
Bregman Proximal Method for Efficient
Communications under Similarity

Aleksandr Beznosikov
MIPT, ISP RAS, Innopolis University

Darina Dvinskikh
HSE University

Dmitry Bylinkin
MIPT, ISP RAS

Andrei Semenov
MIPT

Alexander Gasnikov
Innopolis University, MIPT, ISP RAS

Abstract

We propose a novel stochastic distributed method for both monotone and
strongly monotone variational inequalities with Lipschitz operator and
proper convex regularizers arising in various applications from game theory
to adversarial training. By exploiting similarity, our algorithm overcomes the
communication bottleneck that is a major issue in distributed optimization.
The proposed method enjoys optimal communication complexity. All the
existing distributed algorithms achieving the lower bounds under similarity
condition essentially utilize the Euclidean setup. In contrast to them, our
method is built upon the Bregman proximal maps and it is compatible
with an arbitrary problem geometry. Thereby the proposed method fills an
existing gap in this area of research. Our theoretical results are confirmed
by numerical experiments on a stochastic matrix game.

1 Introduction

Variational inequalities (VIs) with monotone operators provide a unified and natural frame-
work to cover many optimization problems, including convex minimization and convex-
concave saddle point problems (SPPs) (Harker and Pang, 1990). The interest in VIs is due to
their wide applicability in economics, equilibrium theory, game theory, optimal control and
differential equations, see (Facchinei and Pang, 2003; Bauschke and Combettes, 2011) for an
introduction. They also play an important role in modern machine learning, see (Goodfellow
et al., 2014; Omidshafiei et al., 2017; Madry et al., 2017; Daskalakis et al., 2017). We are
interested in the regularized VI problem formulated as follows.

Find z∗ ∈ Z : ⟨F (z∗), z − z∗⟩+ g(z)− g(z∗) ≥ 0, ∀z ∈ Z, (1)

where F : Z → Rd is a monotone and Lipschitz operator, Z ⊆ Rd is a closed convex set, and g :
Z → R is a proper convex lower semicontinuous function. Solving modern problems inevitably
involves the use of huge training datasets. This forces engineers to utilize distributed
computational systems. The data is distributed over m nodes/clients/machines/devices
coordinated by the server. Formally, this means working with an operator of the form F (z) :=
1
m

∑m
i=1 Fi(z). However, such coordination can significantly slow down the learning process,

especially for systems with large computational resources (Bekkerman et al., 2011). Therefore,
one of our main challenges in building the algorithm is to overcome the communication
bottleneck.

1.1 Similarity

To reduce the communication frequency, many techniques have been developed. Among
them is statistical preconditioning, which reduces communication complexity by exploiting

1

similarity (Shamir et al., 2014; Hendrikx et al., 2020), i.e., the information that operators Fi

are similar to each other and to their average F . To account for similarity we will rewrite
the VI problem (1) as a problem with two terms.

Find z∗ ∈ Z : ⟨Q(z∗) + F1(z
∗), z − z∗⟩+ g(z)− g(z∗) ≥ 0, ∀z ∈ Z, (2)

where Q(z) := F (z)−F1(z) and F1 is accessed by the server, which is the most computation-
ally powerful node. The essence of similarity approaches is to move most of the computation
to the server, offloading the other nodes. This allows to significantly reduce the amount of
communication. In the case of convex minimization, this has been more than extensively
studied.

Convex minimization. The problem (1) captures optimality conditions for constrained
convex optimization with operators Fi(z) = ∇fi(z). In machine learning applications,
similarity is quite common: local functions fi are the average losses ℓ(·, ·) on the training
dataset Di = {(x1, y1)

(i), . . . , (xN , yN)(i)} stored at machine i:

fi(z) :=
1

N

N∑
j=1

ℓ(z, (xj , yj)
(i)), i = 1 . . . ,m. (3)

Let us reformulate the minimization of the average risk on the functions from (3) as a
stochastic optimization problem:

min
z∈Z

[
f(z) :=

1

m

m∑
i=1

fi(z)

]
. (4)

where fi(z) := f(z,Di). Di is the local dataset, which can be considered as a set of random
variables. If Di’s on different machines are i.i.d. samples from the same distribution, the
local empirical losses fi are statistically similar to their average f . There are various ways to
measure similarity, but the most natural and theoretically justified approach is the Hessian
similarity: for all i = 1, . . . ,m with high probability (Hendrikx et al., 2020)

∥∇2f(z)−∇2fi(z)∥ ≤ δ. (5)

This condition is referred to as δ-similarity, or δ-relatedness. It is shown that δ can be
estimated (Hendrikx et al., 2020). For this purpose, the objective f is assumed to be
L-smooth. Then, if the loss f(z) is quadratic in z, then δ ∼ L/

√
N (up to a log factor), for

a non-quadratic loss δ ∼
√
dL/

√
N (up to a log factor) under the condition that (5) holds

uniformly over a compact domain with high probability (Zhang and Xiao, 2018). A similar
analysis can be done for saddle point problems.

SPPs. The problem (1) with operators Fi(z) := [∇xfi(x, y), −∇yfi(x, y)]
⊤

also captures
convex-concave SPPs of the form

min
x∈X

max
y∈Y

[
f(x, y) :=

1

m

m∑
i=1

fi(x, y)

]
. (6)

In this case, we measure similarity in terms of second derivatives: for all i = 1, . . . ,m with
high probability

∥∇2
xxf(x, y)−∇2

xxfi(x, y)∥ ≤ δ,

∥∇2
xyf(x, y)−∇2

xyfi(x, y)∥ ≤ δ, (7)

∥∇2
yyf(x, y)−∇2

yyfi(x, y)∥ ≤ δ.

A significant surge of interest in SPPs is due to modern applications in GANs training (Gidel
et al., 2018), reinforcement learning (Jin and Sidford, 2020; Omidshafiei et al., 2017; Wai
et al., 2018), distributed control (Necoara et al., 2011), and optimal transport (Jambulapati
et al., 2019).

2

1.2 Related works

VIs have been studied for more than half a century, and yet they remain an active area
of research. Algorithms solving VIs with Lipschitz and monotone operators date back to
Korpelevich (1976), who proposed the Extra Gradient method (an analog of the gradient
method). A generalization of Extra Gradient is Mirror Prox proposed by Nemirovski (2004).
The algorithm replaces the Euclidean projection with a more complex proximal Bregman
step to fit the problem geometry.

Distributed methods. A distributed version of Extra Gradient was proposed by
Beznosikov et al. (2020). For the distributed version of Mirror Prox, see (Rogozin et al.,
2021). The authors also provided the lower bounds for the communication complexity: L/ε
for the monotone VIs, and L/µ for the strongly monotone VIs (up to a logarithmic factor).
Here ε measures the non-optimality gap function, L is the parameter of Lipschitz continuity,
µ is the parameter of strong monotonicity.

Distributed methods exploiting similarity. A first method exploiting Hessian similarity
to reduce the communication complexity DANE was proposed by Shamir et al. (2014).

It was designed for convex minimization problems. Later Ω
(√

δ/µ log 1/ε
)
was established

as the lower boundary of communication rounds under Hessian similarity (Arjevani and
Shamir, 2015). For quadratic problems, an optimal method has been developed using a
modification of the DANE approach (Yuan and Li, 2020). For an optimal (up to the log
factor) method in the general case, see (Tian et al., 2022). For SPPs, optimal (up to a log
factor) algorithms have been proposed by Beznosikov et al. (2021) together with the lower
bounds of communication complexity: δ/ε for the convex-concave SPPs, and δ/µ · log 1/ε for
the strongly convex-strongly concave SPPs. Kovalev et al. (2022) improved the results of
Tian et al. (2022) and Beznosikov et al. (2021) by proposing optimal methods for convex
minimization and convex-concave SPPs with optimal computational complexity, i.e. the
authors eliminated non-optimal logarithm. In addition, there are a number of state-of-
the-art methods that work with similarity, the complexity of which is improved by using
communication compression and client sampling (Beznosikov et al., 2024; Beznosikov and
Gasnikov, 2022; Lin et al., 2024).

