
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTAL MATERIAL

A.1 DISCUSSION ABOUT DISAGREEMENT

We test a three-layer MLP on CIFAR-10 with symmetric noise ratio ✏ = 0.5 and ✏ = 0.8, and quantify
the disagreement for three update strategies. Intersection over Union (IoU) between two selections are
utilized for the quantitative evaluation, while the update strategies are the Cross-update, Self-update,
and Jump-update. Specifically, Intersection computes the number of commonly selected samples
in two selections, while Union calculates the total number of selected samples in two selections. In
the cross-update strategy, the disagreement emerges in a different network, while in the other two
strategies, it emerges during different epochs.

As shown in Fig. 2(a) and Fig. 2(b), the single network in Self-Update exhibits significantly greater
disagreement between epochs than the dual-network setup in Cross-update, which suggests a huge
potential for mitigating bias. However, self-update does not leverage this advantage, resulting in the
worst performance among strategies. In contrast, jump-update strategy, which leverages previous
selections for model updates, displays slightly lower disagreement compared to self-update while
achieving remarkable performance. Furthermore, we observe that the error band of Jump-Update
is smaller than the other two methods, indicating more stable network updates. This reflects the
robustness of the network against noise to some extent. These results are shown in Fig. 2(c) and Fig.
2(d): Jump-Update, with the smallest error band, achieves the best performance, while self-update,
with the largest error band, performs the worst.

A.2 DISCUSSIONS ABOUT "DISAGREEMENT"

In this section, we discuss the concept of "disagreement" and its relationship with prior related works
(Wei et al., 2022; Yuan et al., 2023). The "disagreement" discussed in our paper differs fundamentally
from similar concepts in previous studies in terms of its definition, described objects, application,
calculation, and focus. Unlike the "fluctuation" defined in (Wei et al., 2022), which refers to a sample
being correctly classified at one step but misclassified in the next, or the "First-time k-epoch Learning
(FkL)" introduced in (Yuan et al., 2023), which measures the first training epoch where an instance is
consistently predicted to its given label for k consecutive epochs, our "disagreement" is derived from
(Han et al., 2018) and refers to differences in selection behaviors within networks. These differences
are not tied to individual samples or labels but rather describe variations in network behaviors over
iterations.

The objects described in these concepts are also distinct. While "fluctuation" and "FkL" capture
variations in the predictions of individual samples, "disagreement" focuses on the characteristics
of networks. For instance, "disagreement" in our work examines the behavior of a single network
across different iterations, whereas in Han et al. (2018), "disagreement" describes an attribute of two
networks.

The applications of these concepts further emphasize their differences. As a network-level character-
istic, "disagreement" is employed to design strategies for updating models. In contrast, "fluctuation"
and "FkL," being sample-level characteristics, are primarily used to define selection criteria for
determining whether a sample should be included in the training process. Additionally, the methods
for calculating and interpreting these concepts vary significantly. Both "fluctuation" and "FkL"
emphasize consistency between model predictions and true labels, aiming to identify clean samples.
On the other hand, "disagreement" is independent of labels and is quantified using the Intersection
Over Union (IoU) metric between selected sets, enabling it to address selection bias in model updates.

Our work contributes novel insights into the concept of "disagreement." We are the first to demonstrate
that disagreement within a single network not only exists but also persists during training, as illustrated
in Fig. 2(a) and Fig. 2(b). Additionally, we find that single-network disagreement is even more
significant than that observed between two networks, a discovery that underscores its importance in
understanding network behavior. To further solidify this understanding, we introduce the IoU metric
to quantify and visualize disagreement, providing a new lens through which to analyze and mitigate
selection bias in model updates.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 EXAMPLE OF JUMP-UPDATE STRATEGY

We would like to give a simple example to illustrate the Jump-update Strategy for quick understanding.
Suppose we have three iterations, iter0, iter1, and iter2. After the parameters of iter1 are updated
through backpropagation, the resulting updated model is referred to as iter2. When training in iter2,
the model only used the clean samples selected by iter0, which creates a ‘disagreement’ due to the
inconsistency between the iteration where sample selection occurs (iter0) and the iteration where
the model is updated (iter1). The behavior of the update exhibits a jump form. In this example, the
current iteration i equals 2, and jump-step S equals 2. Iter0 is the ancestor iteration of iter2.

