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View Gap Matters: Cross-view Topology and Information
Decoupling for Multi-view Clustering

Anonymous Authors

ABSTRACT
Multi-view clustering, a pivotal technology in multimedia research,
aims to leverage complementary information from diverse perspec-
tives to enhance clustering performance. The current multi-view
clustering methods normally enforce the reduction of distances
between any pair of views, overlooking the heterogeneity between
views, thereby sacrificing the diverse and valuable insights inherent
in multi-view data. In this paper, we propose a Tree-Based View-
GapMaintainingMulti-ViewClustering (TGM-MVC) method. Our
approach introduces a novel conceptualization of multiple views
as a graph structure. In this structure, each view corresponds to a
node, with the view gap, calculated by the cosine distance between
views, acting as the edge. Through graph pruning, we derive the
minimum spanning tree of the views, reflecting the neighbouring
relationships among them. Specifically, we applied a share-specific
learning framework, and generate view trees for both view-shared
and view-specific information. Concerning shared information, we
only narrow the distance between adjacent views, while for specific
information, we maintain the view gap between neighboring views.
Theoretical analysis highlights the risks of eliminating the view
gap, and comprehensive experiments validate the efficacy of our
proposed TGM-MVC method.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering; • Computing methodologies→ Cluster analysis.

KEYWORDS
multi-view clustering, view gap

1 INTRODUCTION
In real world scenarios, we often face the challenge of learning
from multiple media sources or making decisions by combining
data from various sources. For instance, in the field of autonomous
driving technology, autonomous vehicles gather data from different
perspectives through sensors such as cameras and radars, integrat-
ing and analyzing these data to make intelligent decisions. These
diverse and rich sources of information present us with the diver-
sity and complementary views of the data. Therefore, effectively
integrating and mining the rich information contained in these
multimedia data sources becomes a crucial issue.
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Alignment-based Method

ACC=36.63%

NMI=68.01%

(a) t-SNE of alignment-based method
TGM-MVC Method

ACC=61.26%

NMI=80.79%

(c) t-SNE of TGM-MVC method

Share-Specific Method

ACC=56.87%

NMI=77.44%

(b) t-SNE of share-specific method
View Gap in TGM-MVC

Maintain

View Gap

(d) view gap illustration on TGM-MVC

Figure 1: t-SNE Visualization on ALOI-100 dataset, where
each color represents a view. Fig (a) presents the alignment-
based method. Fig (b) presents the share-specific method. Fig
(c) presents our proposed TGM-MVC method. Fig (d) demon-
strates the view gap maintained by the TGM-MVC method.
By training these three methods for same epochs, we have
verified that maintaining the view gap helps preserve view
diversity and enhances clustering effectiveness.

Multi-view learning is a nontrivial topic in the filed of multi-
media technology. A fundamental issue of multi-view learning is
multi-view representation learning [6, 12, 15, 17, 28, 32, 44], which
addresses the challenge of unifying data representation from diverse
sources. Multi-view clustering (MVC) [3, 16, 18, 40, 45, 48, 50, 52] is
a typical task in multi-view learning, where the clustering perfor-
mance is largely contingent upon the quality of the representations
of multi-view samples. As such, exploring representation learn-
ing across multiple views holds significant importance, especially
within the domain of multi-view clustering tasks.

Existing deepmulti-view clustering representation learningmeth-
ods can be categorized into three paradigms [9, 15], i.e., joint meth-
ods [13, 39, 41, 55], alignment-based methods [6, 12, 32, 52], and
share-specific methods [10, 27, 29, 44]. Joint methods enable sam-
ples from different views to be independently optimized within
their respective view spaces, and then integrates the representa-
tions from different views through fusion techniques. The latter
two methods both map representations from different views into a
shared subspace, aiming to learn the unified representation for all
views. Alignment-based methods [6, 12, 32, 52] aim to bring repre-
sentations closer between any view pair. Share-specific methods

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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[10, 27, 29, 44] model the view information as shared information
and specific information, maximizing the mutual information of
shared information across any view.

Alignment-basedmethods and share-specificmethods have demon-
strated notable advancements in the MVC task. However, their
capacity to fully apprehend the intricacies of view heterogeneity
appears to be constrained. Alignment-based methods concentrate
solely on the consensus between views, overlooking the comple-
mentary information among them. Share-specific methods forcibly
bring views closer in consensus, and lack supervision in learning
complementary information as well. In real-world scenarios, views
exhibit intricate adjacency relationships. Fig. 1 presents t-SNE visu-
alizations of different views fromALOI-100 dataset. In Fig. 1(a)(b)(c),
we utilized alignment-based method, share-specific method, and
our proposed TGM-MVC method for the same training epochs. The
contrastive-based method homogenizes different views, leading to
subpar clustering performance; whereas the TGM-MVC method
demonstrates excellent clustering performance, maintaining the
distinctions between views (Fig. 1(d)). In this paper, we define the
views’ distinctions as view gap, which is measured by cosine dis-
tance of view representations. Based on the concept of view gap,
we propose a foundational hypothesis, i.e. the pursuit of uniform
consensus across all views may be inherently irrational. Instead,
preserving the view gaps between distinct views and enrich-
ing their diversity should facility the learning of more robust
multi-view representations.