1.3 Contribution

All the existing distributed algorithms exploiting similarity for convex minimization, SPPs or
VIs are substantially utilizes the Euclidean setup. However, a large number of problems have
non-Euclidean geometry, e.g., minimization on the probability simplex arising in machine
learning (Nemirko and Dulá, 2021), statistics, chemistry, portfolio management (Chang et al.,
2000), optimal transport and Wasserstein barycenters (Agueh and Carlier, 2011). Indeed,
the Euclidean distance is not well suited for probability measures. Generalizing Euclidean
algorithms to non-Euclidean ones is non-trivial and usually requires the development of new
methods. Motivated by this gap between the Euclidean and non-Euclidean algorithms, we
aim to design a novel method to tackle the problem geometry. To the best of our knowledge,
we present the first distributed method utilizing similarity with the non-Euclidean setup.
Technically our approach is based on the Bregman proximal maps, which work particularly
well in constrained optimization. Our contribution can be summarized as follows:

• We present a Proximal Algorithm under Similarity (PAUS) that utilizes similarity
for VIs with a monotone Lipschitz operator and a convex composite g. It achieves
optimal communication complexity of δ/ε, where ε measures the non-optimality gap
function, and δ is the parameter of similarity.

• Our analysis also shows a speedup of PAUS in the case of an operator, that is
µ-strongly monotone with respect to the Bregman divergence. Our method achieves
optimal communication complexity of δ/µ · log 1/ε up to a logarithmic factor. The
analysis is compatible with an arbitrary Bregman divergence.

• In both cases, we generalize our analysis by adding stochasticity to the method.
PAUS achieves δ/ε + σ2

∗/ε2 for monotone VIs and δ/µ · log 1/ε + σ2
∗/µε for strongly

3

monotone ones. In contrast to classical works that use the SGD-like approach
to construct stochastic methods, we require boundedness of the variance of the
stochastic oracle σ2

∗ only at the solution.

• We confirm our theoretical results by numerical experiments.

Paper organization. The structure of the paper is as follows. Section 2 introduces the
preliminaries: the necessary definitions and assumptions. Section 3 presents the stochastic
algorithm for solving VIs with monotone and Lipschitz operators and convex composites.
Section 4 extends the convergence theory to the case of strongly monotone VIs. Section 5
presents the numerical experiments demonstrating the superiority of our novel algorithm on
the two-player stochastic matrix game.

2 Preliminaries

Notation. For vectors, ∥z∥ is a general norm on space Z, and ∥s∥∗ is its dual norm on
the dual space Z∗: ∥s∥∗ = maxz∈Z{⟨s, x⟩ : ∥z∥ = 1}. For matrices, ∥A∥ is the matrix norm
induced by vector norm ∥z∥: ∥A∥ = supz∈Z{∥Az∥ : ∥z∥ = 1}.
When discussing the communication efficiency, it is important to choose the right definition.
One possible quality metric is the number of communication rounds. In addition to this,
each vector exchange between client and server or the time spent on communication can
be considered. This paper assumes the definition of communication complexity in the first
mentioned sense. We measure how often the server communicates with the nodes without
considering the number of vector exchanges per round.

Methods that utilize data similarity move the most computational complexity to the server.
Therefore, in addition to communication complexity, it is worth measuring the complexity of
local computations performed on the server.

Next, we provide all the definitions and assumptions necessary to build the convergence
theory.

Definition 2.1 We say that g : Z → R is a µ-strongly convex function with respect to ∥ · ∥,
if

g(u)− g(v) ≥ ⟨h, u− v⟩+ µ

2
∥u− v∥2, ∀u, v ∈ Z, h ∈ ∂g(v).

If µ = 0, g is called a convex function.

Definition 2.2 We say that w : Z → R is a distance generating function (DGF), if w is
1-strongly convex with respect to ∥ · ∥, i.e., for all u, v ∈ Z: w(v) ≥ w(u) + ⟨∇w(u), v − u⟩+
1
2∥v − u∥2. The corresponding Bregman divergence is

V (u, v) = w(u)− w(v)− ⟨∇w(v), u− v⟩, ∀u, v ∈ Z.

The property of distance generating function ensures V (u, u) = 0 and V (u, v) ≥ 1
2∥u− v∥2.

Since we aim to use stochastic methods to reduce computation time, we introduce F (·, ξ) and
F1(·, ξ). These are the stochastic oracles of the corresponding operators. Consider F (z, ξ).
The random variable ξ can be understood in different ways. For example, as a sample of the
computational node to be communicated with: F (z, ξ) = Fξ(z). Another interesting case
covered by our analysis is the imposition of additive noise on the operator belonging to each
machine: F (z, ξ) = 1

m

∑m
i=1 (Fi(z) + ξi) = F (z) + ξ. Informally, such a technique allows to

maintain privacy protection of local data. This refers to Federated Learning, a very popular
trend nowadays (Li et al., 2020). We take into account that the objective operator F (·) has
the form of a finite sum, where each Fi(·) can also be a finite sum. Thus, it is possible to
speed up the server by using a stochastic approach: F1(z, ξ) = F1,ξ(z).

Assumption 2.3 (Stochastic oracle for F1(·)) The stochastic oracle F1(·, ξ) is unbiased
and its variance is bounded at the solution:

Eξ[F1(z, ξ)] = F1(z), Eξ[∥F1(z
∗, ξ)− F1(z

∗)∥2∗] ≤ σ2
1,∗, ∀z ∈ Z,

4

Assumption 2.4 (Stochastic oracle for F (·)) The stochastic oracle F (·, ξ) is unbiased
and there are two options of variance boundedness:

Eξ[F (z, ξ)] = F (z) ∀x ∈ R.

(a) The variance of F (·, ξ) is uniformly bounded:

Eξ[∥F (z, ξ)− F (z)∥2∗] ≤ σ2, ∀z ∈ Z.

(b) The variance of F (·, ξ) is bounded at the solution:

Eξ[∥F (z∗, ξ)− F (z∗)∥2∗] ≤ σ2
∗, ∀z ∈ Z.

Here the uniform boundedness is only needed to show convergence by the dual gap function
in the monotone case. For strongly monotone VIs, only boundedness at the solution is
enough.

Assumption 2.5 (Monotonicity) The operators F (·, ξ), F1(·, ξ) are monotone, i.e. for
all u, v ∈ Z and for every ξ:

⟨F (u, ξ)− F (v, ξ), u− v⟩ ≥ 0,

⟨F1(u, ξ)− F1(v, ξ), u− v⟩ ≥ 0.

A special case of monotone VIs are convex optimization problems and convex-concave SPPs.

Assumption 2.6 (Lipschitzness) The operator F1(·, ξ) is LF1
-Lipschitz continuous, i.e.

for all u, v ∈ Z and for every ξ:

∥F1(u, ξ)− F1(v, ξ)∥∗ ≤ LF1
∥u− v∥.

For convex minimization, this means that server function f1(z, ξ) is LF1
-smooth.

Assumption 2.7 (δ-similarity) The operator F1(·)−F (·, ξ) is δ-Lipschitz continuous, i.e.,
for all u, v ∈ Z :

∥F1(u)− F (u, ξ)− F1(v) + F (v, ξ)∥∗ ≤ δ∥u− v∥.

