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A More Method Details.327

A.1 Pseudocode of CARe.328

To further enhance the reproducibility of our work, we present CARe’s pseudocode in Algorithm 1.329

Additionally, we will open-source the code once our work is accepted.330

Algorithm 1 Pipeline of CARe

1: S = SelectionMethod ∈ {TopConfidence, TopPrediction}
2: k = The boundary of ranking for the selection method
3: U = UncertaintyMeasure ∈ {Entropy, StandardError, KL}
4: N = Number of all the points
5: f = Feature dimensions
6: m = Number of all possible classes
7: O = Set of every point, shape (N, f)

8: if original plan fails then
9: if S == TopConfidence then ▷ Filter with selection method

10: C = score of O from high to low, shape (N, 1)
11: O′ = points with top k highest scores, shape (N ′, f)
12: else if S == TopPrediction then
13: P = predicted class from high to low for each point in O, shape (N,m)
14: O′ = points where their top k predicted classes include the target class, shape (N ′, f)
15: end if
16: if U == Entropy then ▷ Choose a point with uncertainty measure
17: E = entropy of O′, shape (N ′, 1)
18: O∗ = argmax(E), shape(1, f)
19: else if U == StandardError then
20: SE = standard error of O′, shape (N ′, 1)
21: O∗ = argmin(SE), shape(1, f)
22: else if U == KL then
23: KL = KL divergence of O′, shape (N ′, 1)
24: O∗ = argmin(KL), shape(1, f)
25: end if
26: return O∗

27: end if
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A.2 CARe with OpenMask3D .331

Method Overview: Following OpenMask3D [3], a transformer-based 3d instance segmentation332

model is used to propose 3d masks. After the masks are proposed, up to 5 views where the object is333

visible can be selected for calculating the mask feature.334

View Selection: Given a 3d object mask, the 3d points in the mask are projected back to 2d for335

all posed RGB images in the scene. We then validate whether the object is visible in a view by336

checking if any of the points projected to 2d lies within the image. If there are more than 5 views337

where the object is visible, we rank the images by the number of object pixels and choose the top338

5 views. This not only helps us manage the computation cost but also encourages the selection of339

views that are closer to the object, which might be helpful in filtering out far-away views that might340

not capture the object clearly.341

Feature Extraction: Following the original OpenMask3D implementation, we used CLIP-ViT-342

L/14 for encoding images and texts. The 3d to 2d projection operation mentioned in the last para-343

graph has also allowed us to calculate the bounding-box of the object which we refer to as ”object344

crops”. For feature extraction, we encode the object crops with the CLIP visual encoder and save345

them all instead of taking the average of them. In the original OpenMask3D implementation, they346

also used multi-scale cropping for each object crop as a data augmentation. Since data augmentation347

is orthogonal to the direction of this work, we omitted this part for simplicity.348

A.3 CARe with VLMaps.349

Method Overview: Following the original VLMaps [5], we first select 10 scenes and randomly350

generate several poses, which includes position and rotation, with their corresponding RGBD obser-351

vations. Then, the image features generated by LSeg[10] model are projected to the global frame.352

Map Generation: As previously mentioned, we build the map by the method that is identical to353

VLMaps. However, we further save some metrics for each grid which are utilized in our work, such354

as entropy, standard error, and KL divergence. Additionally, to align with the method of feature355

fusion [1] adopted in VLMaps, we calculate the above metrics in their weighted version.356

Navigation and Planning: In the navigation stage, VLMaps first generate a mask indicating the357

presence of a specific object class, and it then plans a path to the boundary of the nearest object.358

With the provided path, it further calculate the angle and distance between two subsequent halfway359

point, generating the low-level actions that is used in the HabitatSim [12, 13, 14].360

Evaluation and Re-proposing: After all the actions are executed, we calculate the distance be-361

tween the agent and the approximate boundary of the nearest object with the ground truth data362

provided by the simulator. Following the settings in VLMaps, we count it success when the distance363

is less than or equal to 1 meter. If it fails, we then generate a new proposal of where the object may364

be by our method CARe. Similarly, we calculate the distance between the new point and its nearest365

object, checking whether the distance is less than or equal to 1 meter.366

B Additional Experimental Details.367

Quantitative Results: In the setting of VLMaps, we also conduct the KL divergence method as368

our uncertainty measure as shown in Table 3. However, some scenes with larger space or more data,369

may cause the calculation of pairwise KL divergence become quite computational intensive. Thus,370

we have to skip two larger scenes due to the limitation of memory size, which makes the result not371

comparable to others.372
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Replan Strategy k=4 k=8 k=16 k=40 k=100

No replan 54.4

Max confidence (highest score) 67.0
Random replan 56.2

Min KL from topk confidence 82.7 83.1 85.2 84.5 82.7
Min KL from topk category 79.2 77.1 73.9 64.4 64.4

Table 3: VLMaps Replanning Subgoal Success Rates with KL divergence

Qualitative Results: We provide more qualitative results on the anonymized project page1, in-373

cluding the process of our proposed CARe solving an object navigation task. These qualitative374

results support our claims and make our work more convincing.375

C Limitations and Future Works.376

While our CARe effectively cooperates with existing pre-explored semantic maps and navigation377

models in a training-free manner to achieve better performance, it may be limited by one major378

assumption: CARe assumes that the navigation model has consistent decision biases. When the379

navigation model is updated, this decision bias may be eliminated or changed, resulting in less380

significant performance improvements that CARe can bring. In addition, because the structure of381

the semantic map may be different, CARe only uses the fixed semantic map for re-planning and382

does not further update the map with new information during the process. This research direction383

has the potential to continuously improve performance but is beyond the scope of this study. We384

will discuss and verify this direction in our future work.385

386

1https://carmaps.github.io/supplements/
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