Fig. 3 in the main paper. These
are images that are passed to the 3D generation backbone to gen-
erate intermediate shapes in Fig. 3.

Morpher [64] failed to interpolate between the two differ-
ent horse images, leading to subsequent failures in the 3D
generation process. DreamMover [43] produces reasonable
results by interpolating between images. However, since
its task is designed to match the start and end images, it
naturally interpolates not only the shape but also the chang-
ing texture. While this works well for objects that remain
identical, it introduces texture inconsistency when handling
two different objects of the same species, ultimately affect-
ing the 3D generation output. This suggests that if 4D
generation relies purely on image interpolation, the start
and end images must represent the exact same object to
maintain consistency. Moreover, a closer examination of
DreamMover’s results in Fig. S.5 reveals that the horse’s
movement is not temporally smooth across the morphed
images, and the interpolation fails to maintain physical re-
alism. The same situation happens to the cat example as
shown in Fig. S.6. See in Fig. S.6 the cat leg’s motion is not
continuous and smooth.

S6. Additional Visualizations
In this section, we add more visualization results to demon-
strate our method together with our estimated correspon-
dences. Showcase that our method is robust to noisy and in-
complete correspondence situations. We also demonstrate
that our method can handle different types of objects, in-
cluding some types that were previously solved using a tem-
plate, such as human face Fig. S.8, animals Fig. S.6, multi-
objects Fig. S.9 and random object Fig. S.7. Compared to
the template-based method, our method is more faithful to
the real-world details of the objects.
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Figure S.5. Morphing results for horse. We show the ground
truth images and the morphed images using DiffMorpher [64],
DreamMover [43] in Fig. 7 in the main paper. These are images
that are passed to the 3D generation backbone to generate interme-
diate shapes. As DiffMorpher heavily failed so the 3D generation
steps also failed.
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Figure S.6. Morphing results for cat. We show the ground truth
images and the morphed images using DiffMorpher [64], Dream-
Mover [43] in Fig. 8 in the main paper. These are images that
are passed to the 3D generation backbone to generate intermediate
shapes.
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Figure S.7. Visualization from different angle. We show our 4D
sequences by showing the deformed mesh sequence at different
angles.
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Figure S.8. Visualization from different angle. We show our 4D
sequences by showing the deformed mesh sequence at different
angles. The correspondences on the human face are noisy; how-
ever, our method still gets reasonable deformations.
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Figure S.9. Visualization from different angle. We show our 4D
sequences by showing the deformed mesh sequence at different
angles. The correspondence after the refinement is smooth and
accurate.
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