In the Euclidean case, this is a stochastic generalization of δ-similarity for convex minimization
and convex-concave SPPs. This is evident by considering (5) and (7) and noting that uniform
bounding the norm of the Hessian by some constant δ entails δ-smoothness of the function.
Note that all assumptions are introduced on the stochastic oracles of the operators, which
is a stronger case than if we had introduced them on the operators themselves. This is
necessary in order to use a wider class of stochastic oracles whose variance is bounded only
at the optimum. If the variance of the chosen stochastic oracle is uniformly bounded, then
we can relax Assumptions 2.5 and 2.6, but not Assumption 2.7.

3 Monotone case

In this section, we present the algorithm which solves (2).

3.1 Main algorithm

Now we are in a position to provide PAUS for VIs, see Algorithm 1.

At each iteration k = 0, 1, . . . ,K − 1 of Algorithm 1, the server initiates two rounds of
communication to compute F (zk, ξk) at Line 3 and F (uk, ξk) at Line 5. To solve the inner
problem encountered in Line 4 we provide a procedure we call Stochastic Composite
MP (SCMP) (see Algorithm 2). Importantly, the same random variable ξk is used in the
formulation of both subproblems. This is inspired by the work of Mishchenko et al. (2020),
where this technique is used to not require uniform boundedness of the stochastic oracle.

We further propose a descent lemma for PAUS.

5

Algorithm 1 PAUS

Input: parameter of similarity δ, stepsize γ ≤ 1/2δ, parameter α ≥ 0, number of iterations
K, starting points z0 = u0 ∈ Z

1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample random variable ξk on server
3: Collect F (zk, ξk) = 1

m

∑m
i=1 Fi(z

k, ξki) on server

4: Find uk as a solution to

⟨γ(F1(u
k) + F (zk, ξk)− F1(z

k)) +∇w(uk)−∇w(zk), z − uk⟩+ γ
(
g(z)− g(uk)

)
≥ 0

for all z ∈ Z by SCMP (Algorithm 2) procedure on server
5: Collect F (uk, ξk) = 1

m

∑m
i=1 Fi(u

k, ξki) on server
6: Solve

zk+1 = argmin
z∈Z

{
γ⟨F (uk, ξk)− F1(u

k)− F (zk, ξk) + F1(z
k), z⟩+ (1 + α)V (z, uk)

}
on server

7: end for
8: return ũK = 1

K

∑K−1
k=0 uk for monotone VIs and zK for strongly monotone ones

Lemma 3.1 Consider Assumption 2.7. Then the inequality

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2.

holds.

See the proof in Appendix A.1. The next theorem presents the convergence rate of PAUS
by the following gap function:

Gap(u) = max
z∈Z
{⟨F (z), u− z⟩+ g(u)− g(z)} . (8)

This function is the standard criterion for VIs. It corresponds to the standard optimality
criteria in convex minimization and SPPs (Nemirovski, 2004; Juditsky et al., 2011).

Theorem 3.2 Consider assumptions of Lemma 3.1 with Assumptions 2.4(a) and 2.5. Then
after K communication rounds, PAUS (Algorithm 1), run with α = 0, stepsize γ ≤ 1/2δ and
starting points z0, u0 ∈ Z, outputs ũK such that

E
[
Gap(ũK)

]
≤ D

Kγ
+

2γ

3
σ2,

where D = supz∈Z

{
V (z, z0)

}
.

See the proof in Appendix A.2. The theorem guarantees convergence of the method to some
neighborhood of the solution. The following corollary shows that if γ is chosen correctly,
convergence with arbitrary accuracy can be guaranteed.

Corollary 3.3 Consider assumptions of Theorem 3.2. Let ũK be the output of PAUS
(Algorithm 1), run with appropriate parameters and starting points z0, u0 ∈ Z in

O
(
Dδ

ε
+

Dσ2

ε2

)
communication rounds,

then Gap(ũK) ≤ ε.

See proof in Appendix A.3.

6

3.2 Stochastic Composite MP

Let us rewrite the problem encountered in Line 4 of Algorithm 1 as finding v∗ such that for
all z ∈ Z:
⟨γ(F1(v

∗) + F (zk, ξk)− F1(z
k)) +∇w(v∗)−∇w(zk), z − v∗⟩+ γ(g(z)− g(v∗)) ≥ 0. (9)

Note that in Line 4 we have to solve the problem with a strongly monotone operator, i.e.,
the Bregman divergence can also be used as a convergence criterion.

Algorithm 2 to solve auxiliary problem in step 4 of Algorithm 1

1: procedure SCMP(γ, LF1
, zk)

2: Choose stepsize η = 1
3γLF1

3: Choose starting point v0 ∈ Z
4: for t = 0, 1, 2, . . . , T − 1 do
5: Sample random variable ξt on server
6: Solve vt+

1
2 = argmin

v∈Z
{γη⟨H(vt, ξt), v⟩+ ηV (v, zk) + V (v, vt) + γg(v)} on server

7: Solve vt+1 = argmin
v∈Z
{γη⟨H(vt+

1
2 , ξt), v⟩+ ηV (v, zk) + V (v, vt) + γg(v)} on server

8: end for
9: return vT

10: end procedure

The next theorem presents the convergence guarantee for SCMP to solve the problem (9).
For the sake of brevity of description, we denote H(v, ξ) = γ(F1(v, ξ) + F (zk, ξk)− F1(z

k)).

Theorem 3.4 Let Assumptions 2.3, 2.5, 2.6 and 2.7 hold. Then SCMP (Algorithm 2) with
γ = 1

2δ produce the sequence {vt} such that

E
[
V (v∗, vt+1)

]
≤
(
1− η

2

)
E
[
V (v∗, vt)

]
+ 4η2σ2

1,∗.

The proof of this theorem is given in Appendix A.4. As in the case of Theorem 3.2, fine
tuning of the algorithm parameters is required to obtain convergence with arbitrary accuracy.

Corollary 3.5 Consider assumptions of Theorem 3.4. Let vT be the output of SCMP
procedure. Consider stepsize γ = 1/2δ and starting point v0. Then Algorithm 2 with
appropriate choice of η needs

O

(
LF1

δ
log

V (v∗, v0)

ε
+

σ2
1,∗

ε

)
iterations

to achieve V (v∗, vT) ≤ ε.

See proof in Appendix A.5. The procedure supports the possibility of a stochastic solution.
This can be useful when the server node has too much data and needs to speed up the
computation. We use the ”same sample” technique from (Mishchenko et al., 2020). To solve
the subproblem by the proposed method, we only need boundedness of the variance of the
stochastic oracle F1(·, ξ) at the solution.

4 Extension to strongly monotone VIs

In this section, we obtain a linear convergence rate of PAUS by the Bregman divergence,
which is an appropriate convergence criterion for the strongly monotone operator.

Assumption 4.1 Operator F (·, ξ) is µ-strongly monotone with respect to DGF w(·), i.e.
for all u, v ∈ Z and for every random variable ξ:

⟨F (u, ξ)− F (v, ξ), u− v⟩ ≥ µ

2
(V (u, v) + V (v, u)) .

7

We assume strong monotonicity with respect to the corresponding geometry. This definition
is not used for the first time, it is often found in the literature (Lu et al., 2018; Ablaev et al.,
2022; Stonyakin et al., 2021).

The main difficulty in constructing a convergence theory for strongly monotone VIs is that
the Bregman divergence is in general non-symmetric and there is no triangle inequality for
it. To solve this problem, we ”inflate” the coefficient in the subproblem (6) by some value α
and use the strong monotonicity of the operator to eliminate the extra summands.

