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ABSTRACT

Multimodal Large Language Models (MLLMs) have experienced rapid progress in
visual recognition tasks in recent years. Given their potential integration into many
critical applications, it is important to understand the limitations of their visual
perception. In this work, we study whether MLLMs can perceive small visual
details as effectively as large ones when answering questions about images. We
observe that their performance is very sensitive to the size of the visual subject
of the question, and further show that this effect is in fact causal by conducting
an intervention study. Next, we study the attention patterns of MLLMs when
answering visual questions, and intriguingly find that they consistently know where
to look, even when they provide the wrong answer. Based on these findings, we
then propose training-free visual intervention methods that leverage the internal
knowledge of any MLLM itself, in the form of attention and gradient maps, to
enhance its perception of small visual details. We evaluate our proposed methods
on two widely-used MLLMs and seven visual question answering benchmarks
and show that they can significantly improve MLLMs’ accuracy without requiring
any training. Our results elucidate the risk of applying MLLMs to visual recogni-
tion tasks concerning small details and indicate that visual intervention using the
model’s internal state is a promising direction to mitigate this risk.'

1 INTRODUCTION

Multimodal large language models (MLLMs) (Hurst et al., 2024; Team et al., 2024; Anthropic, 2024;
Wang et al., 2024; Li et al., 2024a; Team et al., 2025; Chen et al., 2025) have greatly progressed the
state of multimodal reasoning and planning, and are rapidly being integrated into various downstream
applications, ranging from robotics (Li et al., 2024b; Chen et al., 2024), biomedicine (Li et al., 2023a),
autonomous driving (Xu et al., 2024b; Zhang et al., 2023a) to visual mathematical reasoning (Gao
et al., 2023; Zhang et al., 2024c;b) and even food recipe generation (Chhikara et al., 2024). Given
the rapidly growing application of MLLMs, especially in critical domains such as biomedicine and
security, it is crucial to study the limitations of their visual perception to elucidate the potential risks
that may affect their downstream applications.

To motivate the limitation that will be the focus of this work, we start by presenting three revealing vi-
sual question answering examples in Fig. 1, in which we ask a popular MLLM BLIP-2 (FlanT5x1,) (Li
et al., 2023b) to identify an object’s presence or type in each image as we vary the size of the object.
In the absence of any prior evidence, we might reasonably expect the MLLM’s answer to be invariant
to the size of the object, because of the MLLM’s large representational capacity and pretraining on
a wide variety of images containing objects of various sizes. To the contrary, in Fig. |1 (left), we
observe that initially the model does not recognize the existence of a small street sign and assigns a
lower probability to the correct answer; however, zooming into the image (via more focused visual
cropping) towards the street sign gradually increases the probability assigned to the correct answer,
suggesting that the model gradually perceives more and more relevant details of the street sign.

'Our code is available at https://github.com/saccharomycetes/mllms_know.
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Figure 1: The effect of visual cropping on the probability of answers predicted by BLIP-2 FlanT5xr,
zero-shot VQA model. The x-axis labels are indices to the respective cropped images displayed under
each plot that the model sees at each step. The model gradually finds the correct answer.

Smaller grop size

In Fig. 1 (middle), we observe further evidence of this difficulty in perceiving small details: the
model initially predicts white as the type of the bird, but when we zoom into the image towards the
bird, without changing the question in any way, we observe that the model gradually assigns higher
probability to the correct bird type of egret. This suggests that the model was not making a semantic
error of misunderstanding what fype means, rather it was unable to perceive sufficient details to
discriminate egret from other white birds, which is mitigated by visual cropping. Similarly, in Fig. |
(right), we observe that the model’s initial answer is not entirely irrelevant (“ama’” compared to the
correct answer “moma’), suggesting that the model knows where to look based on the question but
cannot accurately perceive the actual word, which is again mitigated by visual cropping.

In this work, we will study the limitation observed in Fig. | extensively, elucidate its cause, and
propose potential solutions to mitigate its consequences. In Sec. 3, we quantitatively show that there
indeed exists a difficulty in perceiving small visual concepts across various widely-used MLLMs. Our
findings are consistent with prior works on evaluating the text-image matching in vision-language
joint embedding models, which have observed a reverse correlation between visual object size in
images and the text-image matching score (Zhao et al., 2022), but we further establish a causal
connection between visual concept size and MLLMSs’ perception ability through an intervention study.
In Sec. 4, we study whether the MLLMs’ difficulty in perceiving small visual concepts stems from a
difficulty in perceiving visual details, or from a difficulty in locating the concept due to its small size.
We quantitatively show that MLLMs consistently know where to look, even when they fail to answer
the question correctly. In Sec. 5, we propose three automatic visual cropping methods—Ileveraging
the attention maps and gradients of the MLLM itself—as scalable and training-free solutions to
the visual perception limitation. Finally, in Sec. 6, we apply our proposed methods to two popular
MLLMs and evaluate them on seven visual question answering (VQA) benchmarks, showing their
efficacy in enhancing MLLMs’ accuracy, especially on detail-sensitive benchmarks.