A.4 PROOF OF PROPERTY 1

The key of proving DA / n is to prove NA = Niteration. Under the hypothesis that the error flow
is an uninterrupted model, the situation can be categorized into two types: (1) errors accumulate
in a single network; (2) errors accumulate across multiple networks. Through the analysis of the
following two types, Property 1 is proved.

Errors Accumulate in A Single Network. When errors accumulate in a single network, one
accumulation is generated from one sample selection and one model update. As is obvious that
the single network operates only one sample selection and a parameter updating in each iteration.
Therefore, NA = Niteration.

Errors Accumulate across Multiple Networks. When errors accumulate across multiple networks,
errors first pass through each network once before being transmitted back to the original network. We
denote the number of networks by Nnet. Error accumulation can only occur when the updates of the
network are guided by its own selections. Thus, this process requires Nnet sample selections and
Nnet parameter updates. Similarly, in each iteration, all networks collectively undergo Nnet sample
selections and Nnet parameter updates.

A.5 DISCUSSION ON ERROR FLOW

First of all, let us review the formulation Na = NA
Nf

, mentioned in Property 2. The following
discussion is helpful for the understanding of this formulation. We denote the number of samples as
ns and the number of mini-batches as nb. If the network updates the identifier table after updating
the model when the data for selection is a single sample, Nf = ns. When it comes to mini-batches,
Nf = nb. In all of these conditions, Na = e. Thus the single network can be enhanced by integrating
the jump-update strategy. If the network updates the identifier table before updating parameters,
Nf will be doubled so that Na = 0.5e. The cross-Update strategy uses two networks to mitigate
bias, it changed Nf to 2. This shows that the cross-update strategy can be incorporated into our
framework and does not require the use of two networks as well as the maintenance of two training
processes. Moreover, we provide two methods to reduce Na: the most direct method is to control the
update frequency of the identifier table, or by adding new identifier tables to maintain the updates
per iteration, each doubling of the identifier table reduces Na by half. This allows us to control Na

flexibly. Empirical evidence has shown that maintaining Na in the hundreds is reasonable. Limiting
Na to a single-digit number can lead to the model updating too slowly and over-fitting noise.

A.6 DISCCUSION ON INTIAL BIAS

Initial selection bias and number of accumulations, i.e., Na, will jointly affect the overall degree of
accumulated error DA. Initial Bias is manifested in the form of initial identifier tables which can be
obtained in three ways: the first is randomly selection, the second involves updates during warm-up,
and the third approach involves labeling before training, which is the usual practice. For ease of
subsequent discussion, we call them Random initiation, Warm-up initiation, and Instant initiation.
To analyze the impact of initial bias on error accumulation, we observe the subsequent performance
of the network by controlling the initial bias, using a single network as the baseline. The update
frequency of identifier table i.e., r is set at 10%, and three different initiations are employed. The first
two tables are unbiased as they are not affected by selection, whereas Instant initiation is biased as it
acquires tables during the second epoch of training and is affected by an increasingly deepening bias.
Experimental results are shown in Fig. 5. The identifier table from Random initiation is less accurate

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

than that obtained through Instant initiation, yet its performance is significantly better, demonstrating
the effectiveness of avoiding bias. Warm-up initiation gets the best result, as it avoids performance
degradation caused by the high error rate of the initial table.

Figure 5: Effect of initial bias on training.

A.7 LOSS CONVERGENCE

To show how the different values of scaler T affect the convergence rates, we present the results
of four different temperature values in Fig. 6. When T=1, the Binary Cross-Entropy (BCE) loss
fails to converge properly. The cases for T = 2, 3, and 4 illustrate the effects of temperature scaling.
Specifically, temperature scaling slows down the convergence speed of the classification head, which
can be obviously observed during the warm-up phase, while it accelerates the convergence of
the detection head, which can be obviously observed during the training phase. Notably, as the
temperature T increases, the convergence rate of the Cross-Entropy (CE) loss decreases.

(a) Convergence of Loss BCE (b) Convergence of Loss CE

Figure 6: Convergence of losses with different temperature scaling factors T under CIFAR-100 Sym.
✏ = 0.8.