Theorem 4.2 Consider assumptions of Lemma 3.1 with Assumption 2.4(b) and Assumption
4.1. Consider α = γµ/2, γ ≤ 1/2δ and a starting point z0 ∈ Z. Then the inequality

E
[
V (z∗, zk+1)

]
≤
(
1− γµ

4

)
E
[
V (z∗, zk)

]
+

2γ2

3
σ2
∗

holds.

See the proof in Appendix A.6. Let us repeat the proof of Corollary 3.5 with other constants
and obtain

Corollary 4.3 Consider assumptions of Theorem 4.2. Let zK be the output of PAUS
(Algorithm 1), run with an appropriate parameters and a starting point z0 ∈ Z, in

O
(
8δ

µ
log

1

ε
+

8σ2
∗

3µε

)
communication rounds,

then V (z∗, zK) ≤ ε.

Note that PAUS performs two rounds of communication per iteration. Thus, asymptotically
the communication complexity by rounds is equal to the complexity by iterations.

In PAUS (Algorithm 1), the main computational load is shifted to the server. At one
iteration of the method, each device accesses the local oracle twice, while the server is
forced to do it O

(
LF1/δ · log V (v∗,v0)/ε + σ2

1,∗/ε
)
times. Nevertheless, the additional freedom

to choose the Bregman divergence can make it easier to compute the proximal mapping or
even produce a closed-form solution. See examples in Appendix B.

5 Numerical experiments

We evaluate the effectiveness of PAUS by comparing it with other distributed algorithms
with and without exploiting data similarity. As a first algorithm we consider decentralized
Mirror Prox from (Rogozin et al., 2021). This algorithm is based on the Bregman proximal
maps but does not exploit similarity. The second algorithm is the algorithm from (Kovalev
et al., 2022) which we will refer to as Extra Gradient. The algorithm is designed under
similarity but in the Euclidean setup.

Problem. We carry out numerical experiments for a stochastic matrix game

min
x∈∆

max
y∈∆

[
x⊤E[Aξ]y

]
,

where x, y are the mixed strategies of two players, ∆ is the probability simplex, and Aξ is a
stochastic payoff matrix. A solution of this problem can be approximated by a solution of
the following empirical problem

min
x∈∆

max
y∈∆

[
1

m

m∑
i=1

x⊤Aiy

]
,

where A1, . . . , Am are i.i.d samples of stochastic matrix Aξ. We study the convergence of
algorithms in terms of the duality gap

max
y∈∆

[
1

m

m∑
i=1

(
x̃K
)⊤

Aiy

]
−min

x∈∆

[
1

m

m∑
i=1

x⊤Aiỹ
K

]
≤ ε,

where ũK = (x̃K , ỹK) is the output of algorithms. This duality gap is the upper bound for
the gap function for VIs from (8).

8

Figure 1: Comparison of
state-of-the-art methods

Data. We model entries of stochastic matrix Aξ

of size d × d with d = 25 as [Aξ]ij = (1 + νξ)[C]ij ,
where ν ∈ (0, 1), ξ is a Rademacher random variable
and C is a deterministic matrix given in Exercise
5.3.1 of (Ben-Tal and Nemirovski, 2001). ν is used to
adjust the similarity parameter δ. From this matrix
we sample m = 104 matrices A1, . . . , Am. These
matrices are shared between 5 devices, each holds
local datasets of size n = 2 · 103.
Figure 1 demonstrates the superiority of PAUS in
comparison with other distributed algorithms on the
problem with L ≈ 10−1 and δ ≈ 10−2, ν ≈ 10−3. The
parameters of algorithms were estimated theoretically
(see Appendix C) and then tuned to get faster conver-
gence. All algorithms have approximate slope ratio
−1 according to their theoretical bounds (K ∼ ε−1).
A faster convergence of our algorithm in comparison with the Euclidean algorithm (Kovalev
et al., 2022) is achieved due to better utilizing the constrained set, namely the probability
simplex, for which the Euclidean distance is worse than the ℓ1-distance. Thus our method is
able to better estimate the parameter δ in the proper norm and the distance to a solution
(in terms of the Bregman divergence). A slow convergence of Mirror Prox (Rogozin et al.,
2021) is explained by ignoring data similarity.

6 Conclusion

In this paper, we introduced the novel distributed stochastic proximal algorithm using
similarity for both monotone and strongly monotone variational inequalities: PAUS. It
achieves optimal communication complexity: δ/ε in the general monotone case and δ/µ · log 1/ε
in the strongly monotone case. In contrast to existing communication-efficient algorithms
that exploit similarity, PAUS is able to tackle non-Euclidean problems because it uses the
Bregman setup.

References

Ablaev, S. S., Titov, A. A., Stonyakin, F. S., Alkousa, M. S., and Gasnikov, A. (2022). Some
adaptive first-order methods for variational inequalities with relatively strongly monotone
operators and generalized smoothness. In International Conference on Optimization and
Applications, pages 135–150. Springer.

Agueh, M. and Carlier, G. (2011). Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924.

Arjevani, Y. and Shamir, O. (2015). Communication complexity of distributed convex
learning and optimization. Advances in neural information processing systems, 28.

Bauschke, H. and Combettes, P. (2011). Convex analysis and monotone operator theory in
hilbert spaces. CMS books in mathematics). DOI, 10:978–1.

Bekkerman, R., Bilenko, M., and Langford, J. (2011). Scaling up machine learning: Parallel
and distributed approaches. Cambridge University Press.

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. SIAM.

Beznosikov, A. and Gasnikov, A. (2022). Compression and data similarity: Combination of
two techniques for communication-efficient solving of distributed variational inequalities.
In International Conference on Optimization and Applications, pages 151–162. Springer.

Beznosikov, A., Samokhin, V., and Gasnikov, A. (2020). Distributed saddle-point problems:
Lower bounds, near-optimal and robust algorithms. arXiv preprint arXiv:2010.13112.

9

Beznosikov, A., Scutari, G., Rogozin, A., and Gasnikov, A. (2021). Distributed saddle-point
problems under data similarity. Advances in Neural Information Processing Systems,
34:8172–8184.

Beznosikov, A., Takác, M., and Gasnikov, A. (2024). Similarity, compression and local steps:
three pillars of efficient communications for distributed variational inequalities. Advances
in Neural Information Processing Systems, 36.

Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha, Y. M. (2000). Heuristics for cardinality
constrained portfolio optimisation. Computers & Operations Research, 27(13):1271–1302.

Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H. (2017). Training gans with optimism.
arXiv preprint arXiv:1711.00141.

Facchinei, F. and Pang, J.-S. (2003). Finite-dimensional variational inequalities and comple-
mentarity problems. Springer.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. (2018). A variational
inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information
processing systems, 27.

Harker, P. T. and Pang, J.-S. (1990). Finite-dimensional variational inequality and nonlinear
complementarity problems: a survey of theory, algorithms and applications. Mathematical
programming, 48(1):161–220.

Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., and Massoulie, L. (2020). Statistically
preconditioned accelerated gradient method for distributed optimization. In International
conference on machine learning, pages 4203–4227. PMLR.

Jambulapati, A., Sidford, A., and Tian, K. (2019). A direct tilde {O}(1/epsilon) iteration
parallel algorithm for optimal transport. Advances in Neural Information Processing
Systems, 32.

Jin, Y. and Sidford, A. (2020). Efficiently solving mdps with stochastic mirror descent. In
International Conference on Machine Learning, pages 4890–4900. PMLR.

Juditsky, A., Nemirovski, A., and Tauvel, C. (2011). Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58.

Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other
problems. Matecon, 12:747–756.

