
(a) h = 1, ĥ = 1 (b) h = 0, ĥ = 0 (c) h = .5, ĥ = 0 (d) h = .33, ĥ = 0

(e) h = .53, ĥ = .07 (f) h = .66, ĥ = .04

Figure 2: Examples of graphs with different label-topology relationships and comparison of our
measure ĥ with the edge homophily ratio h. The node classes are labeled by color. Pink edges link
nodes of the same class, while purple edges link nodes of different classes. (a,b) Pure homophily and
pure heterophily. Both measures equal 1 in homophily and 0 in heterophily. (c,d) Graphs where each
node is connected to one member of each class. Edge homophily depends on the number of classes,
while our measure ĥ does not. (e,f) Random Erdős-Rényi graphs in which edges are independent of
labels. Edge homophily is sensitive to class imbalance, while our measure ĥ is not.

A Compatibility Matrices and Statistics

A.1 Measuring Homophily

In Section 3.2, we consider metrics that attempt to capture the level of class-label homophily in
a graph in a single scalar quantity. These metrics could be useful for practitioners who need to
choose appropriate graph learning algorithms for some graph data that they have — performance of
algorithms heavily depends on the homophily of the graph. Moreover, they are useful for choosing
datasets to benchmark on, as we do in this paper.

A better representation of homophily may be given by the compatibility matrix, which consists of C2

values instead of a single scalar value. Following previous work [82], for a graph G with C node
classes we define the C ⇥ C compatibility matrix H by

Hkl =
|(u, v) 2 E : ku = k, kv = l|

|(u, v) 2 E : ku = k|
. (9)

This captures finer details of label-topology relationships in graphs than single scalar metrics capture.
For classes k and l, the entry Hkl measures the proportion of edges from nodes of class k that are
connected to nodes of class l. A homophilous graph has high values of Hkk for each class k.

Compatibility matrices for our proposed datasets are shown in Figure 3. As evidenced by the
different patterns, the proposed datasets show interesting types of label-topology relationships besides
homophily. For instance, the citation datasets arXiv-year and snap-patents have primarily lower-
triangular structure, since most citations reference past work. In wiki, low view articles tend to link to
each other, while mid-rank articles frequently link to highly viewed articles and vice versa. In Pokec,
there is some heterophily, in that one gender has some preference for friends of another gender.

However, the compatibility matrix can be unwieldy for datasets with many classes. For the cases
where a single scalar representation of homophily is desired, our introduced measure better captures
the presence or absence of homophily than existing metrics. Figure 2 compares our measure ĥ to
edge homophily on example graphs.

17

Figure 3: Compatibility matrices of our proposed datasets. These datasets from a variety of different
contexts exhibit a wide range of non-homophilous structures.

A.2 Homophilous Data Statistics

Table 5: Statistics for homophilic graph datasets. # C is the number of node classes.
Dataset # Nodes # Edges # C Edge hom. ĥ (ours)

Cora 2,708 5,278 7 .81 .766
Citeseer 3,327 4,552 6 .74 .627
Pubmed 19,717 44,324 3 .80 .664

ogbn-arXiv 169,343 1,166,243 40 .66 .416
ogbn-products 2,449,029 61,859,140 47 .81 .459

oeis 226,282 761,687 5 .50 .532

In contrast to the different compatibility matrix structures of our proposed non-homophilous datasets,
much other graph data have primarily homophilous relationships, as can be seen in Figure 4 and
Table 5. The Cora, CiteSeer, PubMed, ogbn-arXiv, and ogbn-products datasets are widely used
as benchmarks for node classification [74, 31], and are highly homophilous, as can be seen by the
diagonally dominant structure of the compatibility matrices and by the high edge homophily and ĥ.

We collected the oeis dataset displayed in the bottom right of Figure 4. The nodes are entries in the
Online Encyclopedia of Integer Sequences [64], and directed edges link an entry to any other entry
that it cites. In analogy to arXiv-year and snap-patents, the node labels are the time of posting of the
sequence. However, in this case the graph relationships are homophilous, even as we vary the number
of distinct classes (time periods). This is in part due to differences between posting in this online
encyclopedia and publication of academic papers or patents. For instance, there is less overhead to
posting an entry in the OEIS, so users often post separate related entries and variants of these entries
in rapid succession. Also, an entry in the encyclopedia often inspires other people to work on similar
entries, which can be created in much less time than an academic follow-up work to a given paper.

