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A APPENDIX

A.1 RELATED WORKS

Tensor Decomposition. Conventional post-training tensor and matrix decomposition techniques
(e.g., SVD, CP, Tucker) compress models by factorizing weight tensors into low-rank components.
Without subsequent fine-tuning, such decompositions frequently increase loss substantially and re-
quire retraining to recover accuracy. Representative works include methods that combine low-rank
factorization with feature-map reconstruction or training-time regularization to mitigate degrada-
tion |Yu et al.[(2017); [ Xu et al.| (2019); |Yang et al.| (2020); |[Zhang et al.| (2023). Recent approaches
(e.g., DAC, MAESTRO) have reported near-lossless outcomes in some settings, though often rely-
ing on additional retraining or specialized ordering of factors |L1 et al.|(2019); Horvath et al.| (2024).
Our LoD framework differs from these in that it (i) does not depend on retraining to ensure loss-
preservation, and (ii) provides a differential (loss-driven) criterion to select per-layer ranks within
an empirically validated local neighborhood where first-order analysis is predictive.

Mixed Precision Quantization. Post-training quantization maps model weights and activations
to lower bit-width representations without full retraining Banner et al.| (2018));|L1 et al.|(2021));|Dong
et al. (2020); [Wang et al.|(2019); |Lou et al.|(2019); |[Zhang et al.[ (2024). Mixed-precision strategies
assign different bit-widths to different layers according to sensitivity analyses; several methods au-
tomate this search via reinforcement learning or search heuristics (e.g., HAQ, AutoQ) Wang et al.
(2019). More recently, works such as DFQ|Xu et al.|(2020), RQ|Louizos et al.[(2019)), and geometric
allocation schemes like CET |Zhang et al.| (2025)) have reported cases of near-lossless or even slight
accuracy improvements under particular settings. LoD complements this line by formalizing when
such gains can be expected from the perspective of local loss perturbation theory.

Our LoD framework differs in three key aspects. First, LoD eliminates the need for post-training and
retraining: While most decomposition and mixed-precision quantization methods require fine-tuning
or iterative adjustments to recover accuracy, LoD utilizes only a small calibration set for compres-
sion decisions, avoiding any additional retraining costs. Second, LoD provides a clear theoretical
criterion and explanation based on differential perturbation analysis: By expanding the loss differen-
tial, LoD introduces a testable neighborhood radius ¢.,,x that describes when higher-order analysis
is used and when compression noise is inversely proportional to gradient information, resulting in
loss preservation or reduction. Existing methods rely primarily on heuristics (e.g., sensitivity met-
rics, reinforcement learning search) but lack such formal guarantees and theoretical explanations
for the performance gains after compression. Third, LoD unifies tensor decomposition and mixed-
precision quantization under the same loss-driven framework: rank selection and bitwidth allocation
are both transformed into optimization problems on a local loss bound, while quantization is further
instantiated as a grouped knapsack formulation. This unifying perspective not only clarifies when
“lossless” compression can be achieved, but also provides viable algorithms that connect previously
unrelated research threads in decomposition and quantization.

A.2 LoD
A.2.1 ALGORITHM DETAILS

The Layer-wise Optimal Rank Selection algorithm identifies the minimum feasible rank for each
layer that satisfies a fixed tolerance of 7 = 10~2. The procedure starts by incrementally expanding
the candidate subspace from rank-1 up to ranknax. At each candidate rank ¢, a perturbation € is
constructed within the corresponding subspace, with element-wise magnitude bounded by |6fy j | <7
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to ensure consistency of perturbation scale across ranks. Each perturbation is then aligned with the
negative gradient direction, ensuring that the first-order effect on the loss is non-increasing. The
search terminates as soon as a candidate rank meets the tolerance condition, and this rank is recorded
as the optimal choice for the given layer.