Kovalev, D., Beznosikov, A., Sadiev, A., Persiianov, M., Richtárik, P., and Gasnikov, A.
(2022). Optimal algorithms for decentralized stochastic variational inequalities. Advances
in Neural Information Processing Systems, 35:31073–31088.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60.

Lin, D., Han, Y., Ye, H., and Zhang, Z. (2024). Stochastic distributed optimization under
average second-order similarity: Algorithms and analysis. Advances in Neural Information
Processing Systems, 36.

Lu, H., Freund, R. M., and Nesterov, Y. (2018). Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

Mishchenko, K., Kovalev, D., Shulgin, E., Richtárik, P., and Malitsky, Y. (2020). Revisit-
ing stochastic extragradient. In International Conference on Artificial Intelligence and
Statistics, pages 4573–4582. PMLR.

10

Necoara, I., Nedelcu, V., and Dumitrache, I. (2011). Parallel and distributed optimization
methods for estimation and control in networks. Journal of Process Control, 21(5):756–766.

Nemirko, A. and Dulá, J. (2021). Machine learning algorithm based on convex hull analysis.
Procedia Computer Science, 186:381–386.

Nemirovski, A. (2004). Prox-method with rate of convergence o (1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1):229–251.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J. (2017). Deep decentralized
multi-task multi-agent reinforcement learning under partial observability. In International
Conference on Machine Learning, pages 2681–2690. PMLR.

Rogozin, A., Beznosikov, A., Dvinskikh, D., Kovalev, D., Dvurechensky, P., and Gasnikov, A.
(2021). Decentralized distributed optimization for saddle point problems. arXiv preprint
arXiv:2102.07758.

Shamir, O., Srebro, N., and Zhang, T. (2014). Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In International conference on machine
learning, pages 1000–1008. PMLR.

Stich, S. U. (2019). Unified optimal analysis of the (stochastic) gradient method. arXiv
preprint arXiv:1907.04232.

Stonyakin, F., Titov, A., Makarenko, D., and Alkousa, M. (2021). Some methods for relatively
strongly monotone variational inequalities. arXiv preprint arXiv:2109.03314.

Tian, Y., Scutari, G., Cao, T., and Gasnikov, A. (2022). Acceleration in distributed
optimization under similarity. In International Conference on Artificial Intelligence and
Statistics, pages 5721–5756. PMLR.

Wai, H.-T., Yang, Z., Wang, Z., and Hong, M. (2018). Multi-agent reinforcement learning
via double averaging primal-dual optimization. Advances in Neural Information Processing
Systems, 31.

Yuan, X.-T. and Li, P. (2020). On convergence of distributed approximate newton methods:
Globalization, sharper bounds and beyond. The Journal of Machine Learning Research,
21(1):8502–8552.

Zhang, Y. and Xiao, L. (2018). Communication-efficient distributed optimization of self-
concordant empirical loss. Large-Scale and Distributed Optimization, pages 289–341.

11

A Appendix with missing proofs

A.1 Proof of Lemma 3.1

Lemma A.1 (Lemma 3.1) Consider Assumption 2.7. Then the inequality

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2

holds.

Proof: Step 1. We employ the following identity for the Bregman divergence:

V (z, zk)− V (z, uk)− V (uk, zk) = ⟨∇w(uk)−∇w(zk), z − uk)⟩.
Using this identity for Line 4 of Algorithm 1, we get

γ(⟨F1(u
k) + F (zk, ξk)− F1(z

k), z − uk⟩+ g(z)− g(uk))

+ V (z, zk)− V (z, uk)− V (uk, zk) ≥ 0.

We rewrite this and obtain

γ⟨F1(u
k) + F (zk, ξk)− F1(z

k), uk − z⟩+ γ(g(uk)− g(z)) ≤ V (z, zk)− V (z, uk)− V (uk, zk).
(10)

Step 2. Writing the optimality condition for Line 6 of Algorithm 1, we get for all z ∈ Z
⟨γ(F (uk, ξk)− F1(u

k)− F (zk, ξk) + F1(z
k)) + (1 + α)(∇w(zk+1)−∇w(uk)), z − zk+1⟩ ≥ 0.

(11)

Then we utilize the following identity for the Bregman divergence

V (z, uk)−V (z, zk+1)− V (zk+1, uk) = ⟨∇w(zk+1)−∇w(uk), z − zk+1)⟩.
Using this identity for (11) and denoting H(uk, zk, ξk) = F (uk, ξk)− F1(u

k)− F (zk, ξk) +
F1(z

k), we obtain

γ⟨H(uk, zk, ξk), zk+1 − z⟩ ≤(1 + α)V (z, uk)− (1 + α)V (z, zk+1)− V (zk+1, uk).

Let us add and then subtract uk in ⟨H(uk, zk, ξk), zk+1 − z⟩:
γ⟨H(uk, zk, ξk), zk+1 − uk⟩+ γ⟨H(uk, zk, ξk), uk − z⟩ ≤(1 + α)V (z, uk)

− (1 + α)V (z, zk+1)

− V (zk+1, uk).

(12)

Step 3. Now we summarize (10) and (12) and get

γ⟨F (uk, ξk), uk − z⟩+ γ(g(uk)− g(z)) ≤V (z, zk)− V (uk, zk)− (1 + α)V (z, zk+1)

− V (zk+1, uk) + αV (z, uk)

+ γ⟨H(uk, zk, ξk), uk − zk+1⟩.
Next for this we use the Cauchy–Schwarz inequality

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk)

+ γ2∥H(uk, zk, ξk)∥2∗
+ ∥zk+1 − uk∥2.

(13)

Assumption 2.7 gives

∥H(uk, zk, ξk)∥∗ = ∥F (uk, ξk)− F1(u
k)− F (zk, ξk) + F1(z

k)∥∗ ≤ δ∥uk − zk∥.
We use this for (13) and obtain

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2.
This transition completes the proof of the lemma. □

12

A.2 Proof of Theorem 3.2

Theorem A.2 (Theorem 3.2) Consider assumptions of Lemma 3.1 with Assumptions
2.4(a) and 2.5. Then after K communication rounds, PAUS (Algorithm 1), run with α = 0,
stepsize γ ≤ 1/2δ and a starting point z0 ∈ Z, outputs ũK such that

E
[
Gap(ũK)

]
≤ D

Kγ
+

2γ

3
σ2,

where D = supz∈Z

{
V (z, z0)

}
.

Proof: From Lemma 3.1 we have

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2.

Next we take α = 0 and utilize the monotonicity of F (·, ξ) (Assumption 2.5):

2γ
[
⟨F (z, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2.

We add and subtract F (z) in the scalar product and obtain

2γ
[
⟨F (z), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2V (z, zk+1)− 2V (zk+1, uk)

+ γ2δ2∥uk − zk∥2 + ∥zk+1 − uk∥2.
+ 2γ⟨F (z)− F (z, ξk), uk − z⟩.

Note that:

Eξ⟨F (z)− F (z, ξk), uk − z⟩ = Eξ⟨F (z)− F (z, ξk), uk − zk⟩,

because F (·, ξ) is unbiased and z, zk are independent on ξk. Thus, we calculate the expectation
and get

2γE⟨F (z), uk − z⟩+ g(uk)− g(z) ≤E2V (z, zk)− 2V (uk, zk)− 2V (z, zk+1)

− 2V (zk+1, uk) + γ2δ2∥uk − zk∥2 + ∥zk+1 − uk∥2

+
4γ2

3
σ2
z +

3

4
∥uk − zk∥2.