A.8 ABLATION STUDY

We evaluate three components of Jump-teaching: data augmentation (AUG), jump-update strategy
(JU), and sample selection (SS) with an ablation study. Results are shown in Table 6.

Effectiveness of Data Augmentation. When only a limited number of samples are available, such
as in the presence of symmetric noise ratio ✏ = 0.8, data augmentation enables the network to gain
knowledge of the intrinsic characteristics of the images themselves. Therefore, it can significantly
enhance the learning capabilities of the networks for these samples.

Effectiveness of Jump-update Strategy. Jump-update strategy can effectively overcome error
accumulation, allowing it to perform excellently with extreme noise. Without the jump-update
strategy, the network is almost unable to learn on CIFAR-10 with the symmetric noise ratio ✏ = 0.8.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Effectiveness of Sample Selection. If noisy samples are not filtered out at all, the network can easily
fit them, resulting in poor generalization performance. This has been verified among diverse noise
settings.

Table 6: Ablation Study.

Modules CIFAR-10 CIFAR-100

AUG JU SS Sym. 20% Sym. 50% Sym. 80% Asym. 40% Sym. 20% Sym. 50% Sym. 80% Asym. 40%

⇥ X X 94.12 89.59 74.94 85.34 74.69 65.87 32.66 67.30
X ⇥ X 88.33 81.27 10.01 56.28 68.32 65.27 28.71 50.40
X X ⇥ 85.42 63.21 30.18 78.19 61.88 39.35 12.90 45.17
⇥ ⇥ X 92.21 87.24 9.99 57.56 74.19 65.98 29.23 57.05
X X X 94.77 92.11 82.81 90.91 72.15 66.91 40.81 67.66

A.9 THE SIZE OF HADAMARD CODEBOOK

As demonstrated in Table 7, we find that the performance of the network does not exhibit a clear
correlation with the code length. This indicates that our approach differs from traditional deep
hashing methods (Yang et al., 2015; Yuan et al., 2020; Jose et al., 2022) which rely on learning the
semantic features of samples. It is common sense that the performance of such methods is closely
associated with the dimensionality of the high-dimensional space, as more dimensions typically
provide richer information. However, our method only employs non-mutual exclusion of encoding,
not high-dimensional properties, to reflect patterns of memorization effects. Therefore, our approach
is robust to code length.

Table 7: Test accuracy(%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym. Asym.

Code length/Noise ratio 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4

8 94.66 91.85 82.75 90.56 - - - -
16 94.7 92.00 82.87 90.79 - - - -
32 94.74 92.3 83.28 90.99 - - - -
64 94.67 92.10 83.41 90.51 72.14 66.91 40.81 67.66
128 94.62 91.95 83.1 90.55 72.04 66.39 38.25 68.86

A.10 DETAILS OF SAMPLE SELECION

We record the number and ratio of clean samples selected in each epoch. In moderate noise, this
data is reported for noise condition Sym. ✏ = 0.2, Sym. ✏ = 0.5, Sym. ✏ = 0.8 in the CIFAR-10
and CIFAR-100 datasets and is presented in Fig. 7. In extreme noise, we report the results in Sym.
✏ = 0.9 in the CIFAR-10 and is presented in Fig. 8.

Moderate Noise. It can be observed that the number of clean samples continuously increases and
stabilizes during the last 20 epochs, presented in Fig. 7(a) and Fig. 7(c). As for Fig. 7(b) and Fig.
7(d), the ratio of clean samples increases steadily during the early and middle stages of training,
indicating that the selection ability of the network improves as its performance increases. However, in
the later stages (epochs range from 150 to 200), the ratio of clean samples begins to decline, primarily
due to the model starting to fit the noisy data, which results in more noisy samples being misclassified
as clean.

Extreme Noise. As illustrated in Fig. 8(b), methods utilizing the jump-update strategy achieve a
higher ratio in clean samples, demonstrating the effectiveness of the jump-update strategy in mitigating
selection bias. Furthermore, Fig. 8(a) highlights that Jump-teaching significantly outperforms
others in the number of selected clean samples, underscoring the effectiveness of Semantic Loss
Decomposition in detecting noisy samples.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Clean num. on C-10 (b) Clean rat. on C-10 (c) Clean num. on C-100 (d) Clean rat. on C-100

Figure 7: Clean number (num.) and ratio (rat.) of selected samples on CIFAR-10 (C-10) and
CIFAR-100 (C-100) with different noise types and ratios.