The Lossless Mixed Precision Search Grouped Knapsack Algorithm formulates bit-width assign-
ment as a grouped knapsack problem, where each layer is assigned one candidate precision from
2,4, 8,16 with an associated storage cost W [i][j] and performance impact P[i][j]. The procedure
first calibrates the network with a small dataset to estimate activation and weight distributions, then
for each layer and quantization level computes model size, activation noise ¢;, weight noise J;,
and gradient slope, updating P[¢][j] with normalized noise contributions. The DP formulation then
selects one candidate per layer to minimize the global loss increase under storage constraints. Fol-

lowing existing methods, the calibration set selects an existing dataset, such as the validation set

of ImageNet. The formula slope = £ i"P”t(MfCCleee‘i"P““i)*f (M) effectively approximates the sensi-
input

tivity of a model’s loss to input perturbations at layer ¢, resembling the secant line slope between
noisy points f(M) and finput(M; scaleinpue, 7). It enables analysis without requiring analytical
gradients, making it ideal for black-box models or post-training compression studies.

A.2.2 WHY THE DENOMINATOR CAN DOMINATE IN EQ.9

The intuition is statistical: for X = p'e = Zle p;e; (with independent channel entries) the mean
and variance scale differently with the channel count k. Under the i.i.d. assumptions used above,

i =E[X] =kE[p|Ele], Var(X)=kV,

[e],

where V' = Var(p)Var(e) + Var(p)E|[e]? + Var(e)E[p]?. Thus the Chebyshev upper bound can be
written as
Var(X) Vv

p*  kE[pPE[e]*’
Two simple scaling observations follow. First, the numerator V' does not grow with £ (it is per-
channel), while the denominator scales as k; hence increasing channel count reduces the ratio
roughly as 1/k. Second, the signal-to-noise ratio

_ el A |EPEE]
SNR = Var(X) =k VV

P(X >0) <

grows like v/k, so tail probabilities decay rapidly with & (under a normal/CLT approximation, the
tail probability falls approximately like exp(—%SNRQ), i.e. exponentially in k).

As an illustrative plug-in (using numbers of the same order as discussed above), take E[p] =
0.1, E[e] = 3.9 x 1073, Var(p) = 1072, and Var(e) ~ (0.5/127)?/3 ~ 5.17 x 10~° with
k = 10% Then V ~ 2.55 x 10~7, u = kE[p]|E[e] ~ 3.9, and Var(X) = kV ~ 2.55 x 1073. The

Chebyshev bound gives P(X > 0) < % ~ 1.7 x 1074, (i.e. < 1073). Under the CLT the

standardized mean is p/+/Var(X) = 77, producing a numerically negligible tail probability. This
demonstrates that, when (i) channel count & is large and (ii) the per-channel mean product E[p|E|[e]
is non-negligible, the accumulated deterministic signal (numerator of 1) overwhelms random fluc-
tuation (variance), making the Chebyshev/CLT bounds very small.

This conclusion depends on key assumptions: independence (or weak correlation) across channels,
and a nonzero mean alignment E[p|E[e] # 0. If E[e] =~ 0 (unbiased quantization) or strong channel
correlations exist, the denominator may not dominate and the bound becomes uninformative. In
practice we therefore (a) measure E[p], Ele], Var(p), Var(e) on a calibration set, (b) compute the
SNR and the Chebyshev/CLT estimates, and (c) when in doubt perform a small empirical forward-
check on calibration data. These steps give an operational test for whether the analytic regime
(denominator domination) applies.

Our work is motivated by a widely observed phenomenon: models often retain or even improve
performance after compression, without fine-tuning. LoD provides a theoretical explanation for
this by modeling the expected directional reduction in loss under compression noise perturbations.
However, this explanation is not universally valid. The underlying assumptions of LoD—such as
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Table 1: Layer-wise loss after quantization at different bit-widths. The baseline loss is 1.2726. 8-bit
and 4-bit quantization have negligible impact, whereas 2-bit causes mild degradation (notably for
layer #4), and 1-bit leads to a large loss increase.