18

Figure 4: Compatibility matrices of homophilic datasets. The diagonal dominance indicates strong
homophily.

Figure 5: Compatibility matrices of datasets in Pei et al. [58] (collected by [61, 66, 48]). The “film”
dataset is also referred to as “Actor”. Note that there are no edges leading out of the nodes of class 1
in the Cornell dataset, so there is an empty row in its matrix.

These related entries tend to cite each other, which contributes to homophilic relationships over time.
Thus, the data here does not follow the special temporal citation structure of academic publications
and patents.

A.3 Previous Non-Homophilous Data

For the six datasets in Pei et al. [58] often used in evaluation of graph representation learning methods
in non-homophilous regimes [82], basic statistics are listed in Table 1 and compatibility matrices
are displayed in Figure 5. We propose datasets that have up to orders of magnitude more nodes and
edges and come from a wider range of contexts. There are several cases of class-imbalance in these
previously used datasets, which may make the edge homophily misleading. As discussed in Appendix
A.1, our measure may be able to alleviate issues with edge homophily in measuring homophily of
these datasets, and offers a way to distinguish between the Chameleon, Actor, and Squirrel datasets
that all have similar edge homophily.

A.4 General Non-homophilous Settings

Different settings in which non-homophilous / disassortative relationships are prevalent have been
identified in the literature, and many of these non-homophilous settings are represented by our

19

proposed datasets. We list these general non-homophilous settings for reference, with our proposed
datasets that belong to these settings in parentheses:

• Gender relations in social or interaction networks [3, 18, 34] (Penn94, Pokec).
• Technological and internet relationships, such as in web page connections [51, 58] (wiki).
• Malicious or fraudulent nodes, such as in auction networks [13, 55] (genius).
• Publication time in citation networks [57] (arXiv-year, snap-patents).
• Biological structures such as in food webs [25] and protein interactions [51].
• Specific online user attributes [60] (twitch gamers)

While not all example graph data from these contexts are non-homophilous, a diverse range are. In
order to succeed in future applications in these contexts, it is of importance to develop methods that
are able to handle non-homophilous structures.

A.5 Class-Imbalance and Metrics

In this section, we present experiments that demonstrate an instance in which our metric is not
affected by imbalanced classes, while edge homophily is. We generate graphs in which node labels
are independent of edges by randomly choosing node labels and generating graph edges by the
Erdős-Rényi random graph model [22]. In particular, we fix the number of classes to two, the number
of nodes to 100, and the probability of edge formation as .25 between every pair of nodes. Then we
generate 100 samples of these random graphs, and compute the mean and standard deviation of both
edge homophily h and our measure ĥ. As seen in Figure 6, our measure ĥ is constantly near zero
as we increase the size of the majority class, while the edge homophily h increases as the size of
majority class increases.

Figure 6: Comparison of edge homophily h and our measure ĥ on random class-imbalanced graph
data with edges independent of node labels. Three standard deviations are shaded. Our measure is
mostly constant as the classes become more imbalanced, while edge homophily increases.

A.6 Degree Distributions of Proposed Non-homophilous datasets

Past work has found that the degree distribution can affect the performance of models on node classi-
fication [82]. As a result, we provide degree distributions of all of our proposed non-homophilous
datasets in Figure 7. The degree distributions are all heavy-tailed, as is typically expected in real-
world graph data. The wiki distribution also has an interesting additional property, where the mode
appears to be at a degree between 10 and 100.

A.7 Two-hop homophily levels

While the homophily measures are based on one-hop information, we may also consider properties of
two-hop neighborhoods. Even though there are limitations to measuring higher-order homophily [68],
here we estimate an interesting quantity in two-hop neighborhoods. We use a node homophily
measure, where the neighborhood of each node is defined to be the nodes of exactly two hops away:

1

|V |

X

v2V

Number of exact two-hop neighbors of v with same class as v
Number of v’s exact two-hop neighbors

. (10)

20

Figure 7: Degree distribution of our proposed non-homophilous datasets

21

This is an expensive operation to compute, so we approximate the sum over a random sample of k
nodes, and then replace the normalization factor of 1

|V | by 1
k . Note that for each node v in the sample,

the inner sum is still using the two-hop neighborhoods of the original graph. Table 6 compares the
computed one-hop and two-hop measures. The two-hop measure is mostly similar to or somewhat
higher than the standard one-hop node homophily.