2 RELATED WORKS

Multimodal Large Language Models (MLLMs). MLLMs are foundation models capable of
handling diverse language and vision tasks. These models fall into two categories: end-to-end
pretrained and modular pretrained. End-to-end models process joint image-language data through
architectures such as dual-encoder (Radford et al., 2021), fusion-encoder (Li et al., 2021), encoder-
decoder (Cho et al., 2021), and unified transformer (Wang et al., 2022), using objectives like
image-text matching, contrastive learning, and masked language modeling. Modular pretrained
models, which dominate recent state-of-the-art approaches, avoid costly full pretraining by adapting
existing components: BLIP2 (Li et al., 2023b) and InstructBLIP (Dai et al., 2023) train a Transformer-
based connector between a frozen pretrained ViT (Dosovitskiy et al., 2021) image encoder and a
frozen LLM, which transforms ViT output tokens into a fixed set of image tokens in the input space
of the LLM; Qwen-VL (Bai et al., 2023), similarly uses a fixed-length token connector (a single
cross-attention layer), but trains both the connector and the LLM; LLaVA (Liu et al., 2023b) and
LLaVA-1.5 (Liu et al., 2023a) instead use a linear projection and a two-layer MLP as their connectors,
respectively, and train both. Our work will contribute to a better understanding of the perception
limitations of MLLM and improve their perception scalably and without training, offering orthogonal
benefits to existing approaches.
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Visual Localization Methods. Dedicated visual localization methods, such as YOLO (Redmon
et al., 2016), SAM (Kirillov et al., 2023), and GLIP (Li et al., 2022b), rely heavily on dense spatial
annotations for identifying salient image regions. Native approaches, such as Grad-CAM (Selvaraju
et al., 2017), localize regions by analyzing gradients from classifier decisions without spatial supervi-
sion. Prior work adapts Grad-CAM to BLIP (Li et al., 2022a) leveraging its dedicated image-text
similarity computation neural network called the Image-Text Matching network (Tiong et al., 2022;
Guo et al., 2023). In this work, we derived a more general way for localizing the attention of MLLMs
to images, not relying on the specific BLIP architecture. Several recent works have explored ways
to improve the visual localization capability of MLLMSs for visual question answering, including
chain-of-thought (Shao et al., 2024; Liu et al., 2024b), tool-using (Wu and Xie, 2023), and visual
programming approaches (Suris et al., 2023; Gupta and Kembhavi, 2023). In contrast, we demonstrate
that MLLMs can often effectively localize the visual subject of a question in their internal states, and
propose training-free methods to leverage their internal states for improving their visual perception.

Visual Perception Limitations in MLLMs. The difficulty of answering questions about small objects
in images has been observed by several prior and concurrent works (Zhang et al., 2023b; 2024a; Liu
et al., 2024a; Wu and Xie, 2023), which have explored mitigating solutions based on high-resolution
fine-tuning (Liu et al., 2024a; Dehghani et al., 2023; Wang et al., 2024), multi-agent pipelines (Wu
and Xie, 2023), and use of visual cropping (Zhang et al., 2023b). In this work, we provide more
extensive evidence for this difficulty, establish its causal effect on MLLMs’ performance, and show
that it is rooted in a failure to observe small visual details as opposed to a failure to locate small
objects. Several works have also shown that MLLMs suffer from object hallucination (Li et al., 2023c;
Yu et al., 2024). Furthermore, Zhang et al. (2024a) have shown visual blind spots in MLLMs—i.e.,
locations on the image where the MLLMs’ perception degrades—as well as their sensitivity to visual
quality, presence of visual distractors in the image, and even local object location perturbations.

3 MLLMS’ SENSITIVITY TO THE SIZE OF VISUAL CONCEPTS

In this section, our goal is to quantitatively study our qualitative observations in Fig. 1 that MLLMs
struggle with describing small visual details in images. To that end, we consider the TextVQA dataset,
in which for each question we can find the image ground-truth bounding box that contains the correct
textual answer. We partition its validation set into three groups based on the relative size of the
ground-truth bounding box S = A?:,ba, , where Ay, denotes the area of the ground-truth bounding box,
and Ay the total area of the image: 1) S < 0.005 (small) consisting of 773 question-image pairs,
2) 0.005 < S < 0.05 (medium) consisting of 2411 question-image pairs, and 3) S > 0.05 (Large)
consisting of 1186 question-image pairs. We chose TextVQA for this study because it contains

Table 1: Sensitivity of the accuracy of MLLMs to the size of visual concepts in TextVQA. As the
relative visual size of the answer decreases (right to left in each row), we observe a decline in the
accuracy of the original models (no cropping) in answering questions, whereas visual cropping
(human—-CROP) significantly improves accuracy on smaller objects.

Answer Bbox Size (.5)

Model Method
small medium large
: no cropping 12.13 19.57 36.32
BLIP-2 (FlanT5xz) human-CROP 5576 5202  45.73
mstrueBLIP (Viewa7B) 0 TPIE L 6 i 539
) . i no cropping 39.38 47.74 50.65
LLaVA-L5 (Vieuna-7B) ) on-crop 6995 6536 56.96
i } no cropping 56.42 65.09 68.60
Qwen-VL (Qwen-7B) ) ran-crop 7035 7549 71.05
no cropping 65.76 72.81 69.17

GPT-4o human-CROP ~ 75.63 8132  71.72
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a significant number of questions about small visual concepts, and textual answers are harder for
MLLMs to guess from other side information in the image (compared to object types and attributes).

Sensitivity Study. If a model’s perception is not sensitive to the size of visual concepts, we expect it
to have similar accuracy in all three partitions. In Tab. 1, we observe that the accuracy of all MLLMs
declines as the ground-truth bounding box becomes relatively smaller (right to left on the no cropping
rows). BLIP-2 and InstructBLIP are not trained on TextVQA (i.e., are zero-shot models), and their
accuracy declines by 24 and 23 absolute percentage points between the 1arge and small partitions,
respectively. LLaVA-1.5 and Qwen-VL are trained on the training set of TextVQA, yet, their accuracy
also declines by 11 and 12 between the Large and small partitions, respectively. Lastly, even the
most recent commercial GPT-40, with an unknown training set that might include all of TextVQA, is
suffering from a 7 percentage point decline in accuracy between small and medium partitions. These
findings suggest that MLLMs have a bias against perceiving smaller visual concepts.

Intervention Study. The perceptual limitation we observed above might be merely correlated with
size. To study whether this limitation is causally related to size, we conduct an intervention study
where we provide the MLLMs with visually cropped images based on the ground-truth bounding
boxes, denoted as human-CROP. More specifically, for each image-question pair and each MLLM,
we crop the smallest square-shaped region containing the ground-truth bounding box from the image,
and resize it to the input image resolution of the MLLM (the square-shaped cropping prevents extreme
deformation of the cropped image when resizing). The cropped image is then provided to the MLLM
in addition to the original image-question pair (see more details in Fig. 4). We observe in Tab. 1
that human—CROP significantly improves the accuracy of all MLLMs on the small and medium
partitions, and to a lesser extent on the 1arge partition. These findings show that the perception
limitation is indeed caused by the size of the visual concepts, and that visual cropping can be a
promising direction to mitigate this limitation.