Here we also apply the Cauchy-Schwartz inequality to 2γ⟨F (z)− F (z, ξk), uk − zk⟩. For the
Bregman divergence the inequality V (x, y) ≥ 1

2∥x− y∥2 is satisfied for all x, y. Thus,

−2V (uk, zk) ≤ −∥uk − zk∥2,

−2V (zk+1, uk) ≤ −∥zk+1 − uk∥2.

Using this inequalities, we write

2γE⟨F (z), uk − z⟩+ g(uk)− g(z) ≤E2V (z, zk)− 2V (z, zk+1) +

(
γ2δ2 +

3

4
− 1

)
∥uk − zk∥2

+ (1− 1) ∥zk+1 − uk∥2 + 4γ2

3
σ2.

If we choose stepsize γ ≤ 1
2δ , we obtain

2γE⟨F (z), uk − z⟩+ g(uk)− g(z) ≤ E2V (z, zk)− 2V (z, zk+1) +
4γ2

3
σ2.

13

We summarize this for k = 0, 1, 2, . . . ,K − 1

2γE
1

K

K−1∑
k=0

[
⟨F (z), uk − z⟩+ g(uk)− g(z)

]
≤ 2

K
V (z, z0) +

4γ2

3
σ2.

The statement of the theorem follows by taking the maximum:

E[Gap(ũk)] ≤ 1

Kγ
sup
z∈Z

{
V (z, z0)

}
+

2γ

3
σ2.

□

A.3 proof of Corollary 3.3

Corollary A.3 (Corollary 3.3) Consider assumptions of Theorem 3.2. Let ũK be the
output of PAUS (Algorithm 1), run with an appropriate parameters and starting points
z0, u0 ∈ Z in

O
(
Dδ

ε
+

Dσ2

ε2

)
communication rounds,

then Gap(ũK) ≤ ε.

Proof: From Theorem 3.2 we have

E
[
Gap(ũK)

]
≤ D

Kγ
+

2γ

3
σ2,

where D = supz∈Z

{
V (z, z0)

}
. Let us find γ, equating the summands in the right-hand side:

γ =
1

σ

√
3D

2K
.

• If 1
σ

√
3D
2K ≤

1
2δ , choose γ = 1

σ

√
3D
2K . In this case we obtain

E
[
Gap(ũK)

]
≤ 2σ

√
2D

3K
.

• If 1
σ

√
3D
2K ≥

1
2δ , choose γ = 1

2δ . In this case we have

E
[
Gap(ũK)

]
≤ 2δD

K
+

2σ2

3

2

2δ
≤ 2δD

K
+

2σ2

3

1

σ

√
3D

2K
.

Getting rid of unnecessary constants, we get the communication complexity

O
(
Dδ

ε
+

Dσ2

ε2

)
.

□

A.4 Proof of Theorem 3.4

Theorem A.4 (Theorem 3.4) Let Assumptions 2.3, 2.5, 2.6 and 2.7 hold. Then SCMP
(Algorithm 2) with γ = 1

2δ produce the sequence {vt} such that

E
[
V (v∗, vt+1)

]
≤
(
1− η

2

)
E
[
V (v∗, vt)

]
+ 4η2σ2

1,∗.

14

Proof: Let us introduce

H(x, ξ) := γ(F1(x, ξ) + F (zk, ξk)− F1(z
k)).

Then we can rewrite the iterates of SCMP procedure:

vt+
1
2 ← argmin

v∈Z
{η⟨H(vt, ξt), v⟩+ ηV (v, zk) + V (v, vt) + γg(v)}. (14)

vt+1 ← argmin
v∈Z
{η⟨H(vt+

1
2 .ξt), v⟩+ ηV (v, zk) + V (v, vt) + γg(v)}. (15)

From the optimality conditions for (14) and (15) we have

⟨ηH(vt, ξt)+η(∇w(vt+ 1
2)−∇w(zk)) +∇w(vt+ 1

2)−∇w(vt), vt+ 1
2 − v⟩

≤ γ(g(v)− g(vt+
1
2)). (16)

⟨ηH(vt+
1
2 , ξt)+η(∇w(vt+1)−∇w(zk)) +∇w(vt+1)−∇w(vt), vt+1 − v⟩

≤ γ(g(v)− g(vt+1)). (17)

Let v∗ be an exact solution of problems in Line 4 of PAUS for which we employ the SCMP
procedure. Plugging v = vt+1 in (16) and v = v∗ in (17) and the summarizing these, we get

⟨ηH(vt, ξt)+η(∇w(vt+ 1
2)−∇w(zk)) +∇w(vt+ 1

2)−∇w(vt), vt+ 1
2 − vt+1⟩

+⟨ηH(vt+
1
2 , ξt) + η(∇w(vt+1)−∇w(zk)) +∇w(vt+1)−∇w(vt), vt+1 − v∗⟩

≤ γ(g(v∗)− g(vt+
1
2)).

Let us add and subtract vt+
1
2 into the second inner product and obtain

⟨ηH(vt+
1
2 , ξt)+η(∇w(vt+1)−∇w(zk)), vt+ 1

2 − v∗⟩

+⟨η(H(vt, ξt)−H(vt+
1
2 , ξt)), vt+

1
2 − vt+1⟩

+η⟨∇w(vt+ 1
2)−∇w(vt+1), vt+

1
2 − vt+1⟩

+⟨∇w(vt+ 1
2)−∇w(vt), vt+ 1

2 − vt+1⟩
+⟨∇w(vt+1)−∇w(vt), vt+1 − v∗⟩

≤ γ(g(v∗)− g(vt+
1
2)).

After rearranging the terms we obtain

⟨ηH(vt+
1
2 , ξt)+η(∇w(vt+1)−∇w(zk)), vt+ 1

2 − v∗⟩

≤ γ(g(v∗)− g(vt+
1
2))

+ η⟨H(vt+
1
2 , ξt)−H(vt, ξt), vt+

1
2 − vt+1⟩

+ η⟨∇w(vt+1)−∇w(vt+ 1
2), vt+

1
2 − vt+1⟩

+ ⟨∇w(vt+ 1
2)−∇w(vt), vt+1 − vt+

1
2 ⟩

+ ⟨∇w(vt+1)−∇w(vt), v∗ − vt+1⟩.
Assumption 2.5 implies

⟨H(vt+
1
2 , ξt), vt+

1
2 − v∗⟩ ≥⟨H(v∗, ξt), vt+

1
2 − v∗⟩

=⟨H(v∗), vt+
1
2 − v∗⟩+ ⟨F1(v

∗, ξt)− F1(v
∗), vt+

1
2 − v∗⟩. (18)

Moreover, we use the optimality condition for problem in Line 4 of PAUS, and we obtain
the following for all v ∈ Z

⟨H(v∗) +∇w(v∗)−∇w(zk), v − v∗⟩ ≥ γ(g(v∗)− g(v)).

Plugging v = vt+
1
2 in this, we have

−⟨H(v∗) +∇w(v∗), vt+ 1
2 − v∗⟩+ ⟨∇w(zk), vt+ 1

2 − v∗⟩ ≤ γ(g(vt+
1
2)− g(v∗)). (19)

15

Thus, summarizing (19) and the origin inequality, we get

η⟨F1(v
∗, ξt)− F1(v

∗), vt+
1
2 − v∗⟩+η⟨∇w(vt+1)−∇w(v∗), vt+ 1

2 − v∗⟩

≤ η⟨H(vt+
1
2 , ξt)−H(vt, ξt), vt+

1
2 − vt+1⟩

+ η⟨∇w(vt+1)−∇w(vt+ 1
2), vt+

1
2 − vt+1⟩

+ ⟨∇w(vt+ 1
2)−∇w(vt), vt+1 − vt+

1
2 ⟩

+ ⟨∇w(vt+1)−∇w(vt), v∗ − vt+1⟩. (20)

Note that Eξt [⟨F1(v
∗, ξt)−F1(v

∗), vt+
1
2 −v∗⟩] ̸= 0, because vt+

1
2 depends on ξt. Assumption

2.3 allows to replace v∗ by vt in the first summand of the left-hand side while taking
expectation:

Eξt⟨F1(v
∗, ξt)− F1(v

∗), vt+
1
2 − v∗⟩ =Eξt⟨F1(v

∗, ξt)− F1(v
∗), (vt+

1
2 − vt)− (v∗ − vt)⟩.