Layer 8-bit 4-bit 2-bit 1-bit
#8 1.2689  1.2603  1.2599  2.1599
#4 1.2711 1.2709  1.9961  2.6634

first-order approximability, gradient stability—do not always hold. Below, we outline scenarios
where LoD’s explanatory power may break down:

1) LoD assumes that the impact of compression on the loss can be captured by a first-order differ-
ential approximation. When the compression is too aggressive, the perturbation may fall outside
the valid neighborhood, where the first-order terms + higher-order terms dominate, invalidating the
theoretical prediction. At this time, LoD operates in a best-effort manner: if a layer can tolerate
aggressive compression (i.e., ultra-low bits) without violating the neighborhood condition, the algo-
rithm will compress it accordingly. For example, consider the VGG13 network. The table below
presents the loss values when applying LoD to the 4th and 8th layers with different quantization
bit-widths.

As shown in Table |1} 1-bit quantization introduces a loss that exceeds the allowable neighborhood
for both layers, making it unacceptable. LoD therefore attempts 2-bit quantization. At this setting,
the 8th layer remains within the neighborhood and even achieves a performance gain, while the
4th layer still experiences excessive loss. Consequently, LoD chooses 4-bit quantization for the 4th
layer. This example illustrates that layers with wider error tolerance neighborhoods benefit more
from LoD compression.

2) The effectiveness of LoD hinges on the expectation that the inner product between the gradient
and the perturbation is negative. If the gradient is hard to estimate—such as when using unlabeled
data—this directional descent assumption no longer holds, limiting LoD’s predictive ability.

In addition, the mechanism revealed by LoD may also be exploited in other methods in a non-explicit
form, although these methods do not explicitly model the directional principle. The contribution
of LoD is that it first reveals the necessary conditions behind this phenomenon from a theoretical
perspective and provides a unified analytical framework that can be used to guide and explore the
performance of models after compression.
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Figure 1: Performance and loss curves of LoD in quantization and decomposition. LoD achieves
better performance with smaller models.

A.2.3 IMPACT OF SECOND-ORDER TERMS UNDER PERFORMANCE GAINS

While second-order information is traditionally regarded as offering higher theoretical fidelity in
modeling loss perturbations, we find its practical value in explaining performance gains from com-
pression to be minimal. In modern deep networks, the perturbations introduced by compression are
typically small. As a result, the loss change is well-characterized by first-order approximations, with
second-order terms contributing only marginal corrections.

Furthermore, the cost of computing second-order derivatives is often prohibitive. Even efficient
approximations, such as those based on the Lanczos algorithm, require several orders of magnitude
more time than first-order gradients—e.g., hundreds of seconds per layer—while refining the loss



Under review as a conference paper at ICLR 2026

estimate by only O(10~°). Full Hessian inversion is practically restricted to toy layers and is entirely
infeasible for large-scale networks.

More critically, second-order terms used in practice are seldom exact. Common strategies such
as diagonal or low-rank approximations inevitably introduce estimation errors, undermining their
purported precision. This, coupled with the fact that most mainstream compression methods (e.g.,
low-rank decomposition or quantization) are not explicitly designed to leverage second-order infor-
mation, further limits their utility.

As summarized in Table 4 in original paper, first-order methods strike a superior balance between
cost and accuracy, accounting for the vast majority of loss variation while remaining computation-
ally tractable. In contrast, second- and higher-order methods, though mathematically rigorous, are
computationally intractable and numerically negligible in real-world scenarios. Therefore, LoD
adopts first-order analysis as a principled and practical foundation to explain performance gains un-
der compression, emphasizing that higher-order terms do not substantively influence the observed
effect.

To demonstrate the specific improvements achieved by LoD, Figure 1 illustrates the performance
and loss curves of the proposed LoD method under quantization and decomposition compression
strategies. Overall, LoD consistently improves the post-compression performance across various
models and datasets, demonstrating strong robustness and effectiveness. Firstly, in the quantization
section (orange bars), although some models experience a slight drop in accuracy after compres-
sion (e.g., ResNet-18 decreased by 0.23), most models maintain or even improve their performance
with LoD applied (such as MobileNet_V2, improved by 0.56). This indicates that LoD effectively
minimizes performance degradation during quantization.