Table 6: Comparison of node homophily over one-hop neighborhoods and strict two-hop neighbor-
hoods. The measure over two-hop neighborhoods is estimated with k = 500 sampled nodes.

Dataset Two-hop One-hop

Penn94 .474 .483
pokec .611 .428
arXiv-year .341 .289
snap-patents .330 .221
genius .749 .508
twitch-gamers .513 .556

B Experimental Details

For gradient-based optimization, we use the AdamW optimizer [37, 45] with weight decay .001 and
learning rate .01 by default, unless we tune the optimizer for a particular method (as noted below in
B.1). Hyperparameter tuning is conducted using grid search for most methods. Tuning for C&S is
done as in the original paper [32], which uses Optuna [2] for Bayesian hyperparameter optimization.
All graphs are treated as undirected besides arXiv-year and snap-patents, in which the directed nature
of the edges capture useful temporal information; however, we find that label propagation and C&S
(which builds on label propagation) perform better with undirected graphs in these cases, so we keep
the graphs as undirected for these methods.

We implement our methods and run experiments in PyTorch [56] (3-clause BSD license), and make
heavy use of the PyTorch-Geometric library [23] (MIT license) for graph representation learning.
For full-batch training, simple methods are run on a NVIDIA 2080 Ti with 11 GB GPU memory.
In cases where the NVIDIA 2080Ti did not provide enough memory, we re-ran experiments on a
NVIDIA Titan RTX with 24 GB GPU memory, reporting (M) in Table 3 if the GPU memory was
still insufficient. For minibatch training on wiki, we also make use of NVIDIA RTX 3090 GPUs with
24 GB GPU memory. Each experiment was run on one GPU at a time.

B.1 Full-batch Hyperparameters

Experimental results for full-batch training are reported on the hyperparameter settings below, where
we choose the settings that achieve the highest performance on the validation set. We choose
hyperparameter grids that do not necessarily give optimal performance, but hopefully cover enough
regimes so that each model is reasonably evaluated on each dataset. Unless otherwise stated, each
GNN has dropout of .5 [65] and BatchNorm [33] in each layer. The hyperparameter grids for the
different methods are:

• MLP: hidden dimension 2 {16, 32, 64, 128, 256}, number of layers 2 {2, 3}. We use ReLU
activations.

• Label propagation: ↵ 2 {.01, .1, .25, .5, .75, .9, .99}. We use 50 propagation iterations.
• LINK: weight decay 2 {.001, .01, .1}.
• SGC: weight decay 2 {.001, .01, .1}.

• C&S: Normalized adjacency matrix A1, A2 2 {D� 1
2AD� 1

2 , D�1A,AD�1
} for the residual

propagation and label propagation, where A is the adjacency matrix of the graph and D is
the diagonal degree matrix; ↵1,↵2 2 (0.0, 1.0) for the two propagations. Both Autoscale
and FDiff-scale were used for all experiments, and scale 2 (0.1, 10.0) was searched in
FDiff-scale settings. The base predictor is chosen as the best MLP model for each dataset.

22

• GCN: lr 2 {.1, .01, .001}, hidden dimension 2 {4, 8, 16, 32, 64}, except for snap-patents
and pokec, where we omit hidden dimension = 64. Each activation is a ReLU. 2 layers were
used for all experiments.

• GAT: lr 2 {.1, .01, .001}. For snap-patents and pokec: hidden channels 2 {4, 8, 12} and
gat heads 2 {2, 4}. For all other datasets: hidden channels 2 {4, 8, 12, 32} and gat heads
2 {2, 4, 8}. We use the ELU activation [19]. 2 layers were used for all experiments.

• GCNJK: Identical for GCN, also including JK Type 2 {cat,max}.

• GATJK: Identical for GAT, also including JK Type 2 {cat,max}.

