
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A Appendix

A.1 Symbols and Notations

• model parameter: θ;
• SAM perturbed model parameter: θ + ϵ∗0 = θ + 𝜌 · ∇L(θ)

∥∇L(θ) ∥ ;
• proxy model parameter: θ + ϵ∗1 = θ + 𝜌 · (g𝑠 − g)/∥g𝑠 − g∥;
• proxy perturbed model parameter: θ + ϵ∗1 + 𝜌 · ∇L(θ + ϵ∗1)/∥∇L(θ + ϵ∗1)∥;
• the empirical loss: L(θ), with its gradient g;
• the SAM loss: L(θ) + R0

𝜌 (θ) = max∥ϵ0 ∥≤𝜌 L(θ + ϵ0) with its gradient g𝑠;

• the C-Flat loss: L(θ)+R0
𝜌 (θ)+𝜆 ·R1

𝜌 (θ) = max∥ϵ0 ∥≤𝜌 L(θ+ϵ0)+𝜌 ·max∥ϵ1 ∥≤𝜌




∇L(θ+

ϵ1)



, with its gradient g𝑠 + g 𝑓 ;

• the gradient of proxy model: g0 = ∇L(θ + ϵ∗1);
• the gradient of proxy perturbed model: g1 = ∇L(θ + ϵ∗1 + 𝜌 · ∇L(θ + ϵ∗1)/∥∇L(θ + ϵ∗1)∥);
• the empirical loss term: g = ∇L(θ);
• the zeroth-order sharpness term: g𝑠 − g = ∇R0

𝜌 (θ);
• the first-order flatness term: g 𝑓 = ∇R1

𝜌 (θ);

A.2 Derivation of Equation 5

Following Bian et al. (2024); Zhang et al. (2023b), the gradient of the first-order flatness loss R1
𝜌 is:

∇θR1
𝜌 (θ) = 𝜌 · ∇θ max

ϵ∈𝐵(0,𝜌)
∥∇L(θ + ϵ)∥ (7)

= 𝜌 · ∇θ ∥∇L(θ + ϵ∗1)∥

= 𝜌 ·
(
𝜕

𝜕θ
∥∇L(θ + ϵ∗1)∥ +

𝜕ϵ∗1
𝜕θ

· ∇ϵ∥∇L(θ + ϵ)∥
��
ϵ=ϵ∗1

)
≈ 𝜌 · ∇θ ∥∇L(θ + ϵ∗1)∥ // neglect higher-order term for tractability

Here, 𝜖∗1 denotes the optimal perturbation that maximizes the gradient norm within the ℓ2-ball
𝐵(0, 𝜌). To make the computation tractable, we approximate it using first-order Taylor expansion
and finite differences:

ϵ∗1 = arg max
ϵ∈𝐵(0,𝜌)

∥∇L(θ + ϵ)∥ (8)

≈ arg max
ϵ∈𝐵(0,𝜌)

(
(∇θ ∥∇L(θ)∥)𝑇 ϵ

)
// first-order Taylor expansion

= 𝜌 · ∇θ ∥∇L(θ)∥
∥∇θ ∥∇L(θ)∥∥ // direction of steepest ascent

≈ 𝜌 · ∇L(θ + δ) − ∇L(θ)
∥∇L(θ + δ) − ∇L(θ)∥ // finite-difference approximation

= 𝜌 · g𝑠 − g

∥g𝑠 − g∥ ,

where g = ∇L(θ), g𝑠 = ∇L(θ + δ), and δ = 𝜌′ · g
∥g∥ is a small perturbation in the direction of the

gradient, with 𝜌′ ≪ 𝜌.

Let θ𝑝 = θ + ϵ∗1 be the perturbed model after maximizing the gradient norm. Then Equation 7
continues as:

∇θR1
𝜌 (θ) ≈ 𝜌 · ∇θ




∇L(θ𝑝)



 (9)

≈ 𝜌

𝜌′
·
[
∇L

(
θ𝑝 + 𝜌′ ·

∇L(θ𝑝)
∥∇L(θ𝑝)∥

)
− ∇L(θ𝑝)

]
,

1



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where 𝜌′ ≪ 𝜌 is a small step size for finite-difference approximation.