(a) Clean number on CIFAR-10 (b) Clean ratio on CIFAR-10

Figure 8: Clean number and ratio of selected samples on CIFAR-10 and CIFAR-100 with extreme
noise.

A.11 THE SUMMARY OF THE BENCHMARK DATASETS

The summary of three benchmark datasets, CIFAR-10, CIFAR-100 and Clothing1M is illustrated
in Table 8. Synthetic noisy benchmark in Sec. 4.1 is evaluated on CIFAR-10, and CIFAR-100,
respectively, while real-world noisy benchmark in Sec. 4.1 is evaluated on Clothing1M. Specifically,
the CIFAR-10 dataset is a standard dataset widely used for image classification tasks. It consists of
60, 000 color images with a resolution of 32⇥ 32 pixels, divided into 10 categories, each containing
6, 000 images. The dataset is divided into 50, 000 training images and 10, 000 testing images. Similar
to the former, the CIFAR-100 dataset contains more categories. It consists of 60, 000 color images of
32⇥ 32 pixels, divided into 100 categories, with each category containing 600 images. Clothing1M

dataset is a large-scale image classification dataset specifically designed for clothing recognition. It
contains over 1, 000, 000 labeled images of clothing, covering 14 different categories such as skirts,
shirts, coats, shoes, etc. Images in the Clothing1M dataset typically do not have a fixed standard
resolution, as they are sourced from the internet.

Table 8: Summary of datasets used in the experiments.

Dataset # of training # of testing # of class Image size
CIFAR-10 50,000 10,000 10 32x32
CIFAR-100 50,000 10,000 100 32x32
Clothing1M 120,000 10,000 14 not fixed

A.12 THE SIMULATION OF NOISE

As the datasets are clean, we follow Li et al. (2020) and simulate symmetric and asymmetric noise.

Symmetric Noise. Symmetric noise assumes that label errors occur randomly and are independent of
the true labels. For a classification problem with C classes, symmetric noise is typically defined as in
Eq. 9. The formula includes two things: 1) Each correct label remains unchanged with probability
1� ✏+ ✏

C . 2) Each correct label i changes to one of the all C classes j with probability ✏. If the noise
is uniformly distributed, the probability of changing to any other class is ✏

C .

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

⇢
1� ✏+ ✏

C if i = j,

✏
C otherwise.

(9)

Asymmetric Noise. Asymmetric noise reflects that label errors are more likely to occur between
certain classes, typically based on practical scenarios where some classes are visually similar or
commonly confused. The probability model for asymmetric noise typically depends on the specific
task and data. A simple model might be that the label for a specific class i is incorrectly marked as
class j with probability ✏ij . The asymmetric noise can be formulated in Eq. 10 as follows.

P (Ỹ = j | Y = i) = ✏ij , (10)

where ✏ij can be non-zero when i 6= j, reflecting specific mislabeling scenarios. where Y represents
the true label, Ỹ represents the potentially noisy label, and ✏ is the noise ratio.

Overall, the symmetric noise assumes that the probability of mislabeling is uniform across all
categories, whereas the asymmetric noise considers the similarity between categories. The choice of
noise typically depends on the characteristics of the dataset and the specific requirements of the task.

A.13 MORE EXPERIMENTS ON DIFFERENT NOISE TYPES

Although our experiments tested five types of noise in Sec. 4, the additional experiments of pairflip-45
and instance-dependent label noise (IDN) are illustrated here. Results are shown in Table 9 and
Table 10, respectively. On pairflip noise, Jump-teaching also exhibits its strong performance, with an
increase of 6.73% and 9.95% on CIFAR-10 and CIFAR-100, respectively. Meanwhile, our algorithm
maintains a huge advantage in instance-dependent noise. The leading margins are 3.95% (CIFAR-10
IDN. 0.2), 6.74% (CIFAR-10 IDN. 0.4), 10.2% (CIFAR-10 IDN. 0.6), 4.87% (CIFAR-100 IDN. 0.2),
4.3% (CIFAR-100 IDN. 0.4) and 12.67% (CIFAR-100 IDN. 0.6). This indicates that our algorithm is
also extremely robust under IDN settings.