• APPNP: MLP hidden dimension 2 {16, 32, 64, 128, 256}, learning rate 2 {.01, .05, .002},
↵ 2 {.1, .2, .5, .9}. We truncate the series at the K = 10th power of the adjacency.

• H2GCN: hidden dimension 2 {8, 16, 32, 64}, number of layers 2 {1, 2}, dropout 2 {0, .5}.
The architecture follows Section 3.2 of [82].

• MixHop: hidden dimension 2 {8, 16, 32}, number of layers 2 {2, 3}. Each layer has uses
the 0th, 1st, and 2nd powers of the adjacency and has ReLU activations. The last layer is a
linear projection layer, instead of the attention output mechanism in [1].

• GPR-GNN: The basic setup and grid is the same as that of APPNP. We use their Personalized
PageRank weight initialization.

• GCNII: number of layers 2 {2, 8, 16, 32, 64}, strength of the initial residual connection
↵` 2 {0.1, 0.2, 0.5}, hyperparameter used to compute the strength of the identity mapping
� 2 {0.5, 1.0, 1.5}.

• LINKX: We use take MLPA and MLPX to be one layer networks, i.e. linear map-
pings of size d ⇥ n and d ⇥ D, respectively. The hidden dimension is taken to be
d 2 {16, 32, 128, 256}, and the number of layers of MLPf is in {1, 2, 3}.

B.2 Minibatching hyperparameters

The setup for minibatching is similar to the setup of full-batch training as above, with some differ-
ences that we note here. For all GNNs, we fix the hidden dimension to 128, which is a common
hidden dimension used in Cluster-GCN [16] and GraphSAINT [77]. We use concatenation jumping
knowledge connections [72] for GCNJK. For GCNJK and MixHop, our hyperparameter grid only
chooses a number of layers L 2 {2, 4}, along with the hyperparameters for the minibatching methods
that we give below.

• MLP, LINK, and LINKX use the same hyperparameter grids as in the full-batch setting, and
they are trained with standard minibatching with a batch size of n/10. We train with one
such batch in each of 500 epochs.

• All Cluster-GCN based experiments partition the graph into 200 parts and process a number
of parts in {1, 5} at once. We train over all partitions in each of 500 epochs.

• All GraphSAINT-Node based experiments have a budget of nodes in {5,000, 10,000}. We
train over five subgraphs for each of 500 epochs.

• All GraphSAINT-RandWalk based experiments use a random walk length of the same size
as the number of layers L of the GNN, and use a number of roots in {5,000, 10,000}. We
train over five subgraphs for each of 500 epochs.

These hyperparameter settings are in the same range as those used in the original papers [16, 77]
for datasets that have similar node counts to our proposed datasets. For a total number of nodes n
in the full graph, note that the MLP, LINK, and LINKX minibatching method processes about 50n
total nodes across all batches in training. The Cluster-GCN method processes 500n nodes. When
the number of nodes is 10,000, the GraphSAINT-Node method approximately processes between
601n nodes (Penn94) and 8.5n nodes (snap-patents). The GraphSAINT-RandWalk method with
10,000 root nodes processes a few times more nodes (usually between two to five times more) than
the GraphSAINT-Node method, as more nodes are sampled from the random walks (and we take the
number of layers L to be 2 or 4).

23

C Further Experiments

C.1 Benefits of Separate Embeddings

Table 7: Comparing separately embedding A and X (as in LINKX) with direct concatenation.
LINKX outperforms the concatenation based model.

Penn94 pokec arXiv-year snap-patents genius twitch-gamers

MLP 73.61 ± 0.40 62.37 ± 0.02 36.70 ± 0.21 31.34 ± 0.05 86.68 ± 0.09 60.92 ± 0.07
LINK 80.79 ± 0.49 80.54 ± 0.03 53.97 ± 0.18 60.39 ± 0.07 73.56 ± 0.14 64.85 ± 0.21

MLP([A;X]) 84.64 ± 0.33 81.74 ± 0.15 54.15 ± 0.20 59.12 ± 0.29 91.61 ± 0.05 64.89 ± 0.18
LINKX 84.71 ± 0.52 82.04 ± 0.07 56.00 ± 1.34 61.95 ± 0.12 90.77 ± 0.27 66.06 ± 0.19

Here, we give more evidence to justify separately embedding A and X in LINKX. Recall from
Section 4.2 that there are computational benefits to separately embedding them. Table 7 give results
for concatenating A and X so that they are jointly embedded as MLP([A;X]). For this concatenation
model, we search over the same hyperparameter grid as that of MLPf in LINKX. We see that LINKX
generally outperforms the concatenation model (besides on the genius dataset). Moreover, LINKX
always outperforms both MLP and LINK, while the concatenation model does not do as well as
LINK on snap-patents and is within a standard deviation on twitch-gamers.