Both v∗ and vt are independent on ξt, Thus, we obtain

Eξt⟨F1(v
∗, ξt)− F1(v

∗), vt+
1
2 − v∗⟩ = Eξt⟨F1(v

∗, ξt)− F1(v
∗), vt+

1
2 − vt⟩.

Hence, using this, we rewrite (20) as follows

ηE⟨∇w(vt+1)−∇w(v∗), vt+ 1
2 − v∗⟩ ≤Eη⟨F1(v

∗, ξt)− F1(v
∗), vt − vt+

1
2 ⟩

+ η⟨H(vt+
1
2 , ξt)−H(vt, ξt), vt+

1
2 − vt+1⟩

+ η⟨∇w(vt+1)−∇w(vt+ 1
2), vt+

1
2 − vt+1⟩

+ ⟨∇w(vt+ 1
2)−∇w(vt), vt+1 − vt+

1
2 ⟩

+ ⟨∇w(vt+1)−∇w(vt), v∗ − vt+1⟩. (21)

From the definition of the Bregman divergence, we have

−V (vt+1, vt+
1
2)− V (vt+

1
2 , vt+1) = ⟨∇w(vt+1)−∇w(vt+ 1

2), vt+
1
2 − vt+1⟩. (22)

V (v∗, vt+1) + V (vt+1, vt)− V (v∗, vt) = ⟨∇w(vt)−∇w(vt+1), v∗ − vt+1⟩. (23)

V (vt+1, vt+
1
2) + V (vt+

1
2 , vt)− V (vt+1, vt) = ⟨∇w(vt)−∇w(vt+ 1

2), vt+1 − vt+
1
2 ⟩. (24)

V (vt+
1
2 , v∗) + V (v∗, vt+1)− V (vt+

1
2 , vt+1) = ⟨∇w(vt+1)−∇w(v∗), vt+ 1

2 − v∗⟩. (25)

Plugging (22), (23), (24) and (25) in (21), we obtain

EηV (vt+
1
2 , v∗) + ηV (v∗, vt+1)− ηV (vt+

1
2 , vt+1) ≤Eη⟨F1(v

∗, ξt)− F1(v
∗), vt − vt+

1
2 ⟩

+ η⟨H(vt+
1
2 , ξt)−H(vt, ξt), vt+

1
2 − vt+1⟩

− ηV (vt+1, vt+
1
2)− ηV (vt+

1
2 , vt+1)

− V (vt+1, vt+
1
2)− V (vt+

1
2 , vt)

+ V (vt+1, vt)− V (v∗, vt+1)− V (vt+1, vt)

+ V (v∗, vt).

Rearranging the terms and using V (vt+
1
2 , v∗) ≥ 0, we get

0 ≤Eη⟨F1(v
∗, ξt)− F1(v

∗), vt − vt+
1
2 ⟩+ η⟨H(vt+

1
2 , ξt)−H(vt, ξt), vt+

1
2 − vt+1⟩

− (1 + η)V (vt+1, vt+
1
2)− V (vt+

1
2 , vt)− (1 + η)V (v∗, vt+1) + V (v∗, vt). (26)

By using the Cauchy–Schwarz inequality with some constants C1 and C2, we obtain

(1 + η)EV (v∗, vt+1) ≤EV (v∗, vt)− (1 + η)V (vt+1, vt+
1
2)− V (vt+

1
2 , vt)

+ C1σ
2
∗ +

1

C2
∥vt+ 1

2 − vt+1∥2 +
(
η2

C1
+ C2η

2γ2L2
F1

)
∥vt+ 1

2 − vt∥2.

16

Next we use the fact that V (x, y) ≥ 1
2∥x− y∥2 for all x, y ∈ Rd. Let us choose

γ =
1

2δ
, C1 = 4η2, C2 = 2, η ≤ 1

3γLF1

. (27)

1
1+η ≤ 1− x

2 , since η ≤ 1
3γLF1

= 2δ
3LF1

< 1. Thus, we have

E[V (v∗, vt+1)] ≤
(
1− η

2

)
E[V (v∗, vt)] + 4η2σ2

∗.

A.5 Proof of Corollary 3.5

Corollary A.5 (Corollary 3.5) Consider assumptions of Theorem 3.4. Let v∗ be a solution
of the subproblem in Line 4 of Algorithm 2 and let vT be the output of SCMP procedure.
Consider stepsize γ = 1/2δ and starting point v0. Then Algorithm 2 with appropriate choice
of η needs

O

(
LF1

δ
log

V (v∗, v0)

ε
+

σ2
1,∗

ε

)
iterations

to achieve V (v∗, vT) ≤ ε.

Proof: Denote a = 1
2 and c = 4σ2

∗. Using (Stich, 2019), we obtain:

EV (v∗, vT) ≤ 2V (v∗, v0)

η
exp

{
−1

2
η(T + 1)

}
+ 8ησ2

∗.

• If δ
3LF1

≥ ln

(
max

{
2,V

0T2

16σ2
∗

})
/T , then choose η = 2 ln

(
max

{
2,V

0T2

16σ2
∗

})
/T and obtain that the

right side is O
(

8σ2
∗

T

)
.

• Otherwise, choose η = 2δ
3LF1

and obtain O
(

3LF1
V 0

2δ exp{− δT
3LF1
}+ 8σ2

∗
T

)
.

A.6 Proof of Theorem 4.2

Theorem A.6 (Theorem 4.2) Consider assumptions of Lemma 3.1 with Assumption
2.4(b) and Assumption 4.1. Consider α = γµ/2, γ ≤ 1/2δ and a starting point z0 ∈ Z. Then
the inequality

E
[
V (z∗, zk+1)

]
≤
(
1− γµ

4

)
E
[
V (z∗, zk)

]
+

2γ2

3
σ2
∗

holds.

Proof: Let us start with Lemma 3.1:

2γ
[
⟨F (uk, ξk), uk − z⟩+ g(uk)− g(z)

]
≤2V (z, zk)− 2V (uk, zk)− 2(1 + α)V (z, zk+1)

− 2V (zk+1, uk) + 2αV (z, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2. (28)

Write down the optimality condition for problem (1):

⟨F (z∗), z − z∗⟩ ≥ g(z∗)− g(z), ∀z ∈ Z (29)

Take z = z∗ in (28) and z = uk in (29). By summing these two expressions and then adding
and subtracting ⟨F (z∗, ξk), uk − z∗⟩, we obtain the following:

2γ⟨F (uk, ξk)− F (z∗, ξk), uk − z∗⟩ ≤2V (z∗, zk)− 2V (uk, zk)− 2(1 + α)V (z∗, zk+1)

− 2V (zk+1, uk) + 2αV (z∗, uk) + γ2δ2∥uk − zk∥2

+ ∥zk+1 − uk∥2 + 2γ⟨F (z∗)− F (z∗, ξk), uk − z∗⟩.