In line with the limitations highlighted above for current share-
specific methods, we introduce a novel approach, termed the Tree-
Based View Coordination Enhancement (TGM). Building upon the
share-specific framework, our proposed method incorporates a
more comprehensive understanding of the relationships between
multi-views. Our core idea is the recognition of the intricate adja-
cency relationships that exist between views in real-world scenarios,
as demonstrated by the t-SNE visualizations in Fig. 1(a) and (b).
Unlike alignment-based methods that focus merely on achieving
consensus or share-specific methods that force views into closer
alignment, our TGM method takes into account both consensus
and complementary information. To achieve this, we begin by con-
structing a view adjacency matrix for the shared representations,
capturing the inherent relationships across different views. With
this matrix, we generate a minimum spanning tree that encapsu-
lates the shared information while preserving the natural distances
between views. By bringing closer the shared representations be-
tween adjacent nodes in this view tree, we avoid the limitations of
directly aligning distant views, as observed in Fig. 1(d).

The primary contributions of this work can be summarized as
follows:

• Our TGM-MVC method acknowledges the intrinsic “view
gap” between views. Through theoretical and empirical re-
search, we demonstrate that maintaining this view gap con-
tributes to preserving the rich information of multi-views.

• The tree-based view graph generation strategy allows for the
rapid and efficient construction of neighborhood relation-
ships among views, analyzing the proximity relationships
between views, thus facilitating downstream tasks in multi-
view learning.

• Comprehensive experiments across six benchmark datasets
serves to highlight both the superiority and efficiency of the
proposed TGM-MVCmethod. Furthermore, the effectiveness
of our approach is substantiated by ablation studies and
visualization experiments.

2 RELATEDWORK
2.1 Deep Multi-view Representation Learning
Recently, Multi-View Clustering (MVC) [1, 20–26, 34, 37, 38, 51]
has recently attracted considerable attention as a crucial multime-
dia technology. Within this domain, deep Multi-View Clustering
(DMVC) [2, 8, 18, 19, 30, 32, 42, 46, 53] using deep networks has
emerged as an important approach. Presently, deep multi-view clus-
tering methods can be categorized into three main classes: joint
methods, alignment-based methods, and share-specific methods.
Joint methods consider the differences and complementarities be-
tween views, achieving the representations by independently op-
timizing and concatenating sample representations in each view
space. For instance, DMJC [41] involves training independent au-
toencoders for each view and then utilizes sharpening of the distri-
bution of concatenated representations as a self-supervised signal
for training. While joint method for multi-view representation
learning is straightforward and effective, it lacks direct interaction
between views, thereby hindering the acquisition of a consensus
across multiple views. Alignment-based methods, on the other
hand, map representations from different views to a shared seman-
tic space based on the consistency of multi-view data, with the most
typical approach being contrastive learning to minimize the dis-
tances between any two views. For instance, MFLVC [47] introduces
two objectives on high-level features and pseudo-labels, leverag-
ing contrastive learning to diminish the distances between views
and achieve multi-view clustering. However, this method primarily
focuses on the consensus among views, neglecting the differences
and gaps between views, leading to the loss of unique view-specific
information during the alignment process and resulting in infor-
mation loss. Share-specific methods offer a more comprehensive
integration of the aforementioned approaches by decoupling repre-
sentations into consensus information and unique information, thus
considering both the consistency and complementarity of multiple
views. Nevertheless, the share-specific information architecture
still exhibits shortcomings in addressing the view gap. In the subse-
quent section, we will delve into a detailed illustration of the view
gap issue.

2.2 Rethinking of view gap in DMVC
Recent studies have unveiled the existence of gaps among hetero-
geneous data sources, and forcefully eradicating these distinctions
could detrimentally affect the data’s representation learning. Wang
et al. [36] carried out a theoretical scrutiny on contrastive loss,
stressing that enhanced alignment should involve the diminish-
ment of disparities across diverse modalities. Nonetheless, although
alignment is extensively applied in pre-training utilizing multiple
data sources, potential conflicts could emerge between upstream
alignment objectives and diverse downstream tasks, such as clas-
sification or clustering. Jiang et al. [11] analyzed two modalities,
image and text, and discovered that minimizing the modality gaps
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Table 1: Basic notations used in this paper.

