
A Loss Decomposition497

Proofs of proposition 1: We consider the loss Li
j(⇥

i) for task T i
j at time t2 and take the first order498

Taylor expansion for t1 < t2:499

Li
j(⇥

i(t2)) = Li
j(⇥(t2)) = Li

j(⇥(t1)) +rTLi
j(

i(t1))(⇥(t2)�⇥(t1))

= Li
j(⇥

i(t1))�rTLi
j(

i(t1))
t2X

t=t1

⌘tr⇥iL(⇥(t))
(9)

where i(t1) is some vector lying between ⇥i(t1) and ⇥i(t2). Suppose task T i
j is selected for cij500

times between time step t1 and t2, we then study the term in the case of all tasks are selected at time501

step t:502

r⇥iL(⇥(t)) = (rT
✓shareL(⇥(t)),rT

✓iL(⇥(t)))T

= (
KX

p=1

npX

q=1

rT
✓shareLp

q(⇥
p(t)),

niX

j=1

rT
✓iLi

j(⇥(t)))
T

= (rT
✓shareLi

j(⇥
i(t)),rT

✓iLi
j(⇥(t)))

T

| {z }
(a) gradients of training task T i

j

+(
niX

q=1
q 6=j

rT
✓shareLi

q(⇥
i(t)),

niX

q=1
q 6=j

rT
✓iLi

q(⇥(t)))
T

| {z }
(b) gradients of training task {T i

q , q 6= i}

+ (
KX

p=1
p 6=i

npX

q=1

rT
✓shareLp

q(⇥
p(t)),0)T

| {z }
(c) gradients of training task {Tp

q , p 6= i}

= rLi
j(⇥

i(t)) +
niX

q=1
q 6=j

rLi
q(⇥

i(t)) + (
KX

p=1
p 6=i

npX

q=1

rT
✓shareLp

q(⇥
p(t)),0)T .

(10)
The terms (a), (b) and (c) in Eq. 10 mean the gradients leading by the training of task T i

j , the same503

kind of COP {T i
q , q 6= j} and other kinds of COPs {T p, p 6= i}, respectively. After combining Eq. 9504

and 10, we obtain505

Li
j(⇥

i(t2))� Li
j(⇥

i(t1))

=� (rTLi
j(

i(t1))
t2X

t=t1

(at = T i
j)⌘trLi

j(⇥
i(t))

| {z }
(a) effects of training task T i

j : e
i
j(t1!t2)

+rTLi
j(

i(t1))
niX

q=1
q 6=j

t2X

t=t1

(at = T i
q)⌘trLi

q(⇥
i(t))

| {z }
(b) effects of training task {T i

q , q 6= j}: {eiq((t1!t2)),q 6=j}

+rT
✓shareLi

j(
i(t1))

KX

p=1
p 6=i

npX

q=1

t2X

t=t1

(at = T p
q)⌘trT

✓shareLp
q(⇥

p(t))

| {z }
(c) effects of training task {Tp

q , p 6= i}:{epq(t1!t2),q=1,2,...,np,p 6=i}

),

(11)
where (at = T i

j) is the indicator function which is introduced here because we only select one task506

at each time step, taking 1 if selecting task T i
j at time step t, 0 otherwise.507

Adam optimizer [45] is more widely used and popular in practice than standard gradient descent .508

Accordingly, we derive the loss decomposition for Adam optimizer in a manner consistent with the509

14

previous method. We first summarize the update rule of Adam as follows:510

⇥(t) = ⇥(t� 1) + ↵

qPt�1
i=1 �

t�i
2

Pt�1
i=1 �

t�i
1

Pt
i=1 �

t�i
1 giqPt

i=1 �
t�i
2 ||gi||2 + ✏

= ⇥(t� 1) + ⌘t

tX

i=1

�t�i
1 gi

where gi = rJ(⇥i�1) and g0 = 0, ⌘t =
pPt�1

i=1 �t�i
2Pt�1

i=1 �t�i
1

1pPt
i=1 �t�i

2 ||gi||2+✏
, ⌘i, i = 1, 2 are exponen-511

tial average parameters for the first and second order gradients. Our assumption is that sharing the512

second moment term correction for all tasks can be easily implemented by using a single optimizer513

during training.514

Given that the update is predicated on the optimization trajectory’s history, we can use comparable515

calculations in gradient descent to infer Adam’s contribution breakdown. Starting at the same point:516

Li
j(⇥

i(t2)) = Li
j(⇥

i(t1)) +rTLi
j(

i(t1))(⇥
i(t2)�⇥i(t1))