Table 9: Performance of methods on CIFAR-10 and CIFAR-100 with pairflip ✏ = 0.45 noise.

Methods CIFAR-10 CIFAR-100
CE 50.22 ± 0.43 21.59 ± 0.87
Co-teaching 52.99 ± 0.16 33.22 ± 0.66
Co-teaching+ 55.19 ± 0.27 29.26 ± 0.15
PENCIL 54.58 ± 2.26 24.97 ± 0.57
SPRL 90.54 ± 0.02 53.62 ± 1.07
FINE 77.09 ± 0.10 41.62 ± 1.01
Topofilter 84.60 ± 0.45 52.40 ± 1.42
Jump-teaching 91.33 ± 0.23 62.35 ± 0.74

Table 10: Performance of methods on CIFAR-10 and CIFAR-100 with varying IDN noise ratios.

Methods CIFAR-10 CIFAR-100

0.2 0.4 0.6 0.2 0.4 0.6

CE 85.45 ± 0.57 76.23 ± 1.54 59.75 ± 1.30 57.79 ± 1.25 41.15 ± 0.83 25.68 ± 1.55
Co-teaching 88.87 ± 0.24 73.00 ± 1.24 62.51 ± 1.98 43.30 ± 0.39 23.21 ± 0.57 12.58 ± 0.51
Co-teaching+ 89.80 ± 0.28 73.78 ± 1.39 59.22 ± 6.34 41.71 ± 0.78 24.45 ± 0.71 12.58 ± 0.51
PENCIL 86.23 ± 1.23 69.88 ± 1.39 44.16 ± 1.58 57.41 ± 0.69 48.38 ± 0.52 29.69 ± 3.03
FINE 90.85 ± 1.21 84.53 ± 0.77 61.24 ± 2.02 60.14 ± 0.015 43.05 ± 1.43 28.88 ± 2.01
Topo 89.66 ± 0.86 85.95 ± 1.02 75.28 ± 0.64 64.41 ± 0.37 55.00 ± 0.82 31.61 ± 1.45
SPRL 87.99 ± 0.03 86.15 ± 0.81 75.01 ± 0.74 67.66 ± 0.17 64.55 ± 0.19 47.16 ± 1.97
Jump-teaching 94.80 ± 0.28 92.89 ± 0.33 85.48 ± 0.41 72.53 ± 0.21 68.85 ± 0.27 59.83 ± 0.09

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.14 A BRIEF OVERVIEW OF COMPARED METHODS

We reimplemented Decoupling, Co-teaching, Co-teaching+, and PENCIL with the publicly available
code*. Similarly, FINE, SPRL, and TopoFilter were re-implemented by their respective official
repositories†‡ §. Results in Table 3 are cited from (Xia et al., 2023). The outcomes for Decoupling,
Co-teaching+, and PENCIL on CIFAR-10 and CIFAR-100 with symmetric noise, shown in Table 1,
are derived from (Li et al., 2023). Additionally, baseline results featured in Table 5 for DivideMix,
DivideMix with ✓1 test, and DivideMix without co-training are sourced from (Li et al., 2020).

A.15 DATA AUGMENTATION

When the noise is severe, there are very few clean samples. Thus, the network struggles to acquire
sufficient knowledge from a small number of available samples. Therefore, we adopt a data augmen-
tation strategy following Cubuk et al. (2020) and linearly interpolate the augmented image with its
weak view generated by random cropping and horizontal flipping. This enables the network to more
easily focus on the key features of the samples. We follow Eq. 11 to combine weak and strong views.

xaug = �xweak + (1� �)xstrong , where � ⇠ Beta(↵,↵). (11)

A.16 ANALYSIS OF THRESHOLD

We test the sensitivity of Jump-teaching to the threshold ⌧ . We conduct experiments on CIFAR-10 with
symmetric noise ratio ✏ = 0.5 and asymmetric noise ratio ✏ = 0.4. As shown in Table 11, the results
indicate a relatively stable performance with different thresholds. In other words, the effectiveness
of Jump-teaching is not significantly influenced by the value of ⌧ and is more adaptable to various
datasets. We attribute the success to two main factors. First, the Hadamard matrix for hashing
codes exhibits uniformness in each column (Yang et al., 2015). Second, we utilize classification
and auxiliary heads to collaboratively select samples. This guarantees that an adequate quantity of
samples is always available for learning. Both of the two factors significantly enhance the stability
and accuracy of the model across different datasets.