Notation Meaning

X(𝑣) Data matrix of the 𝑣-th view
Z̃(𝑣) Shared representation of the 𝑣-th view
Ẑ(𝑣) Specific representation of the 𝑣-th view
Z Global representation of all views
𝑉 View number of the multi-view data set
𝑁 Sample number of the multi-view data set
𝐸, 𝐷 Shared Encoder/Decoder for all views

𝐸 (𝑣) , �̂� (𝑣) Specific Encoder/Decoder for the 𝑣-th view
M̃ View Consensus Distance Matrix
M̂ View Heterogeneity Distance Matrix

G = (X, E) Fully-connected view graph
G̃ = (X, Ẽ) View Consensus Spanning Tree
Ĝ = (X, Ê) View Heterogeneity Spanning Tree

does not always lead to improved performance in subsequent tasks.
While existing studies have primarily concentrated on dual data
sources, when dealing with multiple data sources, as in multi-view
settings, the variations in distances between different view pairs
can pose a growing challenge in distance evaluation. Dong et al. [4]
constructed a relational matrix among views rooted in the distribu-
tion of view data, with the intention of fostering consensus among
views while simultaneously deviating from specialized complemen-
tary representations linked to specific views as indicated by the
relationship matrix. Nevertheless, the diverse gaps among different
view pairs suggest an inherent complexity in both harmonizing
all views towards consensus and distancing complementary repre-
sentations within diverse views. Tackling the intricacies stemming
from the disparities among various views in a multi-view context
continues to pose an unresolved challenge.

3 METHOD
In this section, we elaborate on our Tree-Based View-Gap Maintain-
ing Multi-View Clustering (TGM-MVC) method. The entire frame-
work is illustrated in Fig. 2. It encompasses three modules and three
stages: 1) In the first stage, we employ a conventional share-specific
Learning Module (ShaSpec) to decouple sample features X(𝑣) into
shared representations Z̃(𝑣) and specific representations Ẑ(𝑣) . 2) In
the second stage, we introduce a Shared Tree-based View Consen-
sus LearningModule (ShaTree) and a Specific Tree-based ViewGap
Maintaining Module (SpecTree), which respectively operate on
the shared representations Z̃(𝑣) and specific representations Ẑ(𝑣)

obtained from the first module. 3) In the third stage, we concatenate
shared and specific representations from all views for clustering.
For clarity, all symbols and their meanings are presented in Table 1.

3.1 Problem Formulation
Given a set of multiview data X = {X(1) ,X(2) , ...,X(𝑉 ) }, where
𝑉 is the number of views. X(𝑣) = {x(𝑣)1 , x(𝑣)2 , ..., x(𝑣)

𝑁
} ∈ R𝑁×𝑑𝑣

represents the sample set of the 𝑣-th view, with 𝑁 as the number
of samples, and 𝑑𝑣 as the input dimension of the 𝑣-th view. x(𝑣)

𝑖
denotes the 𝑖-th sample of the 𝑣-th view.

We extract sample x(𝑣)
𝑖

into two types of features, that is the
shared view feature z̃(𝑣)

𝑖
and the specific view feature ẑ(𝑣)

𝑖
, in the

manner of [10, 27, 29, 44]. To achieve this, we trained specific en-
coders Ê(𝑣) and specific decoders D̂(𝑣) tailored to each view, along
with a universal shared encoder Ẽ and a shared decoder D̃ for
all views. It should be noted that in Ẽ or D̃, all components are
the same across all views except for the first and last two linear
mapping layers. The ultimate objective is to achieve the optimal
clustering performance by concatenating the shared and specific
representations from individual views.

3.2 Share-Specific Representation Learning
Module

To exploit the consensus and heterogeneity between views, we
leverage the share-specific representation learningmodule (ShaSpec)
in the Stage 1 to decouple the sample features into shared represen-
tations and specific representations. The loss within the ShaSpec
module is composed of three components: reconstruction loss 𝐿𝑟𝑒𝑐 ,
contrastive learning loss 𝐿𝑐𝑜𝑛 , and orthogonal loss 𝐿𝑜𝑡ℎ . We begin
by decoupling the representations of the samples, with

Z̃(𝑣)
= 𝐸

(
X(𝑣)

)
, 𝑎𝑛𝑑 Ẑ(𝑣)

= 𝐸 (𝑣)
(
X(𝑣)

)
, (1)

for 𝑖 ∈ {1, ..., 𝑁 } and 𝑣 ∈ {1, ...,𝑉 }. To prevent feature collapse, we
trained a corresponding decoder for each encoder to reconstruct
the sample features, with

X̃(𝑣)
= 𝐷

(
Z̃(𝑣) )

, 𝑎𝑛𝑑 X̂(𝑣)
= �̂� (𝑣)

(
Ẑ(𝑣) )

, (2)

where X̃(𝑣) and X̂(𝑣) respectively represent the reconstruction of
shared representation Z̃(𝑣) and specific representation Ẑ(𝑣) on the
𝑣-th view. Then we optimize the reconstruction loss of all views by

L𝑟𝑒𝑐 =

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖=1

(∥ x̃(𝑣)
𝑖

− x(𝑣)
𝑖

∥22 + ∥ x̂(𝑣)
𝑖

− x(𝑣)
𝑖

∥22), (3)

where the reconstruction loss of shared and specific representations
from all views are aggregated.
Shared Representations Learning: The ShaSpec module fo-
cuses on the learning of shared representations {Z̃(𝑣) }𝑉

𝑣=1 using
contrastive learning to gather consensus information among views.
Its objective is to minimize the differences between shared represen-
tations from different views, thereby bringing them closer together.
The contrastive loss ℓ𝑖𝑛𝑠 (𝑝, 𝑞) between the 𝑝-th view and the 𝑞-th
view is represented as:

ℓ
(𝑝 )
𝑖

= − log
exp(∫ (̃z(𝑝 )