4 Do MLLMS KNOwW WHERE TO LOOK?

The limitation in perceiving small visual concepts can have two primary reasons: 1) they are hard
to locate in the larger image, and 2) their small details are hard to perceive correctly. In Fig. 1, we
observed that the MLLM’s incorrect answer may contain partially correct information, hinting that
it might know where to look in the image. In this section, we quantitatively study that observation
to answer whether MLLMs’ sensitivity to size is rooted in a perception limitation or a localization
limitation. To that end, we first utilize the attention maps computed inside the Transformer layers of
an MLLM to quantify its spatial attention over the image and then compare the total amount of this
attention inside the ground-truth bounding box to other bounding boxes of the same size.

MLLMs’ Setup. The considered MLLMs process a given image-question pair (z, ¢) in four steps
(depicted in Fig. 4): 1) the image is divided into N x N non-overlapping patches and processed by
the ViT image encoder into N x N output tokens; 2) the ViT output tokens are transformed into
the input space of the backbone LLM—by either an MLP (LLaVA-1.5) or a Transformer connector
(BLIP-2, InstructBLIP and Qwen-VL)—which we refer to as image tokens; 3) the image tokens are
then prepended to the question tokens and a predefined starting answer token, and fed to the LLM; 4)
the LLM is sampled auto-regressively following the starting answer token (we use greedy sampling).

Quantifying MLLLMs’ Spatial Attention over the Image. We first measure how important each
image token is to the MLLM’s decision (answer-to-token attention) by extracting the softmax cross-
attention of the starting answer token to all image tokens in all layers of the backbone LLM, resulting
in Ay (z,q) € REXHXIXT 'where L, H are the number of layers and heads-per-layer in the LLM,
and 7' is the number of image tokens provided to the LLM. We then take the average over attention
heads to arrive at the answer-to-token attention A (z, q) = + ZhH:1 Agi(x, q). Next, we measure
how important each image region is to each image token (token-to-image attention). For the MLLMs
that use a Transformer connector to resample ViT output tokens into a fixed number of image tokens
(BLIP-2, InstructBLIP and Qwen-VL), we extract the softmax cross-attention of each image token to
all ViT output tokens in all layers of the connector, resulting in A;; € RLeXHexTxN* ‘where [, H,
are the number of layers and heads-per-layer in the connector, 7' the number of learnable query
tokens (that become input image tokens to the LLM), and N2 the number of image patches of the ViT
image encoder. We then take the average over attention heads to arrive at the token-to-image attention



Published as a conference paper at ICLR 2025

Q: What is the color of the bicycle? (A) blue (B)
white (C) silver (D)red A: C

4 LLaVA-1.5

Q: What player number is this football player?
A: 21

((exr 225 )
e

InstructBLIP

0 Q: What number is next exit? A: 100 Q: What is the number? A: 8 Q: Is there a car in the image? A: No

Figure 2: Examples of MLLMs knowing where to look despite answering incorrectly. The right panel
in each example displays relative attention to the image (defined in Sec. 4) of one layer in the MLLM.

Ayi(z) = Hic Zf;l Ayi(z). For LLaVA-1.5 which uses an MLP to transform ViT output tokens to

image tokens, we set Ay (z) to the identity tensor. Finally, we compute the answer-to-image attention

by computing the tensor product of the answer-to-token and token-to-image attention, resulting in
2 ~ n .

Asi.(l'a q) € REXLXIXNT where AT (2, q) = AG (z,q) AF.(x) (superscripts m and k denote layer

indices on the LLM and the connector, respectively).

Relative Attention. One issue with using the softmax cross-attention is that not all highly attended
tokens are semantically relevant to the input question. For example, recent work has observed that
Transformers may use several tokens as registers to aggregate global information (Darcet et al., 2023).
To emphasize semantically relevant attention, we propose to normalize the answer-to-image attention
of an image-question pair (z, ¢) by its value on a generic instruction ¢’. Specifically, we consider a
fixed instruction ¢’ =*“Write a general description of the image.”, and compute relative attention as

Arei(x,q) = % under element-wise division. Fig. 2 shows examples of relative attention for

LLaVA-1.5 and InstructBLIP (A" at layers m = 14,k = 0 and m = 15, k = 2, respectively).

rel

Do MLLMs Know Where to Look? Equipped with relative attention, we now return to our question
of whether MLLMs have a localization limitation or perception limitation. To that end, we consider
the validation set of TextVQA again. For each image-question pair, we first compute the relative
attention. We then define attention ratio as the ratio of the total (sum) relative attention inside
the answer ground-truth bounding box to its average across all bounding boxes of the same size

BLIP-2 (FlanT5x.) InstructBLIP (Vicuna-7B)
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Figure 3: MLLMSs’ attention ratio across all layers (average with 95% CI over TextVQA). The
attention ratio measures how significantly the MLLM is attending to the ground-truth bounding box

(defined in Sec. 4). We observe that it is greater than 1 in most layers, showing that the MLLMs know
where to look in the image even when they fail to answer correctly.
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as the ground-truth on the image. This ratio provides a measure of how significantly the MLLM
is attending to the ground-truth bounding box (in the sense of Markov’s inequality). In Fig. 3, we
plot the average (with 95% confidence interval) of the attention ratio, over the validation set of
TextVQA for all layers in the considered MLLMs. The horizontal axis shows the combined layer
index ] = m+ k x L form € {0...L — 1} spanning the number of cross-attention layers in
the backbone LLM, and k € {0... L. — 1} spanning the number of cross-attention layers in the
connector (BLIP-2: L = 24, L. = 6; InstructBLIP: L = 32, L. = 6; Qwen-VL: L =32, L. = 1;
LLaVA-1.5: L = 32, L. = 1). In all MLLMs, we observe a significantly larger than 1 attention ratio
in most layers, suggesting that the models are attending significantly to the ground-truth bounding
box region on the image. Intriguingly, the models show similarly strong attention to the correct region
regardless of whether they can answer the question correctly or incorrectly. These observations show
that the MLLMs tend to know where to look, even when they answer incorrectly.