C.2 Minibatching experiments

Table 8: Comparison of different methods on the arXiv graphs with (homophilous) ogbn-arXiv
subject labels and (non-homophilous) arXiv-year publication year labels. Percent relative error of
minibatch methods against corresponding full batch methods are in parentheses.

ogbn-arXiv Coarse arXiv-year Coarse

GCNJK-Full 70.33 44.18
GCNJK-Cluster 68.28 (2.9%) 42.88 (3.0%)
GCNJK-SAINT-Node 67.69 (3.7%) 41.48 (6.1%)
GCNJK-SAINT-RW 69.57 (1.1%) 43.58 (1.4%)
MixHop-Full 72.26 48.14
MixHop-Cluster 70.16 (3.0%) 46.90 (2.8%)
MixHop-SAINT-Node 67.26 (7.1%) 41.68 (14.7%)
MixHop-SAINT-RW 71.54 (1.0%) 45.94 (5.0%)

ogbn-arXiv Fine arXiv-year Fine

GCNJK-Full 70.33 44.18
GCNJK-Cluster 68.01 (3.3%) 42.49 (3.8%)
GCNJK-SAINT-Node 66.18 (5.9%) 39.88 (9.7%)
GCNJK-SAINT-RW 68.96 (1.9%) 42.47 (3.9%)
MixHop-Full 72.26 48.14
MixHop-Cluster 69.37 (3.5%) 46.60 (3.2%)
MixHop-SAINT-Node 64.71 (10.1%) 39.17 (18.7%)
MixHop-SAINT-RW 70.48 (2.0%) 43.29 (10.1%)

Homophilous vs Non-Homophilous. To see differences in graph minibatching between ho-
mophilous and non-homophilous settings, we setup experiments using the same graph with ho-
mophilous labels and then non-homophilous labels; we take the ogbn-arXiv graph and train GNNs
with minibatching with on the original ogbn-arXiv subject area labels (that are homophilous, see
Table 5), and also train GNNs with minibatching on the arXiv-year labels that we defined in this
work (that are non-homophilous, see Table 2). For the minibatching methods, we use similar hy-
perparameters as in Appendix C.2 (Cluster-GCN uses 200 partitions and processes 5 parts at once,
GraphSAINT-Node has a 10,000 node budget and GraphSAINT-RandWalk has 10,000 roots), which
we call the “coarse” setting. In the so-called “fine” setting, we use smaller subgraph minibatches
(Cluster-GCN uses 750 partitions and processes 5 parts at once, GraphSAINT-Node has a 2,500 node
budget and GraphSAINT-RandWalk has 2,500 roots). Both the GCNJK and MixHop architectures
are fixed to have two layers and 128 hidden dimensions.

24

Table 8 shows the results of these arXiv experiments on two different label sets. We see that
performance degradation as measured by percent relative error in test accuracy is more substantial
in the non-homophilous arXiv-year experiments for the GraphSAINT methods, while it is mostly
comparable for the Cluster-GCN methods.

Graph minibatching could perform poorly in non-homophilous settings for a variety of reasons. It
has been shown both theoretically and empirically that higher-order information from more than
one-hop neighbors are important for classification in certain non-homophilous settings [82, 3]. One
reason why graph minibatching may have issues here is that it is difficult to preserve higher-order
neighborhood structure when minibatching on graphs. For instance, suppose we minibatch a graph
with n nodes by taking an induced subgraph on n/2 randomly selected nodes. Then for a node u in
the subgraph, each one hop path u ! v has probability 1/2 of being in the subgraph, whereas each
two-hop path u ! w ! v has probability 1/4 of being in the subgraph, since both w and v must be
sampled.