Then, the direction-invariant component of g 𝑓 with respect to g0 is defined as:

g𝑣 𝑓 = g 𝑓 −
⟨g 𝑓 , g0⟩
∥g0∥2 · g0, (10)

which represents the orthogonal projection of g 𝑓 onto the subspace perpendicular to g0 (i.e., g𝑣 𝑓 ⊥
g0), capturing a direction-invariant update toward flatness.

A.3 C-Flat Turbo Algorithm

Algorithm 1 C-Flat Turbo

Input: Training phase 𝑇 , training data 𝑆𝑇 , model parameter θ, total iterations 𝐽, oracle loss
function L, learning rate 𝜂, C-Flat coefficient 𝜆, Turbo step 𝑘 , 𝜇𝑠,0 = 𝜇 𝑓 ,0 = 0, 𝜎𝑠,0 = 𝜎 𝑓 ,0 =

1𝑒 − 8.
Output: Model trained at the current time 𝑇 with C-Flat.

1: for 𝑗 = 1 to 𝐽, sample batch 𝐵𝑇
𝑗

from dataset 𝑆𝑇 do
2: Compute gradient: g = ∇L(θ)
3: Initialize update direction: g = g
4: Update EMA statistics: 𝜇𝑠, 𝑗 , 𝜎𝑠, 𝑗 , 𝜇 𝑓 , 𝑗 , 𝜎 𝑓 , 𝑗 by eq. (6)
5: if ∥g∥2 ≥ 𝜇𝑠, 𝑗 + 𝜎𝑠, 𝑗 then
6: if 𝑗 mod 𝑘 = 0 then
7: Compute g𝑠 = ∇L(θ + ϵ∗0) − ∇L(θ) by eq. (4)
8: Cache g𝑣𝑠 = g𝑠 sin(𝜙𝑠), where 𝜙𝑠 denotes the angle between g and g𝑠
9: else

10: Simulate g𝑠 = g + 𝛽
∥g∥
∥g𝑣𝑠 ∥ g𝑣𝑠

11: end if
12: Update direction: g = g𝑠
13: end if
14: if ∥g0∥2 ≥ 𝜇 𝑓 , 𝑗 + 𝜎 𝑓 , 𝑗 then
15: if 𝑗 mod 𝑘 = 0 then
16: Compute g 𝑓 = 𝜌 · ∇



∇L (
θ + ϵ∗1

)

 using g0 and g1 by eq. (5)
17: Cache g𝑣 𝑓 = g 𝑓 sin(𝜙 𝑓 ), where 𝜙 𝑓 denotes the angle between g0 and g1
18: else
19: Simulate g 𝑓 = g0 + 𝛽

∥g0 ∥
∥g𝑣 𝑓 ∥ g𝑣 𝑓

20: end if
21: Update direction: g = g + 𝜆 · g 𝑓

22: end if
23: Update turbo step 𝑘 according to Section 4.6
24: Update model parameter: θ𝑇 = θ𝑇 − 𝜂 · g
25: end for

A.4 Hyperparameter Configurations

Here, we primarily provide the hyperparameter configurations for methods trained on CIFAR100.
For other datasets, we follow the original settings from the open repository and keep 𝑘 = 5 and
𝛽 = 0.8 fixed.

A.5 Memory Usage

The cached gradients are used to substitute partial sharpness-aware gradient computations, so their
memory usage heavily depends on the number of trainable parameters in the model. As shown in the
table 5, although larger models require more cached gradients, the overall memory overhead remains
almost negligible relative to the expansion typically caused by large architectures.

2



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameter settings for CIFAR100.

Epochs LR BS Tasks Exemplar/class 𝜌 𝜆 𝑘 𝛽

iCaRL 20 1e-3 32 10 20 0.1 0.2 5 0.8
MEMO 20 1e-3 32 10 20 0.1 0.2 5 0.8

L2P 5 2e-3 16 10 - 0.02 0.2 5 0.8
Ranpac 5 1e-2 16 10 - 0.05 0.2 5 0.8
EASE 5 2.5e-3 16 10 - 0.05 0.2 5 0.8

Table 5: Memory usage of different architecture.

Method Optimizer Backbone Training backbone Trainable / total params Memory

EASE

C-Flat
ViT-Base-16 × 1.19M / 86.99M

2.14GB
Turbo 2.15GB
C-Flat

ViT-Large-16 × 3.17M / 306.47M
5.34GB

Turbo 5.37GB

iCaRL

C-Flat
ResNet-18 ✓ 11.17M / 11.17M

1.55GB
Turbo 1.66GB
C-Flat

ResNet-34 ✓ 21.28M / 21.28M
2.32GB

Turbo 2.51GB

A.6 Per-task accuracy and ablation studies

Per-task accuracy provides a more detailed view of the continual learning process. As shown
in Table 6, the reuse mechanism significantly reduces training speed with minimal performance
loss, while the linear scheduler for step size further enhances speed, particularly for longer tasks.
The adaptive trigger additionally accelerates training, as it allows basic single propagation gradient
descent in certain stages. Regarding performance gains, prior works have shown that selectively
applying SAM updates can outperform applying SAM throughout training. For instance, SS-SAM
explicitly demonstrates that with appropriate scheduling, models can achieve comparable or even
superior performance at substantially lower computational cost compared to training exclusively with
SAM. Similar observations also have been reported for AE-SAM and SAM-In-Later-Phase.

Table 6: Per-task accuracy and ablation study results for EASE trained on the 10-split CIFAR100
dataset.

Method reuse sche. trigger T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Avg Img/s
EASE × × × 98.40 96.25 94.63 93.88 91.80 90.92 90.47 88.09 87.58 87.17 91.92 166.67

+C-Flat × × × 98.50 96.45 94.87 94.08 91.94 91.05 90.64 88.44 87.93 87.58 92.15 44.25

+Turbo
✓ × × 98.50 96.37 94.77 93.94 91.92 91.05 90.67 88.28 87.81 87.45 92.08 67.20
✓ ✓ × 98.40 96.31 94.74 93.89 91.90 91.00 90.70 88.25 87.75 87.40 92.03 74.63
✓ ✓ ✓ 98.50 96.60 95.07 94.15 92.08 91.27 90.73 88.52 88.00 87.57 92.25 102.74

A.7 Detail Distance Evolution of Gradients

Figure 7 shows the L2-norm distances between sharpness and flatness gradients and their reference
gradients across tasks. While 𝑔 and 𝑔0 exhibit significant fluctuations during training, the gradients
𝑔𝑣𝑠 and 𝑔𝑣 𝑓 , core to zeroth-order sharpness and first-order flatness regularization, change much
more slowly. This stability suggests their potential as shortcut directions for flat region exploration,
bypassing the need for model ascent and backpropagation.

3



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(a) Task 0

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(b) Task 1

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(c) Task 2

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(d) Task 3

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(e) Task 4

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(f) Task 5

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(g) Task 6

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(h) Task 7

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(i) Task 8

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

0.8

L2
-n

or
m

 d
is

ta
nc

e

gvs

gf

gvs

gvf

(j) Task 9

Figure 7: Visualization of L2-norm distances of the gradients every 5 steps across 10 tasks.

A.8 Limitations and Future Work

This work is based on the stabilization evolution of sharpness and flatness during C-Flat optimization,
where we approximate regularization terms using progressively memorized branches. Although
efficient, there is still room for improvement in comparison to the speed of vanilla optimizers,
particularly in minimizing the computational overhead of 𝑔 𝑓 in flatness. Then, the current framework
has focused on validation using PTM-based and typical CIL tasks, but its application to other CL
tasks, such as Vision-Language Models (VLMs), remains unexplored. Extending our methodology
to these diverse CL settings could reveal its broader applicability and provide valuable insights into
its generalization capabilities. Future work could also explore the integration of C-Flat Turbo with
advanced learning paradigms, such as few-shot learning and lifelong learning, to evaluate its potential
in real-world, dynamic environments.

4