= Li
j(⇥

i(t1))�rTLi
j(

i(t1))
t2X

t=t1

⌘t

tX

k=1

�t�k
1 rL(⇥i(k � 1)),

then taking Eq. 10 into rL(⇥i(k � 1)), we have517

Li
j(⇥

i(t2))� Li
j(⇥

i(t1))

=� (rTLi
j(

i(t1))
t2X

t=t1

(at = T i
j)⌘t

tX

k=1

�t�k
1 rLi

j(⇥
i(k � 1))

| {z }
(a) effects of training task T i

j : e
i
j(t1!t2)

+rTLi
j(

i(t1))
niX

q=1
q 6=j

t2X

t=t1

(at = T i
q)⌘t

tX

k=1

�t�k
1 rLi

q(⇥
i(k � 1))

| {z }
(b) effects of training task {T i

q , q 6= j}: {eiq((t1!t2)),q 6=j}

+rT
✓shareLi

j(
i(t1))

KX

p=1
p 6=i

npX

q=1

t2X

t=t1

(at = T p
q)⌘t

tX

k=1

�t�k
1 r✓shareLp

q(⇥
p(k � 1))

| {z }
(c) effects of training task {Tp

q , p 6= i}:{epq(t1!t2),q=1,2,...,np,p 6=i}

),

(12)

Three similar parts are obtained finally.518

B Problem Description519

Traveling Salesman Problem (TSP) - The objective is to determine the shortest possible route that520

visits each location once and returns to the original location. In this study, we limit our consideration521

to the two-dimensional euclidean case, where the information for each location is presented as522

(xi, yi) 2 R2 sampled from the unit square.523

Vehicle Routing Problem (VRP) - The Capacitated VRP (CVRP) [46] consists of a depot node and524

several demand nodes. The vehicle begins and ends at the depot node, travels through multiple routes525

to satisfy all the demand nodes, and the total demand for each route must not exceed the vehicle526

capacity. The goal of the CVRP is to minimize the total cost of the routes while adhering to all527

constraints.528

Orienteering Problem (OP) - The Orienteering Problem (OP) is a variant of the Traveling Salesman529

Problem (TSP). Instead of visiting all the nodes, the objective is to maximize the total prize of visited530

15

nodes within a total distance constraint. Unlike the TSP and the Vehicle Routing Problem (VRP), the531

OP does not require selecting all nodes.532

Knapsack Problem (KP) - The Knapsack Problem strives to decide which items with various533

weights and values to be placed into a knapsack with limited capacity fully. The objective is to attain534

the maximum total value of the selected items while not surpassing the knapsack’s limit.535

C Experimental Settings536

Model structure - We adopt the same model structures as in POMO [4] to build our model. To train537

various COPs in a unified model, we use a separate MLP on top of the model for each problem, which538

we call Header. This header facilitates correlation of input features with different dimensions. For539

TSP, we use two-dimensional coordinates, {(xi, yi), i = 1, 2, ..., N}, as input, while CVRP and OP540

have additional constraints on customer demand and vehicle capacity, in addition to two-dimensional541

coordinates. Hence, their input dimensions are 3 and 3, respectively. Moreover, in OP, the prize is542

assigned based on the distance between the node and the depot node, following the setting in AM543

[3]. The KP takes two-dimensional inputs, {(wi, vi), i = 1, 2, ..., N}, with wi and vi representing544

the weight and value of each item, respectively. As such, we introduce four kinds of Header to545

embed features with different dimensions to 128. The embeddings obtained from the Header are then546

passed through a shared Encoder, composed of six encoder layers based on the Transformer [47].547

Finally, we employ four type-specific Decoders, one for each COP, to make decisions in a sequential548

manner. The shared Encoder has the bulk of the model’s capacity because the Header and Decoder549

are lightweight 1-layer MLPs. Furthermore, when solving a specific COP, we only need to use the550

relevant Encoder, Header, and Decoder for evaluation. Since the model size is precisely the same,551

the inference time required is similar to that of single-task learning.552

Hyperparameters - In each epoch, we process a total of 100×1000 instances with a batch size of553

512. The POMO size is equal to the problem scale, except for KP-200, where it is 100. We optimize554

the model using Adam [45] with a learning rate of 1e-4 and weight decay of 1e-6. The training of555

the model involves 1000 epochs in the standard setting. The learning rate is decreased by 1e-1 at556

the 900th epoch. During the first epoch, we use the bandit algorithm to explore at the beginning of557

the training process. We then collect gradient information by updating the bandit algorithm with558

every 12 batches of data. The model is trained using 8 Nvidia Tesla A100 GPUs in parallel, and the559

evaluations are done on a single NVIDIA GeForce RTX 3090.560

Approximation of gradients - We use rTLi
j(

i(t1)) to calculate the reward information for training
task T i

j . To approximate it, we use the average gradient from the equation:

1
Pt2

t=t1
(at = T i

j)

t2X

t=t1

(at = T i
j)rLi

j(⇥
i(t)).