𝑖
, z̃(𝑞)

𝑖
)/𝜏𝑙 )∑𝑁

𝑗=1

[
exp(∫ (̃z(𝑝 )

𝑖
, z̃(𝑝 )

𝑗
)/𝜏𝑙 ) + exp(∫ (̃z(𝑝 )

𝑖
, z̃(𝑞)

𝑗
)/𝜏𝑙 )

] ,
(4)

ℓ𝑖𝑛𝑠 (𝑝, 𝑞) =
1
2𝑁

𝑁∑︁
𝑖=1

(
ℓ
(𝑝 )
𝑖

+ ℓ
(𝑞)
𝑖

)
, (5)

where ∫(·, ·) is the cosine similarity and 𝜏𝑙 is the temperature hy-
pothesis. Then the overall contrastive loss L𝑐𝑜𝑛 between any two
views is given by:

L𝑐𝑜𝑛 =

𝑉 −1∑︁
𝑝=1

𝑉∑︁
𝑞=𝑝+1

ℓ𝑖𝑛𝑠 (𝑝, 𝑞) . (6)



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝐗(𝟏) ෠𝐸(1)

෡𝐷(1)෡𝐗(𝟏)

𝐗(𝟒) ෠𝐸(4)

෡𝐷(4)෡𝐗(𝟒)

… … …

𝐗(𝟏)

𝐗(𝟒)

෨𝐸

… ෩𝐷

…

…

View Heterogeneity

Distance Matrix

𝐿𝑟𝑒𝑐

𝐿𝑟𝑒𝑐

𝐿𝑟𝑒𝑐

View Consensus

Distance Matrix

𝐿𝑜𝑡ℎ

෩𝐗(𝟏)

෩𝐗(𝟒)

෠𝐙(𝟏)
෠𝐙(𝟐)

෠𝐙(𝟑)

෠𝐙(𝟒)

෨𝐙(𝟏)

෨𝐙(𝟑)

෨𝐙(𝟐)

෨𝐙(𝟒)

෨𝐿

෨𝐙(𝟏)
෨𝐙(𝟐)

෨𝐙(𝟑)

෨𝐙(𝟒)

෠𝐿

෠𝐙(𝟏)
෠𝐙(𝟐)

෠𝐙(𝟑)

෠𝐙(𝟒)

(a) Stage 1 (b) Stage 2

Concatenate

and

Clustering

(c) Stage 3

…ShaSpec

SpecTree

ShaTree

Maintain

view-gaps 

between 

neighbor 

view nodes

Remove 

constraints 

between 

non-neighbor 

view nodes

Figure 2: Illustration of the Tree-Based View-Gap Maintaining Multi-View Clustering(TGM-MVC) method. Our framework
consists of 3 stages with 3 modules. In Stage 1, we employ the shared-specific learning module (ShaSpec) to disentangle the
representation of samples on each view into shared representations and view-specific representations. In Stage 2, we utilize the
Shared Tree-based View Consensus Learning Module (ShaTree) to create the View Consensus Distance Matrix using the shared
representations derived in Stage 1. Subsequently, a View Consensus Spanning TreeG̃ is established, narrowing down the shared
representations of adjacent view pairs on the tree. Similarly, the Specific Tree-based View Gap Maintaining Module (SpecTree)
constructs a View Heterogeneity Spanning Tree based on specific representations to preserve the gaps between adjacent views.
The shared and specific representations from all views are concatenated for clustering at Stage 3.

Specific Representations Learning: For specific representations
{Ẑ(𝑣) }𝑉

𝑣=1, ShaSpec module aims to acquire view heterogeneity by

making the Ẑ(𝑣) orthogonal to the shared representation Z̃(𝑣) of
that view, thereby designing the loss for specific representations
as:

L𝑜𝑡ℎ =

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖=1

∫ (̃z(𝑣)
𝑖

, ẑ(𝑣)
𝑖

), (7)

where ∫(·, ·) represents the cosine similarity between sample fea-
tures.

In Stage 1, we train the ShaSpec module for 𝑇1 rounds to de-
couple samples into view consensus information and view hetero-
geneity information, enabling a detailed study of the relationships
between views in the subsequent stage. The overall loss of Stage 1
learning consists of the reconstruction loss L𝑟𝑒𝑐 , the contrastive
loss L𝑐𝑜𝑛 and the orthogonal loss L𝑜𝑡ℎ , i.e.,

L𝑝𝑟𝑒 = L𝑟𝑒𝑐 + 𝜆1 · L𝑜𝑡ℎ + 𝜆2 · L𝑐𝑜𝑛, (8)

where L𝑜𝑡ℎ and L𝑐𝑜𝑛 with 𝜆1 and 𝜆2 are the weights balancing the
three loss terms.

3.3 Shared Tree-based View Consensus
Learning Module

During the Stage 1, we aim to align the consensus representations of
all views using a contrastive learning paradigm to achieve uniform
representations across all views. However, based on our assump-
tion, there exists view gaps between different views. Disregarding
the view gap and forcibly aligning the representations of arbitrary
pairs of views would lead to the loss of rich multi-view informa-
tion. Therefore, we seek to rectify the consensus representations
obtained from Stage 1 through the Shared Tree-based View Consen-
sus LearningModule (ShaTree), obtaining consensus from adjacent
view pairs instead of all views.