5 AUTOMATIC VISUAL CROPPING (VICROP)

We observed in Sec. 4 that the sensitivity of MLLMs to visual concept size is primarily a perception
limitation (rather than a localization limitation). Therefore, one solution to mitigate this limitation is
to simply train MLLMs with a larger number of image patches while maintaining per-patch resolution
(hence increasing the image resolution of MLLMs). However, increasing the input image resolution
by a factor of o, increases the number of ViT input patches (and output tokens) from N2 to a2 N2,
which in turn increases the softmax attention computation complexity on the order of a*N*. Given
that this solution is not scalable for current Transformer-based MLLMs, we choose to explore an
alternative solution that does not require any training and is scalable to any image resolution.
We note that several concurrent works have explored the first direction of training MLLMs with
higher resolution image patches (Li et al., 2024c; Sun et al., 2024; Li et al., 2024d; McKinzie et al.,
2024; Xu et al., 2024a; Luo et al., 2024), and notably LLaVA-Next (Liu et al., 2024a) has achieved
the VQA state-of-the-art in several VQA benchmarks at the time of writing. We believe our work
is parallel to these efforts in the following sense: rather than training higher and higher resolution
MLLMs to enable them to see all resolutions (which is inevitably upper bounded), we explore how
to smartly adjust the input image towards what an MLLM already can see without any additional
training. We provide evidence showing that our training-free method can provide orthogonal benefits
to the training-based methods in Appendices D and E.

Inspired by our findings that MLLMs tend to know where to look (Sec. 4) and that visual cropping
can mitigate the perception limitation (Sec. 3), in this section we construct three automatic visual
cropping methods in order to mitigate the perception limitation of MLLMs. These methods seek to
use the internal information of an MLLM itself—in the form of attention maps and gradients—to find
the approximate region of interest in images (i.e., the region containing the subject of a question),
and then to zoom into that region via visual cropping. One potential drawback of visual cropping is
that some questions might need to have a global view of the image. To address this issue, we utilize
the fact that MLLMs typically convert the image into a series of tokens. This allows us to directly

4 LLavVA-1.5

Image
Encoder

NxN 4 + 4 ‘
[0 - E)(EE =) Question (5]

Encoder

Figure 4: Tllustration of the proposed visual cropping approach applied to two MLLM:s.
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extend the original image tokens by concatenating the visually cropped image tokens, as illustrated
in Fig. 4. We use this concatenation approach when applying all our methods to MLLMs.

Relative Attention ViCrop (rel-att). In this method, we directly compute the relative attention
Arei(x, q) defined in Sec. 4 for each image-question pair (x, ¢). We then select a target layer (in LLM
and connector) based on a small held-out set of samples in TextVQA and use its relative attention as
the importance map for visual cropping (discussed below). We ablate on the choice of layer in Sec. 6.

Gradient-Weighted Attention ViCrop (grad—att). The relative attention runs an additional
generic instruction through the MLLM to normalize the answer-to-image attention and emphasize
semantically relevant attention. As an alternative that does not require a second forward pass, we
consider using the gradients to normalize attention, because the gradient of the model’s decision with
respect to an attention score shows how sensitive the decision is to changes in that attention, hence how
semantically relevant the attention is for answering the question. To get a differentiable representation
of the model’s decision, we consider the logarithm of the maximum output probability at the starting
answer token, v = log softmax(z(z, q) ) € R, where z € R? is the output logit of the LLM at the
starting answer position, D the vocabulary size, and t* = arg max, z;. Then, following our notation
in Sec. 4, we can compute the gradient-weighted versions of answer-to-token attention Ay (z,q) =
Ast(z,q) © 0(Va,,v(x,q)) and token-to-image attention Ay;(z,q) = Ay(x) © 0(Va,,v(z,q)),
where © is element-wise product and o(w) = max(0, w). We remove negative gradients because
they correspond to tokens that if attended to will reduce the model certainty, hence often distracting
locations Selvaraju et al. (2017). Finally, we compute the gradient-weighted answer-to-image

attention as the following tensor product Ag;(z,q) = Ay (z,q) ® Ay(z,q) € REXLXIXN e

will select the same target layer identified in rel-att from flsi(x, q) as the importance map for
visual cropping.

Input Gradient ViCrop (pure—grad). In this method, we seek to find the relevant regions on the
image directly using the gradient of the MLLM’s decision with respect to the input image. Compared
to the previous attention-based methods, pure—-grad is more versatile because it does not rely on
the Transformer-based architecture. Specifically, for each image-question pair (z, ¢), we will compute
G(z,q) = ||Vgv(z, q)||2, where v(z, q) is the logarithm of the maximum output probability of the
LLM at the starting answer token (as defined in grad—att above), and the L2-norm is taken over the
image channel dimension. However, gradients sometimes show high values in entirely constant-color
regions (e.g., blue skies). Given that these non-edge regions do not contain any visual details, we
will explicitly diminish them in G. To that end, we first apply a 3 x 3-size Gaussian high-pass filter
to the image, followed by a median filter of the same size to reduce salt-and-pepper noise. The
resulting filtered image is then thresholded at its spatial median value to become a binary mask and is
element-wise multiplied by G. Finally, the edge-emphasized G is spatially average-pooled into the
N x N patches of the MLLM to become an importance map for visual cropping.

Bounding Box Selection for Visual Cropping. To convert the importance map (from each of the
methods described above) to a bounding box, we use sliding windows of different sizes inspired by
object detection literature Redmon et al. (2016). Specifically, for each MLLM, we define a set of
windows with sizes equal to a multiple of the input image resolution of the MLLM. The multiples are
in {1,1.2,...2}. We slide each window over the image with a stride of 1 and find its best position
where the sum of the importance map inside the window is maximized. After selecting the best
position per window, we choose the window whose internal sum has the largest difference from
the average internal sum of its adjacent positions. This latter step is a heuristic to avoid choosing
too small or too large windows (notice that in both cases, moving the window slightly left/right or
up/down will not change its internal sum significantly). The chosen window is then cropped from the
image, resized to the input image resolution of the MLLM, and provided to the MLLM in addition to
the image-question pair.