Secondly, in the decomposition section (blue bars), LoD not only compresses the models but also
stably enhances their accuracy. For example, Maestro’24, MobileNet_V2, and VGG-16_BN show
accuracy improvements of 0.37, 0.01, and 0.02, respectively, after decomposition. In contrast, tradi-
tional methods like ResNet-50 tend to have either performance drops or marginal gains, highlighting
the advantage of LoD.

Moreover, LoD yields more pronounced improvements on smaller models (e.g., MobileNet and
VGG-16 variants), indicating its particular suitability for lightweight architectures. LoD consis-
tently boosts compressed model performance under varying compression techniques and architec-
tures, especially by stabilizing the training loss and increasing accuracy while maintaining model
compactness.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper:

1. uses LLM to identify grammatical errors, inappropriate expressions, and linguistic incoherence
in texts and helps improve writing.

2. uses LLM to locate key literature in a specific research field during the search for relevant work.

3. uses LLM to check for errors in notation and standardization in formulas.

REFERENCES

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Aciq: Analytical clipping for integer
quantization of neural networks. 2018.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. Advances in neural
information processing systems, 33:18518-18529, 2020.

Samuel Horvath, Stefanos Laskaridis, Shashank Rajput, and Hongyi Wang. Maestro: uncovering
low-rank structures via trainable decomposition. In Proceedings of the 41st International Confer-
ence on Machine Learning, ICML’24. JMLR.org, 2024.



Under review as a conference paper at ICLR 2026

Xin Li, Shuai Zhang, Bolan Jiang, Yingyong Qi, Mooi Choo Chuah, and Ning Bi. Dac: Data-free
automatic acceleration of convolutional networks. pp. 1598-1606, 01 2019. doi: 10.1109/WACV.
2019.00175.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Qian Lou, Feng Guo, Lantao Liu, Minje Kim, and Lei Jiang. Autoq: Automated kernel-wise neural
network quantization. arXiv preprint arXiv:1902.05690, 2019.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URLhttps://openreview.net/forum?id=HkxjYoCgKX.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8612-8620, 2019.

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui
Tan. Generative low-bitwidth data free quantization. ArXiv, abs/2003.03603, 2020. URL https:
//api.semanticscholar.org/CorpusID:212633494.

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Wenrui Dai, Yingyong Qi, Yiran Chen,
Weiyao Lin, and Hongkai Xiong. Trained rank pruning for efficient deep neural networks. In
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurlPS
Edition (EMC2-NIPS), pp. 14-17. IEEE, 2019.

Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and Yiran Chen.
Learning low-rank deep neural networks via singular vector orthogonality regularization and sin-
gular value sparsification. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 678—679, 2020.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370-7379, 2017.

Boyang Zhang, Suping Wu, Leyang Yang, Bin Wang, and Wenlong Lu. A lightweight grouped
low-rank tensor approximation network for 3d mesh reconstruction from videos. In 2023 IEEE
International Conference on Multimedia and Expo (ICME), pp. 930-935. IEEE, 2023.

Boyang Zhang, Daning Cheng, Yunquan Zhang, and Fangmin Liu. Fp= xint: A low-bit series
expansion algorithm for post-training quantization. arXiv preprint arXiv:2412.06865, 2024.

Boyang Zhang, Daning Cheng, Yunquan Zhang, Meiqi Tu, Fangmin Liu, and Jiake Tian. A gen-
eral error-theoretical analysis framework for constructing compression strategies. arXiv preprint
arXiv:2502.15802, 2025.


https://openreview.net/forum?id=HkxjYoCqKX
https://api.semanticscholar.org/CorpusID:212633494
https://api.semanticscholar.org/CorpusID:212633494

	Appendix
	Related Works
	LoD
	Algorithm Details
	Why the denominator can dominate in Eq.9
	Impact of Second-Order Terms Under Performance Gains


	The Use of Large Language Models (LLMs)