To quantify the proximity relationships between views, we con-
struct the View Consensus Distance Matrix M̃ ∈ R𝑉 ×𝑉 , where M̃𝑝𝑞

represents the cosine similarity distance of the shared representa-
tions between the 𝑝-th view and the 𝑞-th view:

M̃𝑝𝑞 =
1
𝑁

𝑁∑︁
𝑖=1

(1 − ∫ (̃z(𝑝 )
𝑖

, z̃(𝑞)
𝑖

)), (9)
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where the distance between views is defined as the average co-
sine similarity distance between corresponding samples of the two
views.

If we we conceptualize multiple views as a graph structure,
considering each view as a node and the distance between views
as the edge length between nodes, then the multi-view can be
modeled as a view graph G = (X, E), which contains 𝑉 nodes
X = {X(1) ,X(2) , ...,X(𝑉 ) } and𝐶2

𝑉
edges E = {(X(𝑝 ) ,X(𝑞) ) | 𝑝, 𝑞 ∈

[1,𝑉 ] , 𝑝 < 𝑞}. To simplify the representation, we denote the edge
(X(𝑝 ) ,X(𝑞) ) as (𝑝, 𝑞).

To discover the neighborhood relationships between consensus
information of views, we employ the Prim algorithm [5, 7] on
the View Consensus Distance Matrix M̃ to generate a minimum
spanning tree, obtaining a subgraph G̃ = (X, Ẽ) of G, which edge
set Ẽ = {(𝑝1, 𝑞1), (𝑝2, 𝑞2), ..., (𝑝𝑉 −1, 𝑞𝑉 −1))}.

To guarantee diversity in view information and avoid the direct
merging of shared representations from distant views, we exclu-
sively bring closer the shared representations among view nodes
that correspond to the edges encompassed in the View Consensus
Spanning Tree G̃. Hence, we adjust Eq.(6) in the Stage 1 as:

L̃ =
∑︁

(𝑝,𝑞) ∈ Ẽ

ℓ𝑖𝑛𝑠 (𝑝, 𝑞), (10)

where ℓ𝑖𝑛𝑠 (𝑝, 𝑞) is the contrastive loss between two views, i.e., X(𝑝 )

and X(𝑞) , as computed in Eq.(5).

3.4 Specific Tree-based View Gap Maintaining
Module

The specific representation Ẑ(𝑣) learned in Stage 1 is primarily con-
strained by the orthogonal loss and the reconstruction loss. There
remains a risk that the specific representations of various views lack
the necessary distinctiveness since the above two constraints can
hardly ensure that the learned Ẑ(𝑣) fully captures the heterogene-
ity inherent in different views. Given the insights from pertinent
information theory [3], we introduce the concept of information
gap 𝛿𝑝𝑞 to highlight the potential consequences of homogenizing
the representations across different views for downstream tasks.
Such 𝛿𝑝𝑞 indicates the difference in the amount of information
provided by the two views for the clustering task. We introduce the
theoretical optimal output Y∗ in the solution space, such that the
information gap 𝛿𝑝𝑞 can be defined as:

𝛿𝑝𝑞 = |𝐼 (X(𝑝 ) ;Y∗) − 𝐼 (X(𝑞) ;Y∗) |, (11)

whereY∗ = argmax
Y∗

𝑁𝑀𝐼 (Y∗,Y). 𝐼 (X(𝑣) ;Y∗) illustrates the amount

of information that the 𝑣-th view can contribute to the clustering
task. It is noteworthy that Y is a clustering label used for theoretical
elucidation, thus our task remains inherently unsupervised.

Theorem 1. Suppose there exists encoders ℎ𝑝 : X(𝑝 ) → Z(𝑝 ) and
ℎ𝑞 : X(𝑞) → Z(𝑞) , such that Z(𝑝 ) = Z(𝑞) . And the fusion functions
𝑔𝑥 and 𝑔𝑧 , applying to {𝑋 (𝑣) }𝑣=𝑝,𝑞 and {𝑍 (𝑣) }𝑣=𝑝,𝑞 respectively,
allow the fused features to retain maximum information content.
Then encoders ℎ𝑝 and ℎ𝑞 would disregard the view gap, resulting
in information loss:

𝐼 (𝑔𝑥 (X(𝑝 ) ,X(𝑞) );Y∗) − 𝐼 (𝑔𝑧 (Z(𝑝 ) ,Z(𝑞) );Y∗) ≥ 𝛿𝑝𝑞 . (12)

Theorem 1 elucidates that as the representations of two views
converge completely, it leads to information loss and impairs the
performance of downstream tasks. Additional theoretical analysis
can be found in Appendix A.

According to [36], contrastive learning continuously narrows
the gap between the two views when a plentiful amount of negative
samples are available. To preserve the view gap, apart from avoiding
a direct convergence of shared representations Z̃(𝑣) between dis-
tant views, we also impose constraints on the view-specific features
using a similar approach. Specifically, we generate the View Het-
erogeneity Distance Matrix M̂ ∈ R𝑉 ×𝑉 based on the view-specific
representations Ẑ(𝑣) obtained in the Stage 1:

M̂𝑝𝑞 =
1
𝑁

𝑁∑︁
𝑖=1

(1 − ∫(ẑ(𝑝 )
𝑖

, ẑ(𝑞)
𝑖

)), (13)

where ∫(ẑ(𝑝 )
𝑖

, ẑ(𝑞)
𝑖

) is the cosine similarity between the two repre-
sentations.

Similar to the View Consensus Spanning Tree G̃, we construct a
View Heterogeneity Spanning Tree Ĝ = (X, Ê) based on the View
Heterogeneity Distance Matrix M̂ using the Prim algorithm, where
the pair of views (𝑝, 𝑞) in Ê indicates a higher similarity in specific
representations for the 𝑝-th view and the 𝑞-th view. To maintain
the view gap between these two views, we design the loss as:

ℓ
(𝑝 )
𝑖

= − log
exp(∫ (ẑ(𝑝 )

𝑖
, ẑ(𝑞)

𝑖
)/𝜏𝑙 )∑𝑁

𝑗=1

[
exp(∫ (ẑ(𝑝 )

𝑖
, ẑ(𝑝 )

𝑗
)/𝜏𝑙 ) + exp(∫ (ẑ(𝑝 )

𝑖
, ẑ(𝑞)

𝑗
)/𝜏𝑙 )

] ,
(14)

ℓ𝑠𝑝 (𝑝, 𝑞) =

√√√
1
2𝑁

∑︁
𝑣=𝑝,𝑞

𝑁∑︁
𝑖=1

(
ℓ̂
(𝑣)
𝑖

− ℓ̂𝜇

)2
, (15)

where ℓ̂𝜇 = 1
2𝑁

∑𝑁
𝑖=1

(
ℓ̂
(𝑝 )
𝑖

+ ℓ̂
(𝑞)
𝑖

)
. Hence, the purpose of ℓ𝑠𝑝 (𝑝, 𝑞)

is to minimize the variance of the contrastive losses incurred by
any sample in the 𝑝-th view and the 𝑞-th view.

Theorem 2. Imposing the constraints of ℓ𝑠𝑝 (𝑝, 𝑞) can prevent the
convergence of representations from two views into uniformity, i.e.
Ẑ(𝑝 )

≠ Ẑ(𝑞) , thereby preserving the diverse information present
across the multiple views.

The proof of Theorem 2 is relocated to the Appendix B. In regard
to view pairs within View Heterogeneity Spanning Tree Ĝ, we im-
pose constraints using Eq.(15), thereby crafting the loss for specific
representations as:

L̂ =
∑︁

(𝑝,𝑞) ∈ Ê
ℓ𝑠𝑝 (𝑝, 𝑞). (16)

3.5 Implementation
In Stage 1, we solely employ the ShaSpec module for training,
decoupling the representations into view-shared and view-specific
representations using Eq.(8).
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Algorithm 1 Tree-Based View-Gap Maintaining Multi-View
Clustering(TGM-MVC)

Input: The multi-view raw features {X(𝑣) }𝑉
𝑣=1; the interation number𝑇1

and𝑇2.
Output: The clustering result R.
1: for 𝑖 = 1 to𝑇1 do
2: Obtain the shared representations {Z̃(𝑣) }𝑉

𝑣=1 and the specific

representations {Ẑ(𝑣) }𝑉
𝑣=1 by ShaSpecModule using Eq.(8).

3: end for
4: while the total loss hasn’t converged do
5: Calculate View Consensus Distance Matrix M̃ and View

Heterogeneity Distance Matrix M̂ using Eq.(9)(13).
6: Obtain View Consensus Spanning Tree G̃ = (X, Ẽ ) and View

Heterogeneity Spanning Tree Ĝ = (X, Ê ) using the Prim algorithm.

7: for 𝑗 = 1 to𝑇2 do
8: Calculate the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 using Eq.(17).
9: Updating the network with Adam Optimizer by minimizing

𝐿𝑡𝑜𝑡𝑎𝑙 .
10: end for
11: end while
12: Concatenate shared and specific representations across all views using

Eq.(18) and then clustering.
13: return R

Table 2: Statistics summary of eight datasets.

Dataset Samples Clusters Views

Synthetic3d 600 3 3
Cora 2708 7 4

ReutersEN 7200 6 5
Caltech101 9144 102 5
ALOI-100 10800 100 4
STL10 13000 10 4

To uphold the view gaps between views and ensure the richness
of information across multiple views, we calibrate Stage 1 through
Stage 2. Every𝑇2 rounds, we reassess the View Consensus Spanning
Tree and View Heterogeneity Spanning Tree, optimizing the en-
tirety through reconstruction loss, orthogonality loss, and two-part
losses acting upon shared and specific representations:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑐 + 𝜆1 · L𝑜𝑡ℎ + 𝜆2 · L̃ + 𝜆3 · L̂, (17)
where 𝜆1, 𝜆2 and𝜆3 are the weights for different parts of loss respec-
tively. Meanwhile, the contrastive loss L𝑐𝑜𝑛 in Stage 1 is replaced
by L̃ in Stage 2.

Upon completion of training in Stage 2, we concatenate the
shared and specific representations across all views to derive the
holistic representation Z of the samples, which is subsequently
employed for the final clustering task:

Z = (⋃𝑉
𝑣=1 Z̃

(𝑣) ) ⊕ (⋃𝑉
𝑣=1 Ẑ

(𝑣) ), (18)
where symbol

⋃
and ⊕ both denote the concatenation on the feature

dimension. The detailed learning process of our proposed TGM-
MVC is shown in Algorithm 1.

4 EXPERIMENTS
4.1 Datasets
To demonstrate the efficacy of our TGM-MVC approach, we con-
duct elaborate experiments on six benchmark datasets: Synthetic3d,
Cora, ReutersEN, Caltech101, ALOI-100, and STL10. The funda-
mental characteristics of these six datasets are illustrated in Table
2. In this section, we validate the effectiveness of our proposed
TGM-MVC by addressing the following five inquiries:

• Q1: How effective does the TGM-MVC method exhibit in
the realm of deep multi-view clustering tasks?

• Q2: How does the View Consensus Spanning Tree influence
the performance of TGM-MVC?

• Q3: How does the View Heterogeneity Spanning Tree influ-
ence the performance of TGM-MVC?

• Q4: How do the hyper-parameters impact the performance
of TGM-MVC?

• Q5: Does the TGM-MVC model exhibit convergence?

4.2 Experiment Settings
The experimental setup includes an Intel Core i7-7820x CPU, NVIDIA
GeForce RTX 3090 GPU, and 64GB of RAM. For software support,
the experiments were carried out using the PyCharm platform.
Additionally, the training process made use of the Adam optimizer.

4.2.1 Compared Methods. We conducted a comparative analysis
between the TGM-MVC method and eight state-of-the-art multi-
view clustering algorithms: DEMVC [43], FMCNOF [49], CoMVC
[32], SiMVC [32], SDMVC [45], MFLVC [47], DSMVC [31], and
SFMC [14].

4.2.2 Evaluation metrics. In order to assess the efficacy and superi-
ority of our TGM-MVC approach, we utilize commonly employed
metrics, namely clustering accuracy (ACC), normalized mutual
information (NMI), and purity (PUR) [33, 35, 54].

4.3 Performance Comparison (Q1)
To validate the efficacy of our proposed method, we conducted
comparisonswith eight benchmarkmethods across six datasets. The
clustering results of our model and other algorithms are presented
in Table 3. From Table 3, the following conclusions can be drawn:

(1) Our approach outperformed or matched existing state-of-the-
art methods in three metrics across the six datasets. With respect to
Purity, our method outshines the baseline algorithms, especially on
the Caltech101 and ALOI-100 dataset, which surpasses the second-
best algorithm by 8.55% and 6.22%.

(2) These datasets cover multiple views (ranging from 3 to 5
views), and our method excelled on most of these datasets, whereas
other methods achieved satisfactory clustering results on only one
or some of the datasets. We attribute this to our methodology’s
acknowledgment of the view gaps, thereby demonstrating strong
performance on datasets with more views.

4.4 Ablation Studies (Q2 & Q3)
To verify the effectiveness of the ShaTree module and SpecTree
module, we conducted ablation experiments on six datasets. Specif-
ically, we held constant the Share-Specific Representation Learning
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Table 3: Clustering performance across six multi-view benchmark datasets. The most outstanding results are denoted in bold,
while the second-best values are underlined. ‘-’ indicates the error of the method itself.

MethodsDatasets DEMVC FMCNOF CoMVC SiMVC SDMVC MFLVC DSMVC SFMC TGM-MVC
ACC(%)

Synthetic3d 71.50 58.33 38.83 48.00 97.33 97.67 77.00 93.17 97.83
Cora 30.54 30.28 29.76 23.08 31.06 31.02 28.88 30.50 37.59

ReutersEn 34.58 19.25 21.11 20.25 29.32 25.42 32.04 16.00 34.78
Caltech101 11.05 12.77 16.36 13.48 15.11 21.30 16.27 15.38 20.31
ALOI-100 - 6.870 16.63 11.69 - 23.12 14.89 57.76 61.26
STL10 30.01 25.09 23.55 16.04 28.34 31.14 27.53 10.06 32.13

NMI(%)
Synthetic3d 54.81 13.59 6.920 23.47 88.19 89.64 44.53 76.96 90.51

Cora 6.340 7.270 4.640 3.010 5.120 12.97 8.140 7.95 13.93
ReutersEn 11.84 0.640 1.720 0.790 7.630 3.250 9.360 12.86 12.34
Caltech101 22.84 15.84 25.61 18.18 30.48 28.60 26.53 19.06 40.62
ALOI-100 - 31.66 44.16 36.21 - 67.88 40.57 71.62 80.79
STL10 25.27 20.95 16.26 6.340 26.19 25.36 19.33 0.200 25.93

Purity(%)
Synthetic3d 71.50 58.33 38.83 49.67 97.33 97.67 77.00 93.17 97.83

Cora 34.56 32.57 33.94 30.61 32.05 38.22 36.04 33.27 38.44
ReutersEn 34.69 19.78 21.96 20.53 30.01 26.64 33.32 25.31 36.36
Caltech101 19.66 16.94 23.71 17.91 28.78 28.23 25.60 19.27 37.33
ALOI-100 - 6.960 16.65 11.84 - 23.12 15.79 60.00 66.22
STL10 31.07 26.02 25.01 17.02 30.13 31.25 29.41 10.10 34.48
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(d) View Consensus Spanning Tree
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Figure 3: Visualization of View Consensus Distance Matrix and corresponding view graph on ALOI-100 dataset.

Module and tested four scenarios: with or without ShaTree mod-
ule and with or without the SpecTree module. Due to spatial con-
straints, we only present the results of the ablation experiments on
the Synthetic3d, Reuters-7200, and ALOI-100 datasets, as illustrated
in Table 4. Fig. 3,4 demonstrates the notable changes of ALOI-100
datasets between models with and without the two modules. The
experimental results indicate the following conclusions:

(1) Solely employing the ShaTree module in Stage 2, without
utilizing the SpecTree module, may lead to slight suboptimal out-
comes for the model. This could be due to partial contrastive losses
between view pairs being removed without additional constraints
being introduced, leading to an overall lack of constraints on the
model. As shown in Fig 3, the constraint between view 1 and view 4

has been released, leading to a notable increase in distance between
the views.

(2) In Stage 2, while still aligning shared representations of ar-
bitrary view pairs, the inclusion of SpecTree module effectively
preserves the view gaps between views, enhancing clustering ef-
fects upon the ShaSpec framework. As depicted in Fig 4, utilizing
the SpecTree module iteratively has significantly increased the
distance between heterogeneous representations across views.

(3) The ShaTree module and SpecTree module synergize effec-
tively, with the combined utilization of these two modules resulting
in a greater improvement in clustering performance.
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Figure 4: Visualization of View Heterogeneity Distance Matrix and corresponding view graph on ALOI-100 dataset.

Table 4: Ablation study on Synthetic3d, Reuters-7200 and
ALOI-100 datasets. M1, M2 and M3 are abbreviations for
ShaSpec Module(M1), ShaTree Module(M2) and SpecTree
Module(M3), respectively.✓denotes TGM-MVCwith theMod-
ule.

Datasets M1 M2 M3 ACC NMI PUR

Synthetic3d

✓ ✓ ✓ 97.83 90.51 97.83
✓ 96.50 86.04 96.50
✓ ✓ 96.83 87.04 96.83
✓ ✓ 96.00 84.57 96.00

Reuters-7200

✓ ✓ ✓ 34.78 12.34 36.36
✓ 29.85 8.340 29.85
✓ ✓ 32.61 11.10 33.94
✓ ✓ 29.19 9.660 30.60

ALOI-100

✓ ✓ ✓ 61.26 80.79 66.22
✓ 56.87 77.44 62.52
✓ ✓ 58.66 79.77 64.72
✓ ✓ 53.94 76.09 59.95

4.5 Hyper-parameter Analysis (Q4)
In actual experiments, we kept the temperature hyperparameter 𝜏𝑙
for contrastive learning fixed at 0.1 and the weight 𝜆1 for orthog-
onal loss L𝑜𝑡ℎ fixed at 1, adjusting only the weight 𝜆2 for shared
representation loss L̃ and the weight 𝜆3 for specific representation
loss L̂.

In order to assess the robustness of our model, we conducted
a sensitivity analysis on 𝜆2 and 𝜆3. From the results in Fig. 5, we
discern a notable influence of 𝜆2 on the model’s performance, while
the impact of 𝜆3 is relatively minor. This is because 𝜆2 is also in-
volved in the training of the first stage, hence changes in 𝜆2 have a
stronger impact on the overall training effectiveness of the model.

4.6 Analysis of Convergence Properties (Q5)
We completed experiments to demonstrate the convergence of the
model on six datasets. Due to space constraints, we only demon-
strate the changes in ACC and NMI with the number of training
epochs on the ALOI-100 and Cora datasets, as shown in Fig 6. Ex-
periments prove the convergence of our proposed TGM-MVC.
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Figure 5: Sensitivity analysis of the hyper-parameters on
ALOI-100 dataset.
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Figure 6: ACC and NMI curves on the ALOI-100 and Cora.

5 CONCLUSIONS
In this paper, we introduce a novel approach for modeling multiple
views utilizing a innovative spanning tree topology. Our proposed
TGM-MVC method aims to preserve the distinctiveness among
views, thereby enhancing the efficacy of multi-view clustering.
Specifically, we separately generate minimum spanning trees for
shared representations and specific representations, relaxing the
constraints between non-adjacent views in shared representations
while maintaining the distances between adjacent views in specific
representations. We provide theoretical justification for the impor-
tance of maintaining view gaps and demonstrate the effectiveness
of our approach through comprehensive experiments.
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