Table 11: Test Accuracies(%) with different threshold settings.

⌧ 0.001 0.005 0.01 0.05 0.1

Sym. ✏ = 0.5 92.12 92.17 92.04 91.97 92.17
Asym. ✏ = 0.4 90.71 90.66 90.79 90.82 90.70

A.17 THE CHOICE OF JUMP STEP

In the Table 12, we test the effect of jump steps in Jump-teaching. It is shown that performance
with various step settings remains stable. In the Jump-update Strategy, we opt for a step size of 2,
obviating the need for additional forward propagation. Furthermore, empirical results indicates a
marginal decline in performance as step size increases. This evidence corroborates the assertions in
Sec. 3.1. That is to say, delays in updating tables can detrimentally impact the network assimilating
newly introduced clean samples.

A.18 THE STRUCTURES OF BACKBONES AND THE AUXILIARY HEAD

The auxiliary head of Jump-teaching consists of three fully connected layers with ReLU activations
and dropout layers between two fully connected layers, followed by a Tanh activation. For CIFAR-10

and Clothing1M, the output dimension of the last fully connected layer is set to 32, whereas setting
to 64 for CIFAR-100. The intermediate dimension is uniformly set to 512.

*https://github.com/JackYFL/DISC
†https://github.com/Kthyeon/FINE_official
‡https://github.com/pxiangwu/TopoFilter
§https://github.com/xsshi2015/Self-paced-Resistance-Learning

20

https://github.com/JackYFL/DISC
https://github.com/Kthyeon/FINE_official
https://github.com/pxiangwu/TopoFilter
https://github.com/xsshi2015/Self-paced-Resistance-Learning


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Test accuracy(%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise
among diverse noise settings.

Noise type and ratio/ Step 1 2 3 4 5 10 15 20 25 30

CIFAR-10 Sym. ✏ = 0.8 82.81 83.37 82.47 83.09 82.55 82.04 81.03 81.35 81.46 79.77
CIFAR-10 Asym. ✏ = 0.4 90.91 90.77 90.66 90.78 90.86 90.42 90.35 90.60 90.69 90.23
CIFAR-100 Sym. ✏ = 0.5 66.91 67.03 66.85 66.21 66.27 65.54 65.87 65.88 65.46 64.67

A.19 EXPERIMENTS OF THE JUMP-UPDATE STRATEGY ON THE Clothing1M DATASET

In this section, we evaluate the performance of the jump-update strategy on the Clothing1M dataset.
Specifically, we have integrated the jump-update strategy with Co-teaching and DivideMix. The
experimental setup for Co-teaching adheres to Xia et al. (2023), and the setup for DivideMix follows
Li et al. (2020). As shown in Table 13, the integration of the jump-update strategy results in
performance improvements of 2.88% for Co-teaching and 0.26% for DivideMix, demonstrating the
reliability of the jump-update strategy in real-world scenarios.

Table 13: Test accuracy(%) on Clothing1M.

Method Co-teaching (2*ResNet18) J-Co-teaching (1*ResNet18) DivideMix J-DivideMix
Accuracy 67.94 70.82 74.17 74.43

21


	Introduction
	Related Work
	Methodology
	Jump-update Strategy
	Semantic Loss Decomposition
	Training Pipeline

	Experiments
	Comparison with the State-of-the-Arts
	Experiments on Jump-update Strategy

	Conclusion
	Supplemental material
	Discussion about Disagreement
	Discussions about "Disagreement"
	Example of Jump-update Strategy
	Proof of Property 1
	Discussion On Error Flow
	Disccusion on Intial Bias
	Loss Convergence
	Ablation Study
	The Size of Hadamard Codebook
	Details of Sample Selecion
	The Summary of the Benchmark Datasets
	The Simulation of Noise
	More Experiments on Different Noise Types
	A Brief Overview of Compared Methods
	Data Augmentation
	Analysis of Threshold
	The Choice of Jump Step
	The Structures of Backbones and the Auxiliary Head
	Experiments of the Jump-Update Strategy on the Clothing1M Dataset