High-Resolution Visual Cropping. In one of the benchmarks we consider in this work, V* Wu
and Xie (2023), the images are of very high resolution (always more than 1K) and consequently, the
resized input image provided to the MLLM might completely lose the visual concept of interest for a
question. To mitigate this, on this benchmark, we employ a two-stage strategy. In the first stage, we
divide images into non-overlapping blocks of smaller than 1024 x 1024 with an aspect ratio close
to 1, compute the importance map separately for each block according to the ViCrop methods, and
then re-attach the blocks back together. In the second stage, we find the bounding box for visual
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Q: What is the color of the clock? (A) black (B) yellow (C) green (D) red 4 |LLavVA1.5: A 4» LLaVA 1.5 (w/ ViCrop): C

Q: What is the last on the list the lady is pointing at? Q: What is the name of the player?
4 LLaVA1.5:10 4 L LaVA 1.5 (w/ ViCrop): Use numbers Q InstructBLIP: Rudolph Q InstructBLIP (w/ ViCrop): Holland

Figure 5: Examples of rel-att helping MLLMs correct their mistakes (cyan-colored bounding
box shows cropped region by rel-att; zoom-in insets are displayed for better readability).

cropping on this re-attached importance map exactly as described before and provide the original
image-question pair with the resized cropped image to the MLLM.

6 VICROP METHOD ANALYSIS

In this section, we apply our proposed visual cropping methods to two open-source SOTA MLLMs,
InstructBLIP (Vicuna-7B) (Dai et al., 2023) and LLaVA-1.5 (Vicuna-7B) (Liu et al., 2023a). We
evaluate their effectiveness in improving the perception of smaller visual concepts on 4 detail-
sensitive datasets (TextVQA (Singh et al., 2019), V* (Wu and Xie, 2023), POPE (Li et al., 2023c),
DocVQA (Mathew et al., 2021)), and their ability to maintain performance on larger visual concepts
in 3 general-purpose datasets containing mostly large objects (GQA (Hudson and Manning, 2019),
AOKVQA (Schwenk et al., 2022), VQAv2 (Goyal et al., 2017)). InstructBLIP uses the hyper-
parameters N = 16, m = 15,k = 2 and input image resolution of 224 x 224. LLaVA-1.5 uses
N = 24, m = 14 and input image resolution of 336 x 336. When reporting accuracy, we compute
VQA-score’ for all benchmarks except GQA. For GQA, we compute accuracy using the official
code.”. See Appendices A to C for further details about implementation, datasets, and prompts.

ViCrop Improves VQA Accuracy. In Fig. 5, we show a few examples of the ViCrop helping the
MLLM correct itself (more examples in Appendix G), and in Tab. 2, we report the accuracy of
the proposed ViCrop methods on the VQA benchmarks. We observe that all methods significantly
improve the accuracy of the original MLLMs (no cropping) on detail-sensitive benchmarks, without
requiring any training, while maintaining the MLLMs’ performance on benchmarks with larger
visual concepts. Thus, the accuracy gain on fine details (most notably in TextVQA and V*) does not
seem to come at the cost of accuracy on larger visual details and relations. We also observe that the
accuracy gain for LLaVA-1.5 is more substantial than for InstructBLIP. This can be explained by the

2tIn TextVQA evaluation, we do not provide externally extracted OCR tokens to the MLLM since we want to
measure its true perception, this differs from the setup in the original paper. See more discussion in Appendix A.

3https://visualqa.org/evaluation.html

*https://cs.stanford.edu/people/dorarad/gga/evaluate.html
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Table 2: Accuracy of the proposed ViCrop methods on visual question answering benchmarks.

Smaller Visual Concepts Larger Visual Concepts
Model
TextVQAT V¥  POPE DocVQA AOKVQA GQA VQAW2
no cropping 47.80 4241 85.27 15.97 59.01 60.48  75.57
LLaVA-1.5 rel-att 55.17 62.30 87.25 19.63 60.66 60.97 76.51
’ grad-att 56.06 57.07 87.03 19.84 59.94 60.98  76.06
pure—grad 51.67 46.07 86.06 17.70 59.92 60.54 7594
no cropping 33.48 35.60 84.89 9.20 60.06 4941  76.25
InstructBLIP  Fel-att 45.44 4241 86.64 9.95 61.28 49.75  76.84
grad-att 45.71 37.70  86.99 10.81 61.77 50.33  76.08
pure-grad 42.23 37.17 86.84 8.99 61.60 50.08 76.71

Table 3: Ablation study on the choice of layer and the use of high-resolution visual cropping.

Model Choice of Layer High-Resolution ViCrop

Selective ~ Average A w/ High-Res  w/o High-Res A

no cropping 47.80 - - 42.41 42.41 -
LLaVA-1.5 rel-att 55.17 5545  +0.28 62.30 47.64 -14.66
' grad-att 56.06 56.26  +0.20 57.07 49.74 -7.33
pure-grad 51.67 - - 46.07 45.03 -1.04

no cropping 33.48 - - 35.60 35.60 -
InstructBLIP T€l-att 45.44 44.40 -1.04 42.41 38.74 -3.67
grad-att 45.71 44.98 -0.73 37.70 42.41 +4.71
pure-grad 42.23 - - 37.17 42.41 +5.24

fact that InstructBLIP only trains its connector and not its backbone LLM during tuning—the LLM
does not adapt to use the image tokens, rather the image tokens are adapted to optimally prompt the
LLM—and therefore the LLM cannot effectively use the additional (cropped) image tokens provided
through visual cropping. Nonetheless, the results show that ViCrop can be effectively applied to
different MLLMs, and is a promising inference-time solution for mitigating the perception limitation
observed in Sec. 3.

Ablation Study on the Choice of Layer. To understand the importance of the choice of an informative
layer for rel-att and grad-att (as discussed in Sec. 5), in Tab. 3 we compare the accuracy
of these methods when simply taking the average of all layers in A,; and Ag;, respectively, on
TextVQA. We observe that rel-att is robust to this choice and grad-att declines about 3.5
percentage points in accuracy. Importantly, both methods still improve the MLLMSs’ accuracy even
when using the layer average, suggesting that averaging is a suitable choice in the absence of any
data for selecting a layer.

Ablation Study on the High-Resolution ViCrop. In Sec. 5, we proposed a two-stage strategy for
processing the very high-resolution images in the V* benchmark. To see how effective this strategy
is, in Tab. 3 we compare the accuracy of ViCrop methods with and without this high-resolution
strategy on V*. We observe that while this strategy is very beneficial to LLaVA-1.5, it declines the
performance of grad—att and pure-grad for InstructBLIP. However, all methods, with and
without this strategy, still improve the MLLMs’ accuracy.