17

Again we use the trick of replacing the point independent of ξk by an arbitrary point
independent of ξk, under the expectation due to Assumption 2.4:

Eξk⟨F (z∗)− F (z∗, ξk), uk − z∗⟩ = Eξk⟨F (z∗)− F (z∗, ξk), uk − zk⟩.
Let us apply Young’s inequality to Eξk⟨F (z∗)− F (z∗, ξk), uk − zk⟩ and Assumption 4.1 to

⟨F (uk, ξk)− F (z∗, ξk), uk − z∗⟩:

EγµV (z∗, uk) ≤ E2V (z∗, zk) + 2αV (z∗, uk)− 2(1 + α)V (z∗, zk+1) +
4γ2

3
σ2
∗.

Since α = γµ/2, V (z∗, uk) is reduced. Note that γµ/2 ≤ µ/4δ < 1. Thus, we obtain

E
[
V (z∗, zk+1)

]
≤
(
1− γµ

4

)
E
[
V (z∗, zk)

]
+

2γ2

3
σ2
∗

□

B Closed forms for monotone VIs

For simplicity of presentation, we consider a non-stochastic version of PAUS.

Convex minimization. For convex minimization problem, operator F (z) = ∇f(z),
Q = ∇f(z) − f1(z) =: ∇q(z). At each iteration of of PAUS server forms the gradient by
averaging local gradients calculated by all machines and then computes the next iterates
zk+1 and uk as follows

uk = argmin
z∈Z
{γf1(z) + γ⟨∇q(zk), z⟩+ V (z, zk) + γg(z)}, (30)

zk+1 = argmin
z∈Z
{γ⟨∇q(uk)−∇q(zk), z⟩+ V (z, uk)}. (31)

Then the server broadcasts zk+1 and uk to all other devices.

In the entropy setup when Z ≡ ∆ the inner problem encountered in (31) has a closed-form
solution known as entropic mirror descent (Nemirovski, 2004):

zk+1 =
uk ⊙ e−γ(∇q(uk)−∇q(zk))

1⊤
(
uk ⊙ e−γ(∇q(uk)−∇q(zk))

) , (32)

where 1 is the vector of ones, exp is applied element-wise for vectors and symbols ⊙ and /
stand for the element-wise product and division respectively.

SPPs. For SPPs, operator F (z) = [∇xf(x, y), −∇yf(x, y)] and F1(z) =
[∇xf1(x, y), −∇yf1(x, y)], G(z) := F (z)− F1(z). with z := (x, y) ∈ X × Y =: Z. Then the
server computes

uk = argmin
x∈X

max
y∈Y
{γf1(x, y) + γ

〈
Q(zk), z

〉
+ V (z, zk) + γg(z)}, (33)

zk+1 = argmin
z∈Z
{γ⟨Q(uk)−Q(zk), z⟩+ V (z, uk)}. (34)

Similarly to convex minimization problem, in the entropy setup (X ≡ ∆ and Y ≡ ∆) the
inner problem from 34 has a closed-form solution.

Closed-form solutions for subproblems in Composite MP procedure. Next we
comment on the existence of closed-form solutions for steps (6) and (7) of the SCMP
procedure in the Entropy setup. Particularly for convex minimization problem (6) with
Z ≡ ∆ and g(v) ≡ 0, SCMP can be rewritten as follows:

vt+
1
2 =

(zk)
η

η+1 ⊙ (vt)
1

1+η ⊙ e−
γη
1+ηh(vt)

1⊤
(
(zk)

η
η+1 ⊙ (vt)

1
1+η ⊙ e−

γη
1+ηh(vt)

) ,
vt+1 =

(zk)
η

η+1 ⊙ (vt)
1

1+η ⊙ e
− γη

1+ηh
(
vt+1

2

)

1⊤
(
(zk)

η
η+1 ⊙ (vt)

1
1+η ⊙ e

− γη
1+ηh

(
vt+1

2

)) ,

18

where h(v) := ∇f1(v) + ∇f(zk) − ∇f1(zk) and 1 is the vector of ones, exp is applied
element-wise for vectors and symbols ⊙ and / stand for the element-wise product and
division respectively. Similarly closed-form solutions can be obtained for SPP with X ≡ ∆
and Y ≡ ∆.

C Experiments details

We consider a two-player matrix game

min
x∈∆

max
y∈∆

[
x⊤Āy :=

1

m

m∑
i=1

x⊤Aiy

]
, (35)

where A1, . . . , Am are i.i.d samples of stochastic matrix Aξ of size d × d, m = 104. Local
datasets are of size n = 2 · 103, the server holds also n matrices.

Next we comment on theoretical bounds for parameters L and δ for this problem since 1/L is
the stepsize for Mirror Prox (Rogozin et al., 2021), and 1/2δ is the stepsize for PAUS and
the Eucidean algorithm (Kovalev et al., 2022).

Lipschitz constant L. For SPP (35), Assumption 2.6 is equivalent to the notion of
smoothness.

Definition C.1 (L-smoothness) f(x, y) is (Lxx, Lxy, Lyx, Lyy)-smooth if for any x, x′ ∈
X and y, y′ ∈ Y,

∥∇xf(x, y)−∇xf(x
′, y)∥∗ ≤ Lxx∥x− x′∥,

∥∇xf(x, y)−∇xf(x, y
′)∥∗ ≤ Lxy∥y − y′∥,

∥∇yf(x, y)−∇yf(x, y
′)∥∗ ≤ Lyy∥y − y′∥,

∥∇yf(x, y)−∇yf(x
′, y)∥∗ ≤ Lyx∥x− x′∥.

Then we define L = max{Lxx, Lxy, Lyx, Lyy} and seek to estimate L. We equip both X := ∆
and Y := ∆ with the ℓ1-norm. The corresponding dual norm is the ℓ∞-norm. By the
Definition C.1

∥Ā(y − y′)∥∞ ≤ ∥
d∑

i=1

A(i)(yi − y′i)∥∞ ≤ ∥Ā∥max∥y − y′∥1, (36)

where we used A(i) for the i-th column of A, and ∥A∥max for the maximal entry of A (in
absolute value). Thus, Lxy = Lyx = ∥Ā∥max, and Lxx = Lyy = 0. Hence, L = ∥Ā∥max.

δ-similarity. Now we seek to estimate δ. We use Assumption 2.7 particularly for
F (z) = [∇xf(x, y), −∇yf(x, y)]∥∥∥∥[∇xf1(x, y)

−∇yf1(x, y)

]
−
[
∇xf(x, y)
−∇yf(x, y)

]
−
[
∇x′f1(x

′, y′)
−∇y′f1(x

′, y′)

]
+

[
∇x′f(x′, y′)
−∇y′f(x′, y′)

]∥∥∥∥
∞

≤ δ

∥∥∥∥[x
y

]
−
[

x′

y′

]∥∥∥∥
1

. (37)

where global objective is

f(x, y) = x⊤Āy :=
1

m

m∑
i=1

x⊤Aiy,

and local (stored on the server) objective is

f1(x, y) = x⊤ĀN1y :=
1

N1

N1∑
ℓ=1

x⊤Aℓy.

19

Using this, we can rewrite (37) as follows∥∥∥∥[(Ā− ĀN1)x
−(Ā− ĀN1)⊤y

]
−
[

(Ā− ĀN1)x′

−(Ā− ĀN1)⊤y′

]∥∥∥∥
∞
≤ δ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥
1

. (38)

Thus, ∥∥∥∥[(Ā− ĀN1)(x− x′)
−(Ā− ĀN1)⊤(y − y′)

]∥∥∥∥
∞
≤ δ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥
1

. (39)

Let us define z = (x, y) and z′ = (x′, y′). Then we rewrite (39) as follows

∥A(z − z′)∥∞ ≤ δ ∥z − z′∥1 ,

where

A :=

(
(Ā− ĀN1) 0d×d

0d×d −(Ā− ