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Appendix

A PROOF OF THEOREM 1

Theorem 1. Suppose there exists encoders h,, : X(?) - z(#) and
hg : X@ 5 7D such that Z(P) = Z(9) . And the fusion functions
gx and gz, applying to {X(")}uzp,q and {Z(”)}Fp,q respectively,

allow the fused features to retain maximum information content.

Then encoders h;, and hg would disregard the view gap, resulting
in information loss:

I(gx (X, X D), Y*) ~ (g (2P, Z D), Y) > 8pq. (1)

Proof: Referring to [2], we provide a similar proof. Contemplate
the joint mutual information I (zP),Z(D; Y*). Utilizing the chain
rule, we can decompose it as follows:

1(zWP), 2D, Y*) = (2P, Y*) + 1(2D;Y*) | 7))

. )
=1z DY) +1(zP);Y*) | (D).

Suppose ZP) and Z(9) are perfect aligned, namely Z?) = Z(),
then

I(Z<q);Y* | Z(P)) = I(Z(p);Y* | Z(q)) =0, 3)
therefore, it can be concluded that

1(z0), @) =1 (2% ¥7) =129 "), @

According to the information bottleneck theorem [1],

I(Z<P);Y*) < I(X(P>;Y*), I(Z(q);Y*) < I(x(q);Y*). )

Therefore, the subsequent sequence of inequalities is valid:

1z, 2D, Y*) = min{I(zP);Y*), (2D, Y*)}
< min{I(XP);Y*), (XD, Y*)}
< max{I(X®),Y*), (XD, Y")}
< I(X(P),X(Q);Y*),

(6)

where the final inequality is derived from the observation that when
view p and q are trained to be completely consistent, information
loss occurs. Therefore, due to the perfect fusion functions gx and g,
allowing the fused features to retain maximum information content,
we have

I(gx(X(P), X(q));Y*) _ I(gz(Z(P), Z(q));Y*)
=1(x®) X@.y*) - 1z, 7D, y¥)
> max{I(X®); Y*), (XD, Y*)} - min{I(X®);Y*), (XD;Y*)}

= 0pq-
™

B PROOF OF THEOREM 2

Theorem 2. Imposing the constraints of £5, (p, ) can prevent the
convergence of representations from two views into uniformity, i.e.

Z(‘D ) # Z(q), thereby preserving the diverse information present
across the multiple views.

Proof: The loss £sp (p, q) is defined as

(P~ 1o exp(J(2",2\7) /zy) ’
2N, [exp( P28 1) + exp(15P. 20 )
®)
N 2
zsp(p,q)=J2N DZMZI( 6 -4, )

where f# = ﬁ Zf\il (fi(P) + [i(q))‘ Hence, the purpose of £s, (p, q)
is to minimize the variance of the contrastive losses incurred by any
sample in the p-th view and the g-th view. We use the symbol "—

to signify convergence. Therefore, the 5, (p, q) — 0 is equivalent

() ; -
tof;" — 4y, (v=p,q). A
We make an approximation to ¢, with

B~ L 1 Z PN Z o (10)

i=1
Then the convergence of loss functlon fsp(p,q) — 0 can be
approximated to

Fp) 1 7P
{fi( ) ¥ '( ) (11)
p\d pld
fi l Zl 1 l .
When convergence t;l.(p ) % Zf\i 1 t’i(p )
exists

reaches its limit, there

eXp(f(z(p) 27)/m) > & 2N exp (15" 47 /),
exp(/(z j")>/r ) A 5N, N exp(TGLP, 2P /m),
exp(f2”.2) /) - & I, 2N exp(f(zP, Ajf”)/r ).
(12)
In the above expression, as the loss converges, the right side of
the arrow approaches a constant. For the sake of convenience in
representation, we denote

N Z lexp(f(z(p) (‘1))/,[) —
LN N exp(f(z(p) “”)/n) = By, (13)
LN s epUEP, *f”)/n) = By.

Since ¢ (P ) L Zfi 1 t’i(p ) , then we have

(P)}N < [( P) < max{g(?)}l " (14)

where if we regard the denominator of ¢, 7P) 25 a constant value
(B1 + B2), then we can obtain the final approximate inequality:

min{¢;
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Figure 1: Sensitivity analysis of the hyper-parameters on six
datasets.

min{f(2", 5NN, < 1P, 2 P) < max{ S 2P,
(15)

Therefore, it is evident that there exists a sample 2; such that
f(i;p),il(q)) < max{f(ilfp),il(q))}fil < 1. Thus, we can draw the

5 (p) + 5@

conclusion that Z with the convergence of loss £sp (p. q).

C FURTHER ABLATION STUDY

We demonstrate further ablation experiments on Cora, Caltech101
and STL10 datasets. The experimental results corroborate our anal-
ysis in the main text.

Table 1: Ablation study on Cora, Caltech101 and STL10
datasets. M1, M2 and M3 are abbreviations for ShaSpec Mod-
ule(M1), ShaTree Module(M2) and SpecTree Module(M3), re-
spectively. v denotes TGM-MVC with the Module.

Datasets M1 M2 M3 | ACC NMI PUR

7/ | 3759 13.93 3844

Cora v 3213 8250 33.53
v v/ | 3501 1282 3556

Vv 3586 1052  36.15

7/ v | 2031 4062 37.33

v 1587 3856 35.62

Caltech101 | v | 1539 3416 3246
VR 1701 39.05 36.02

7 7 | 3213 2593 3448

v 28.08 2607 30.43

STLwe v | 2972 2392 30.05
Vv 27.87 2560 28.38

D FURTHER SENTIMENT ANALYSIS

In order to assess the robustness of our model, we conducted further
sensitivity analysis on Synthetic3d, Cora, Reuters-7200, Caltech101
and STL10 datasets.
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