ViCrop with External Tools. In addition to the internal ViCrop methods, we also considered the
use of external off-the-shelf models to find the region of interest in an image for visual cropping.
Specifically, we utilized SAM (Kirillov et al., 2023), YOLO (Redmon et al., 2016), and CLIP (Radford
et al., 2021) to find the most relevant part of an image to a given question (details of these external
ViCrop methods are provided in Appendix F). In Tab. 4, we compare the accuracy of external ViCrop
methods to the internal methods on TextVQA. While external models are also effective in improving
the accuracy of MLLMs, they are weaker than all the proposed internal ViCrop methods, thus we did
not explore them further.
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Table 4: Accuracy of ViCrop using external tools compared to attention/gradient (on TextVQA); and
the inference time overhead of ViCrop methods (in seconds). Original’s time is per answer token.

Model Original SAM YOLO CLIP rel-att grad-att pure-grad
Accuracy LLaVA-1.5 4780 4942 4884 4855  55.17 56.06 51.67
(TextVQA) InstructBLIP 3348 3923 3649 3961 4544 45.71 4223
‘ LLaVA-15 226 14.43 1133 29.86
CPUTime o dretBLIP 066 2123 097 346 55 378 7.04
 LLaVA-l5 017 116 0.89 236
GPUTime 1 GmeBLIP 006 =3 035 L0750 0.29 0.60

Inference Time Overhead. In Tab. 4, we report the average inference-time overhead of the proposed
visual cropping methods on GPU (NVIDIA RTX A6000) and CPU (Intel(R) Gold 5317 CPU @
3.00GHz) and compare with the per-answer-token processing time of the MLLMs. We see that all
proposed methods (except SAM) are reasonably fast (1 to 2 seconds overhead on GPU). For example,
computing the visual cropping with rel-att takes the time of generating only 5 tokens by the
MLLM. Note that our methods’ time overhead will not scale with the number of answer tokens
and is constant regardless of how long the answer is because our external methods do not need
any answer token, and internal methods only need the starting answer token (see Sec. 5). In contrast,
MLLMSs’ inference time scales approximately linearly with the number of answer tokens.

7 CONCLUSION

In this work, we qualitatively and quantitatively showed that there exists a perception bias against
small visual details in widely-used MLLMs. Then we found that MLLMs often know where to look
even if they fail to answer the question, indicating that the bias toward small visual details is rooted in
a perception limitation rather than a localization limitation. To mitigate this limitation, we proposed
multiple automatic visual localization methods as scalable and training-free solutions based on models’
internal dynamics while answering the visual questions. Through evaluation of multiple multimodal
benchmarks, we showed that our method can significantly improve MLLMs’ accuracy without
requiring any training, especially in detail-sensitive scenarios. Our findings suggest that MLLMs
should be used with caution in detail-sensitive applications, and that visual cropping/localization with
the model’s own knowledge is a promising direction to enhance their performance.

Limitations and Future Work. The proposed ViCrop methods do not enhance all types of questions
equally. We have observed that questions concerning relations and counting are particularly difficult
for ViCrop methods to help answer. This is expected as the proposed ViCrop can only focus on one
region in the image. We leave extending ViCrop to focus on multiple regions simultaneously for
future work. Another limitation of the proposed methods is their time overhead and the addition of
visual tokens. While the overhead is reasonable (a few seconds), we believe it can be significantly
optimized as an inference-time mechanism, for example by utilizing lower precision, and weight
quantization. Furthermore, Matryoshka Query Transformer (MQT) (Hu et al., 2024) enables MLLMs
to have varying visual context size during inference. In our current results, we have shown that our
methods can work with two different MLLMs with distinct visual context sizes, so it seems entirely
possible that our method can still work with varying visual context size under MQT, which can further
reduce our computational cost through rescaling the cropped image. We leave these inference cost
optimizations to future works. Lastly, we have observed that the proposed methods tend to have some
complementary benefits, and therefore exploring ways to combine them (for example based on the
prediction uncertainty) is also a very interesting direction for future research.
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A IMPLEMENTATION DETAILS

We use python 3.10.6, transformers 4.29.1 and torch 2.1.2 for all the experiments. Our environment
consists of an Intel(R) Gold 5317 CPU @ 3.00GHz with 48 cores and 756 GB of RAM, and we
utilize NVIDIA RTX A6000 GPUs for our experiments. We use the huggingface implementations of
all studied MLLMs with the recommended hyper-parameters according to the respective papers. For
GPT-40, we use the official public API, which is available at the time of submission.

Regarding the evaluation setting of the TextVQA dataset in Tab. 2, our setting is slightly different
from the one used by the LLaVA-1.5 original paper Liu et al. (2023a). They report accuracy
on TextVQA by using externally extracted OCR tokens to enrich its text prompt. This is a text-
specific trick that essentially out-sources the perception of text to an external OCR model. This text-
specific trick is not mentioned in their paper or supplementary material, but see their clarification in
response to a GitHub issue here: https://github.com/haotian-1iu/LLaVA/issues/
515#issuecomment-1763779341. In contrast, we treat TextVQA the same as any other vision
dataset in our experiments, that is, we do not provide any OCR extracted tokens to MLLMs when
applying them to TextVQA (only image and question, in the evaluation prompt format specified
in their respective papers). This results in a slightly lower accuracy compared to the one reported
in the original paper, but instead, this number shows the true perception ability of LLaVA-1.5 on
TextVQA, not confounded by the ability of an external OCR model. For completeness, we also
measured TextVQA accuracy in the presence of OCR tokens, which results in 59.8 for LLaVA-1.5
without any visual cropping, and 63.95 with rel—-att, showing that our proposed visual cropping
can still be beneficial even when OCR tokens are provided to the MLLM.

B DATASET STATISTICS

In this section, we present the details of the datasets used for evaluation in this paper. We report the
average height and weight of the images in the dataset. We also report the number of images and
questions in each dataset. For VQAv2, we run our experiment on a random 50K subset of the official
validation set. We use the entire validation set in all other datasets.

Table 5: Average width (1) and height (/) of images, number of images, and number of questions
on all datasets.

V*  DocVQA TextVQA POPE AOKVQA GQA VQAV2

W 2246 1776 954 584 581 578 577
H 1582 2084 818 478 480 482 485
# Images 191 1286 3166 500 1122 398 14206
# Questions 191 5349 5000 8910 1145 10781 50000

For our analysis presented in Table | and Figure 3, we focused on TextVQA dataset, which includes
bounding box annotations for OCR-detected text within images. However, this dataset does not
specify which bounding boxes correspond to the regions where answers are located, necessitating
a manual annotation process. The TextVQA dataset comprises 5000 questions and 3166 images.
We manually annotated these question-image pairs, ensuring accurate bounding boxes over all the
regions of interest where the answers could be found. This manual annotation process was essential
for our analysis, allowing us to provide precise and reliable ground-truth data for the study. Given
that some questions were associated with multiple bounding boxes in their corresponding images, we
undertook a filtering process to isolate the question-image pairs. This effort resulted in a refined set
of 4370 question-image pairs, where there is only one instance of the subject of the question in the
image. For example, if the question is “what type of drink is sold here?” and there are two different
cans of drinks in the image, we remove this image-question pair.
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C PROMPT FORMAT FOR ZERO-SHOT INFERENCE

In this section, we provide details about the prompt format used in models for zero-shot inference.
We use a different prompt format for LLaVA and InstructBLIP which we adapt from the original
papers, as shown below.

~ ~

LLaVA-1.5

<image> USER: {question} Answer the question using a single
word or phrase. ASSISTANT:

InstructBLIP

<image> Question:{question} Short Answer:

D ORTHOGONAL BENEFITS TO LLAVA-NEXT

We apply our proposed rel-att visual cropping method to an additional newer MLLM — LLaVA-
NeXT (Liu et al., 2024a) current SOTA in several VQA benchmarks — that has support for higher-
resolution compared to LLaVA-1.5. In Tab. 6, we observe that our method can still boost the MLLM’s
performance, without requiring any training. This provides further evidence for the generalizability
of our proposed visual cropping and its orthogonal benefits to training MLLMs with higher image
patch resolution.

Table 6: Orthogonal benefits of visual cropping when applied to LLaV-NeXT that is trained to adapt
to processing high-resolution images.

Model TextVQA  V*

LLaVA-NeXT (Mistral-7B) 65.17 58.11
LLaVA-NeXT (Mistral-7B) + rel-att 68.65 61.78

E COMPARISON WITH THE V* METHOD (SEAL)

The V* method (SEAL) (Wu and Xie, 2023) proposes a multi-agent fine-tuning approach to enhance
the ability of an underlying MLLM to answer questions about small visual concepts. However, SEAL
requires substantial training and finetuning of several neural networks, whereas our methods are
completely training-free, so a direct comparison would not be fair. Nonetheless, to provide an idea of
how our method compares to SEAL in an “as-is” fashion (i.e. if a user just wants to pick one method
as-is off-the-shelf), we report the accuracy of SEAL compared to LLaVA-1.5+rel-att in Tab. 7.
We observe that our method outperforms SEAL except on the V* benchmark. We think this might be
because SEAL is designed and tuned specifically toward high-resolution images in its V* benchmark.
We also note that the inference time of SEAL is slower than our method (4.44s compared to 1.88s on
average per question, tested on the same random 100 TextVQA samples with one A6000 GPU). That
being said, we note that our methods and SEAL can both help enhance MLLMSs, and our methods
can be integrated into SEAL or other multi-agent pipelines.

Table 7: Performance comparison between our rel—-att applied on LLaVA-1.5 and SEAL (Wu and
Xie, 2023) across multiple vision-language benchmarks.

Model TextVQA  V*  POPE DocVQA AOKVQA GQA VQAV2
SEAL 36.30 7530  82.40 531 5534 50.18  65.35
LLaVA-1.5+rel-att  55.17 6230 8725  19.63 60.66 6097  76.29
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F EXTERNAL TOOLS VICROP

In this section, we present three automatic question-guided localization methods based on popular
off-the-shelf vision-based models, namely CLIP Radford et al. (2021), YOLO Redmon et al. (2016),
and SAM Kirillov et al. (2023). These three methods utilize external vision-based knowledge for
the localization process through multimodal encoding, object detection, and semantic segmentation,
respectively. See Tab. 4 for their results compared to internal ViCrop methods.

CLIP ViCrop. The intuition of this method is to progressively refine the image towards the region of
highest relevance to a given question using CLIP Radford et al. (2021). CLIP consists of an image
encoder and a text encoder, which are trained on a large dataset of image-caption pairs to map each
image (caption) close to its caption (image) and far from all other captions (images). The result is
an aligned shared space where various images can be directly compared with various texts. To find
the region of interest, given an image-question pair, we first crop the image from the four sides (top,
bottom, left, and right) at a cropping ratio of 0.9 to produce four overlapping cropped images. We
then use CLIP to assess the semantic similarity between these cropped images and the question. The
highest-scoring crop is chosen as the input for the next iteration. This process is repeated for 20
iterations, and the cropped image with the highest CLIP similarity to the question is selected for
visual cropping.

YOLO ViCrop. Instead of a progressive approach to finding the region of interest, in this method we
select candidate regions based on a state-of-the-art object detection method: YOLOv8 (Jocher et al.,
2023) pretrained on COCO Lin et al. (2014). Using YOLO, we filter out regions that contain no
salient objects — i.e., regions for which CLIP could mistakenly assign high similarity. More concretely,
for each question-image pair, we first use YOLO to collect bounding boxes for all predicted objects
with confidence higher than 0.25 (the recommended default).” Then, for each predicted bounding
box, we crop its corresponding image and compute its similarity to the question using CLIP. Finally,
the bounding box with the highest similarity score is selected as the region of interest for visual

cropping.

SAM ViCrop. A limitation of YOLO is that it only provides bounding boxes corresponding to a fixed
number of object classes. To overcome this issue, we use the segment anything model (SAM) Kirillov
et al. (2023), which has shown state-of-the-art zero-shot segmentation performance. SAM can provide
an extensive set of segmentation masks for each image, thus providing a more granular set of salient
candidate regions compared to YOLO. More concretely, for each image-question pair, we feed the
image into SAM, which provides an extensive set of segmentation masks corresponding to all objects
and object parts. Then, we translate these masks into bounding boxes by computing the smallest
bounding box that covers each segmentation mask. Finally, the bounding box with the highest CLIP
similarity to the question is selected as the region of interest for visual cropping.

Finally, for each method, we crop the smallest covering square (so that the cropped image is not
deformed when resized to the input resolution of the MLLM), and provide it to the MLLM in addition
to the original image-question pair (as depicted in Fig. 4).

>https://docs.ultralytics.com/modes/predict
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G ADDITIONAL EXAMPLES ON MODEL’S PREDICTIONS

Q: What is the breed of
the dog?

(A) Husky

(B) corgi

(C) Dalmatian

(D) golden retriever

4 llavA15: C
4 LLavA 1.5
(w/ ViCrop): D

Q: Is the blue truck on the
left or right side of the
white vehicle?

(A) right

(B) left

4b11avA15: B

A LLaVA 15
(w/ ViCrop): A

Q: What is the color of
the handbag?

(A) white

(B) red

(C) black

(D) yellow

4b11avA15: C

A LLaVA 15
(w/ ViCrop): D

Q: What is the color of
the parachute?

(A) Blue

(B) yellow

(C) Green

(D) red

4 LavA15: B

4b 11aVA15
(w/ ViCrop): A

Figure 6: Success (first 3) and failure (last) examples of LLaVA-1.5 (rel—-att) onthe V* benchmark
(cyan-colored bounding box shows cropped region by rel—-att; zoom-in insets are displayed for
better readability).
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¥ x

TERRYS

ALE

Q: what team is written on the baseball in the right
hand corner?

4 LlaVA1.5:  Perrys . 4 llaVA1.5: no
4 LLaVA 1.5 (w/ ViCrop):  Cotirell 4 LLaVA1.5:  Yankees A LLaVA 1.5 (w/ ViCrop):  yes

4 | LaVA 1.5 (w/ ViCrop):  Riverdogs
" MUNCHEQN BRICKS

7 s 5 Last 24

Q: which brewery made this ale? Q: is city of ballard in europe?

Q: what is the company that made this game /

] ) s . . . e
Q: what is the brand of the monitor? Q: what number is on the middle bike? character?

4 LLaVA1.5: Postugo 4 llavA15: 39

A LLaVA 1.5 (w ViCrop):  Positivo 4 LLaVA 1.5 (w/ ViCrop): 30 4 LlaVA15:  Crazy brick

4a LLaVA 1.5 (w/ ViCrop):  Steve Jackson games

EIGRGE M PRt

Q: what does the sign at the crosswalk say? Q: what number is on the man in whites jersey? Q: what country is miss universe from?
4 llavA15: Go 4 llavA15: 22 4 llavA1.5: Usa
4 LLaVA 1.5 (w/ ViCrop):  10av 4 LLaVA 1.5 (w/ ViCrop): 7 4 LLaVA 1.5 (w/ ViCrop): Canada

Q: what does the bubble text say for the woman? Q: what is styped in the search bar? Q: who is the picture of?
4 LLaVA1.5: Hold it boys! 4 LLavVA1.5:  Sushi 4 LLaVA1.5: Charles grayson
4a LLaVA 1.5 (w/ ViCrop):  Hold it 4 LLaVA 1.5 (w/ ViCrop):  Buscar dierccion 4 LLaVA 1.5 (w/ ViCrop):  Man

Q: what is the number of the player in the middle? Q: what is the wine brand? Q: what kind of exchange shows on the banner?
4 LlavA15: 3 4 |LaVA1.5: Dog house 4 LLaVA1.5: Policy
4 LLaVA 1.5 (w/ ViCrop): 22 4 LLaVA 1.5 (w/ ViCrop): Masseto 4 LLaVA 1.5 (w/ ViCrop):  Sab miller

Figure 7: Success (first 9) and failure (last 6) examples of LLaVA-1.5 (rel-att) on the TextVQA
benchmark (cyan-colored bounding box shows cropped region by rel-att).
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au respect de tous

STOPa la fumée dafis les lieux publics.

-

Q: what is the name of the group on the bottom right

of the poster? Q: what is written on the milk carton?

Q: what letter is on the mans ball cap?

& InstructBLIP:  F & v & InstructBLIP:  Milk
InstructBLIP:  Publi
& InstructBLIP (w/ ViCrop): T & InstrﬁctBLlP W \/L;Crl’cop): ez coilfaes @ InstructBLIP (w/ ViCrop):  U.s. forced europe

Q: what does the sign say above the wheelchair

Q: what brand of bike wheel is this? symbol?

Q: more sharing what?

& InstructBLIP:  Pace
@& InstructBLIP (w/ ViCrop):  Pacenti

& InstructBLIP:  Photo
& InstructBLIP (w/ ViCrop):  Options

@ InstructBLIP:  Men
& InstructBLIP (w/ ViCrop):  Restroom

Q: what is the name in the very top right hand corner

of this page? Q: what is the number at the bottom right corner? Q: what degree angle has been drawn?
G IeEEUR:  Srlesme Q InstructBLIP: 100 Q InstructBLIP: 45
y P @ InstructBLIP (w/ ViCrop): 16 & InstructBLIP (w/ ViCrop): 90

@ InstructBLIP (w/ ViCrop):  Newcome

Q: what brand are the guy's shorts? Q: who is the service provider? Q: what is the middle book title?
Q InstructBLIP: ~ Gators @ InstructBLIP:  Mophie & InstructBLIP:  Mess
& InstructBLIP (w/ ViCrop):  Nike & InstructBLIP (w/ ViCrop):  Apple & InstructBLIP (w/ ViCrop):  Messily
. E
H
Q: what is the word written in the bottom of the box? Q: what is the word under the state name? Q: what is the manufacturer of these bullets?
& InstructBLIP:  Hardcast @ InstructBLIP:  Karazy & InstructBLIP:  Sears
@ InstructBLIP (w/ ViCrop):  Flexible & InstructBLIP (w/ ViCrop):  California & InstructBLIP (w/ ViCrop):  Remington

Figure 8: Success (first 9) and failure (last 6) examples of InstructBLIP (rel-att) on the TextVQA
benchmark (cyan-colored bounding box shows cropped region by rel-att).
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