3

>

315

316
317

322

323
324

326

327

328

329
330

Appendix

Part 1
Table of Contents
A More Method Details. 10
A.1 Pseudocode of CARe. e 10
A2 CARewithOpenMask3D 11
A3 CARewith VLMaps. e 11
B Additional Experimental Details. 11
C Limitations and Future Works. 12

A More Method Details.

A.1 Pseudocode of CARe.

To further enhance the reproducibility of our work, we present CARe’s pseudocode in Algorithm 1.
Additionally, we will open-source the code once our work is accepted.

Algorithm 1 Pipeline of CARe

1: S = SelectionMethod € {TopConfidence, TopPrediction }
2: k = The boundary of ranking for the selection method
3: U = UncertaintyMeasure € {Entropy, StandardError, KL}
4: N = Number of all the points
5: f = Feature dimensions
6: m = Number of all possible classes
7: O = Set of every point, shape (N, f)
8: if original plan fails then
9: if S == TopConfidence then > Filter with selection method
10: C' = score of O from high to low, shape (N, 1)
11: O’ = points with top k highest scores, shape (N, f)
12: else if S == TopPrediction then
13: P = predicted class from high to low for each point in O, shape (N, m)
14: O’ = points where their top k predicted classes include the target class, shape (N’, f)
15: end if
16: if U == Entropy then > Choose a point with uncertainty measure
17: E = entropy of O, shape (N’ 1)
18: O* = argmax(E), shape(1, f)
19: else if U == StandardError then
20: SE = standard error of O’, shape (N’ 1)
21: O* = argmin(SE), shape(1, f)
22: else if U == KL then
23: KL = KL divergence of O’, shape (N',1)
24: O* = argmin(KL), shape(1, f)
25: end if
26: return O*
27: end if

10

331

332
333
334

335
336
337
338
339
340
341

342
343
344
345
346
347
348

349

350

352

353
354
355
356

357
358
359
360

361
362
363
364
365
366

367

368
369
370
371
372

A.2 CARe with OpenMask3D .

Method Overview: Following OpenMask3D [3], a transformer-based 3d instance segmentation
model is used to propose 3d masks. After the masks are proposed, up to 5 views where the object is
visible can be selected for calculating the mask feature.

View Selection: Given a 3d object mask, the 3d points in the mask are projected back to 2d for
all posed RGB images in the scene. We then validate whether the object is visible in a view by
checking if any of the points projected to 2d lies within the image. If there are more than 5 views
where the object is visible, we rank the images by the number of object pixels and choose the top
5 views. This not only helps us manage the computation cost but also encourages the selection of
views that are closer to the object, which might be helpful in filtering out far-away views that might
not capture the object clearly.

Feature Extraction: Following the original OpenMask3D implementation, we used CLIP-ViT-
L/14 for encoding images and texts. The 3d to 2d projection operation mentioned in the last para-
graph has also allowed us to calculate the bounding-box of the object which we refer to as “object
crops”. For feature extraction, we encode the object crops with the CLIP visual encoder and save
them all instead of taking the average of them. In the original OpenMask3D implementation, they
also used multi-scale cropping for each object crop as a data augmentation. Since data augmentation
is orthogonal to the direction of this work, we omitted this part for simplicity.

A.3 CARe with VLMaps.

Method Overview: Following the original VLMaps [5], we first select 10 scenes and randomly
generate several poses, which includes position and rotation, with their corresponding RGBD obser-
vations. Then, the image features generated by LSeg[10] model are projected to the global frame.

Map Generation: As previously mentioned, we build the map by the method that is identical to
VLMaps. However, we further save some metrics for each grid which are utilized in our work, such
as entropy, standard error, and KL divergence. Additionally, to align with the method of feature
fusion [1] adopted in VLMaps, we calculate the above metrics in their weighted version.

Navigation and Planning: In the navigation stage, VLMaps first generate a mask indicating the
presence of a specific object class, and it then plans a path to the boundary of the nearest object.
With the provided path, it further calculate the angle and distance between two subsequent halfway
point, generating the low-level actions that is used in the HabitatSim [12, 13, 14].

Evaluation and Re-proposing: After all the actions are executed, we calculate the distance be-
tween the agent and the approximate boundary of the nearest object with the ground truth data
provided by the simulator. Following the settings in VLMaps, we count it success when the distance
is less than or equal to 1 meter. If it fails, we then generate a new proposal of where the object may
be by our method CARe. Similarly, we calculate the distance between the new point and its nearest
object, checking whether the distance is less than or equal to 1 meter.

B Additional Experimental Details.

Quantitative Results: In the setting of VLMaps, we also conduct the KL divergence method as
our uncertainty measure as shown in Table 3. However, some scenes with larger space or more data,
may cause the calculation of pairwise KL divergence become quite computational intensive. Thus,
we have to skip two larger scenes due to the limitation of memory size, which makes the result not
comparable to others.

11

373
374
375

376

377
378
379
380
381
382
383

385

386

Replan Strategy k=4 k=8 k=16 k=40 k=100

No replan 54.4
Max confidence (highest score) 67.0
Random replan 56.2

Min KL from topk confidence =~ 82.7 83.1 852 845 82.7
Min KL from topk category 792 771 739 644 644

Table 3: VLMaps Replanning Subgoal Success Rates with KL divergence

Qualitative Results: We provide more qualitative results on the anonymized project page', in-
cluding the process of our proposed CARe solving an object navigation task. These qualitative
results support our claims and make our work more convincing.

C Limitations and Future Works.

While our CARe effectively cooperates with existing pre-explored semantic maps and navigation
models in a training-free manner to achieve better performance, it may be limited by one major
assumption: CARe assumes that the navigation model has consistent decision biases. When the
navigation model is updated, this decision bias may be eliminated or changed, resulting in less
significant performance improvements that CARe can bring. In addition, because the structure of
the semantic map may be different, CARe only uses the fixed semantic map for re-planning and
does not further update the map with new information during the process. This research direction
has the potential to continuously improve performance but is beyond the scope of this study. We
will discuss and verify this direction in our future work.

"https://carmaps.github.io/supplements/

12