Another issue is the approximation of rLi
q(⇥

i(t)) in Eq. 4 and r✓shareLp
q(⇥

p(t)) in Eq. 5 when561

tasks T i
q and T p

q are not selected during the update interval. To obtain an approximation, we use562

the most recent gradient information collected from the last time they were selected to train. This563

approximation is necessary because training task T i
j can change the values of ⇥i and ✓share, which564

can affect other training tasks. Considering all these changes is necessary to accurately measure the565

influences of training T i
j on other tasks.566

Bandit settings - We utilized the open-source repository [48] for implementing the bandit algorithms567

in this study with default settings.568

D Loss and Gradient Norm of Each Task569

One intuitive method of measuring the effect of training is to calculate the ratio of losses between570

adjacent training sessions. These ratios can be used to calculate training rewards for each correspond-571

ing task. However, as shown in Figure 5a, this method of calculating rewards is not effective because572

they are not sufficiently distinct to guide the training process properly.573

Computing the inner products of corresponding gradients to analyze how training one task affects574

the others can lead to a misleading calculation of rewards and training process. Figure 5b visualizes575

16

(a) Training loss for each task. (b) Gradient norm for each task.

Figure 5: Training loss and gradient norm for each task in the log-scale.

gradient norms for each task in the logarithmic scale. We observe that the gradient norms are not in576

the same scale, which becomes problematic when jointly training different COP types. In such cases,577

the rewards of certain COP types (such as CVRP in our experiments) may dominate the rewards of578

other types.579

E Demonstration of the Bandit Algorithms580

This section presents detailed information on various bandit algorithms, as shown in Fig. 6, including581

the selection count and average return for each task. It is evident that TS algorithm dominates in all582

12 tasks, leading to poor performance on tasks where training is limited. In contrast, other bandit583

algorithms maintain balance across all tasks, resulting in better average results.584

F Further Results on The Bandit Algorithm Selection and Update Frequency585

In Section 4.3, we examine the impact of bandit algorithms and update frequency on 12 tasks,586

specifically on the average optimality gap. We also analyze the effect of these two factors on the587

influence matrix, which is presented in this section. For ease of understanding, a visual aid is included588

in Figure 7. By combining the results from Figure 3 and Figure 7, we can infer that influence matrices589

derived from DTS, Exp3, and Exp3R with an update frequency of 6 and 12 comply with the rule590

specified in Section 4.2. However, the TS algorithm disregards this rule due to its inability to handle591

adversaries and changing environments. Moreover, when the update frequency is increased, the592

approximation of the influence matrix is impaired due to the lazy update of bandit algorithms. As a593

result, utilizing the number of tasks as the update frequency appears to be a sound decision, as it not594

only improves performance but also enhances interpretability.595

17

(a) TS-6 (b) DTS-6 (c) Exp3-6 (d) Exp3R-6

(e) TS-12 (f) DTS-12 (g) Exp3-12 (h) Exp3R-12

(i) TS-24 (j) DTS-24 (k) Exp3-24 (l) Exp3R-24

(m) TS-36 (n) DTS-36 (o) Exp3-36 (p) Exp3R-36

(q) TS-48 (r) DTS-48 (s) Exp3-48 (t) Exp3R-48

Figure 6: Further results of the bandit information. The caption of each subfigure "A-B" means the
influence matrix obtained by algorithm A with update frequency B.

18

(a) TS-6 (b) DTS-6 (c) Exp3-6 (d) Exp3R-6

(e) TS-12 (f) DTS-12 (g) Exp3-12 (h) Exp3R-12

(i) TS-24 (j) DTS-24 (k) Exp3-24 (l) Exp3R-24

(m) TS-36 (n) DTS-36 (o) Exp3-36 (p) Exp3R-36

(q) TS-48 (r) DTS-48 (s) Exp3-48 (t) Exp3R-48

Figure 7: Further results of the influence matrix on the selection of bandit algorithms and update
frequency. The caption of each subfigure "A-B" means the influence matrix obtained by algorithm A
with update frequency B.

19

	Introduction
	Related Work
	Method
	Loss Decomposition
	Reward Design and Influence Matrix Construction
	Discussion on the Selection of Bandit Algorithms

	Experiments
	Comparison with Single Task Training and Multi Task Learning
	Study of the Influence Matrix
	Discussion on The Bandit Algorithm and Update Frequency

	Conclusions
	Loss Decomposition
	Problem Description
	Experimental Settings
	Loss and Gradient Norm of Each Task
	Demonstration of the Bandit Algorithms
	Further Results on The Bandit Algorithm Selection and Update Frequency