Finally, even if the percent relative error of minibatching methods is similar in homophilous vs.
non-homophilous graphs, the performance degradation would generally be more detrimental in
non-homophilous graphs. This is because the gap between GNNs and methods that do not use the
graph topology like MLPs are lower in many non-homophilous settings. Since MLPs do not face
much performance degradation when trained with simple i.i.d. node minibatching, the gap between
GNNs and MLPs is even lower in minibatched settings. Indeed, we see that MLPs perform on par
with or outperform many GNNs in the minibatched setting in Table 4.

Table 9: Minibatching results when using GCN as a base model. The setup is the same as in
Section 5.3. LINKX results are provided as reference.

Penn94 pokec † arXiv-year snap-patents † genius twitch-gamers † wiki †

GCN-Cluster 70.24±0.24 67.33±0.21 45.80±0.22 38.53±0.08 82.12±0.40 60.71±0.15 (T)
GCN-SAINT-Node 69.41±0.55 59.91±0.08 44.92±0.23 27.16±0.16 80.95±0.09 59.03±0.19 42.59±0.09
GCN-SAINT-RW 69.79±0.31 62.50±0.18 48.07±0.21 32.75±0.08 80.98±0.25 59.52±0.08 44.22±0.18

LINKX Minibatch 84.50±0.65 81.27±0.38 53.74±0.27 60.27±0.29 85.81±0.10 65.84±0.19 59.80±0.41

GCN results. In Section 5.3, we use GCNJK and MixHop as base models for minibatching evaluation.
For completeness, we also include results for using GCN as a base model in Table 5.3. The results
are qualitatively the same, though GCN generally performs worse than the other two GNNs.

C.3 Experiments on Prior Datasets

Although the Pei et al. [58] datasets suffer issues with evaluation of graph learning methods as
discussed in the main paper, we test LINKX on these datasets for comparison. We use the 10
fixed splits of [58], directly reporting results from papers where they also use the official splits,
and re-running methods when this was not the case. In particular, GPR-GNN used larger 60-20-20
random splits, while GCNII did not evaluate on Actor and Squirrel. Thus, we re-run GPR-GNN and
GCNII using the hyperparameters of Section B.1.

Table 10: Comparison of non-homophilous methods on datasets of Pei et al. [58] (collected by
[61, 66, 48]). † represents re-run result, if unofficial dataset splits were used in their method paper, or
the paper did not evaluate their method on the specific dataset. Best results up to a standard deviation
are highlighted. Geom-GCN and GCNII did not report standard deviation information.

Texas Wisconsin Actor Squirrel Chameleon Cornell
Nodes 183 251 7,600 5,201 2,277 183

H2GCN-1 84.86 ± 6.77 86.67 ± 4.69 35.86 ± 1.03 36.42 ± 1.89 57.11 ± 1.58 82.16 ± 4.80
H2GCN-2 82.16 ± 5.28 85.88 ± 4.22 35.62 ± 1.30 37.90 ± 2.02 59.39 ± 1.98 82.16 ± 6.00
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53 73.51 ± 6.34
GPR-GNN 76.22 ± 10.19† 75.69 ± 6.59† 33.12 ± 0.57† 54.35 ± 0.87† 62.85 ± 2.90† 68.65 ± 9.86†
GCNII 77.84 81.57 34.36 ± 0.77† 56.63 ± 1.17† 62.481 76.46
Geom-GCN-I 57.58 58.24 29.09 33.32 60.31 56.76
Geom-GCN-P 67.57 64.12 31.63 38.14 60.90 60.81
Geom-GCN-S 59.73 56.67 30.30 36.24 59.96 55.68

LINKX 74.60 ± 8.37 75.49 ± 5.72 36.10 ± 1.55 61.81 ± 1.80 68.42 ± 1.38 77.84 ± 5.81

For these experiments, we used the following hyper-parameter grid for LINKX: MLPA 2 {1, 2},
MLPX 2 {1, 2}, hidden channels 2 {64, 128, 256, 512}, number of MLPf layers 2 {1, 2, 3, 4}
learning rate in {0.05, 0.01, 0.002} and dropout 2 {0.0, 0.5}.

25

LINKX performs well on datasets with thousands of nodes, despite being primarily a scalable method,
only falling short on the tiniest of datasets. Overall, evaluation on these datasets is very noisy,
highly dependent on hyperparameter grid selection, and few conclusions can be drawn on the relative
performance of different methods in non-homophily more broadly. In particular, note that methods
that do well on these datasets do not necessarily do well on our large, non-homophilous datasets. For
example, while MixHop is the best non-homophilous GNN on the datasets we present in this paper, it
does poorly on the datasets of Pei et al. [58]; in contrast, H2GCN achieves excellent performance
here, but its design choices make it run out of memory on even medium-sized datasets.

C.4 Experiments on Homophilous datasets

Though LINKX was not designed to do well on small homophilous datasets, we also report LINKX
on the homophilous datasets of Cora, Citeseer and Pubmed [74], with the standard 48/32/20 training,
validation, and test proportions. We use the same hyper-parameter grid for LINKX as in Section C.3.

Table 11: Comparison of on homophilous datasets. Results other than LINKX reported from [82].
Best three results per dataset are highlighted.

CiteSeer PubMed Cora
Nodes 3327 19717 2708

H2GCN-1 77.07± 1.64 89.40± 0.34 86.92± 1.37
H2GCN-2 76.88± 1.77 89.59± 0.33 87.81± 1.35
MixHop 76.26± 1.33 85.31± 0.61 87.61± 0.85
GCN 76.68± 1.64 87.38± 0.66 87.28± 1.26
GAT 75.46± 1.72 84.68± 0.44 82.68± 1.80

LINKX 73.19± 0.99 87.86± 0.77 84.64± 1.13

D Further dataset details

D.1 Licenses

In this section, we note the licenses of the datasets we collect:

• wiki: Wikipedia is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported
License and the GNU Free Documentation License, unversioned, with no invariant sections,
front-cover texts, or back-cover texts.

• Penn94: The Facebook 100 datasets are available online (https://archive.org/details/oxford-
2005-facebook-matrix), and to the best of our knowledge were not released with a license,
though the corresponding paper has an arXiv non-exclusive license to distribute. Upon
release, there were privacy concerns [83], as the data release may not have respected certain
privacy settings, and the initial release of the data included unique identifiers. We use a
version that does not include the unique identifiers, but of course may still be subject to
deanonymization attacks. While we do not add any sensitive information to the dataset, we
acknowledge that deanonymization is possible, though our work does not directly contribute
to deanonymization risks.

• Pokec: We retrieved the data from SNAP; the original source of the data is [40]. To the best
of our knowledge, the data was not released with a license. This is a social network, so there
may be privacy concerns with the user data. Still, we include it as a suitable benchmark that
has been previously used, as the dataset is large and has interesting feature information. We
only provide numerical values and do not provide any of the raw text in the dataset.

• arxiv-year: The dataset is licensed under ODC-BY. We originally downloaded the data from
the Open Graph Benchmark [31], and the data is a subset of the Microsoft Academic Graph
[70]

• snap-patents: The data was originally publically released by NBER in 2001 in a working
paper by [27]. To the best of our knowledge, the dataset was not released with a license.

• genius: The dataset is open-sourced by the authors with no attached license. It was origi-
nally introduced in a conference paper [43]. While this is a social network and thus may

26

face privacy concerns, we believe that the task of predicting undesired nodes can be very
beneficial to society, so we benchmark methods on it. We only provide numerical values,
and omit raw text information that has been previously released in the dataset.

• twitch-gamer: The dataset is open-sourced by the authors in a repository with the MIT
license. It was originally introduced in an academic paper [46]. This is also a social network
that may face privacy concerns, but the prediction task of detecting situationally undesired
nodes may be socially beneficial, so we benchmark methods on it. There is no raw text in
the dataset.

D.2 Dataset Properties

Penn94 [67] is a friendship network from the Facebook 100 networks of university students from
2005, where nodes represent students. Each node is labeled with the reported gender of the user. The
node features are major, second major/minor, dorm/house, year, and high school.

Pokec [41] is the friendship graph of a Slovak online social network, where nodes are users and edges
are directed friendship relations. Nodes are labeled with reported gender. We derive node features
from profile information, such as geographical region, registration time, and age.

arXiv-year [31] is the ogbn-arXiv network with different labels. Our contribution is to set the class
labels to be the year that the paper is posted, instead of paper subject area. The nodes are arXiv
papers, and directed edges connect a paper to other papers that it cites. The node features are averaged
word2vec token features of both the title and abstract of the paper. The five classes are chosen by
partitioning the posting dates so that class ratios are approximately balanced.

snap-patents [42, 41] is a dataset of utility patents in the US. Each node is a patent, and edges
connect patents that cite each other. Node features are derived from patent metadata. Our contribution
is to set the task to predict the time at which a patent was granted, resulting in five classes.

genius [43] is a subset of the social network on genius.com — a site for crowdsourced annotations of
song lyrics. Nodes are users, and edges connect users that follow each other on the site. This social
network has not been used for node classification in the literature, so we define the task of predicting
certain marks on the accounts. About 20% of users in the dataset are marked “gone” on the site,
which appears to often include spam users. Thus, we predict whether nodes are marked. The node
features are user usage attributes like the Genius assigned expertise score, counts of contributions,
and roles held by the user.

twitch-gamers [60] is a connected undirected graph of relationships between accounts on the
streaming platform Twitch. Each node is a Twitch account, and edges exist between accounts that are
mutual followers. The node features include number of views, creation and update dates, language,
life time, and whether the account is dead. The binary classification task is to predict whether the
channel has explicit content.

wiki is a dataset of Wikipedia articles, where nodes represent pages and edges represent links between
them. We collect this new dataset, with a process that we describe further in Appendix D.3. Node
features are constructed using averaged title and abstract GloVe embeddings [59]. Labels represent
total page views over 60 days, which are partitioned into quintiles to make five classes.

D.3 Wiki collection details

Here, we detail the process of crawling and cleaning the wiki dataset. We generated the graph using a
breadth-first search, where we started from the Wikipedia page on Hilbert Spaces, then proceeded to
visit all its neighbors, and so forth. For each Wikipedia page visited, we used the MediaWiki web
service API to get a list of pages linked to by the given page — this forms the directed edges of the
graph. In each API query, we also received the number of page views per day in the past 60 days.
We crawled these articles throughout April and May of 2021. To convert this into discrete labels, we
used an even quantile function, which set view boundaries to make the number of nodes in each class
as even as possible. The output of this function formed the labels of the graph.

For the node features, we formed 300 dimensional Wikipedia Glove vectors [59] for each word in
the title and abstract, then averaged the word vectors in the title and abstract, thus resulting in 600
dimensional feature vectors for each node. For words not found in the Glove dictionary, we used the

27

zero vector. This procedure was modeled on the construction of the ogbn-arxiv dataset by [31]. In
particular, we avoided a one-hot vector because of the vast dimensionality that would be required.
Finally, to clean the dataset, we pruned edges if either of the nodes that it spanned where not in our
subset of wikipedia articles. Ultimately, we decided to stop collection at approximately one third of
English wikipedia due to limitations of computational resources and time. Already, it is not possible
to run full batch experiments on the wiki dataset, while requiring over 80GB of CPU RAM for some
minibatching techniques. As such, we believe that the full wikipedia dataset would have been too
large and unwieldy to use as an evaluation dataset for many research labs, and our dataset is at a good
size that may hopefully provide utility to many researchers.

28

	Introduction
	Prior Work
	Datasets for Non-Homophilous Graph Learning
	Currently Used Datasets
	An Improved Homophily Measure
	Proposed Datasets

	LINKX: A New Scalable Model
	Motivation from two simple baselines
	LINKX
	Complexity Analysis

	Experiments
	Experimental Setup
	Full-Batch Results
	Minibatching Results

	Discussion and Conclusion
	Compatibility Matrices and Statistics
	Measuring Homophily
	Homophilous Data Statistics
	Previous Non-Homophilous Data
	General Non-homophilous Settings
	Class-Imbalance and Metrics
	Degree Distributions of Proposed Non-homophilous datasets
	Two-hop homophily levels

	Experimental Details
	Full-batch Hyperparameters
	Minibatching hyperparameters

	Further Experiments
	Benefits of Separate Embeddings
	Minibatching experiments
	Experiments on Prior Datasets
	Experiments on Homophilous datasets

	Further dataset details
	Licenses
	Dataset Properties
	Wiki collection details

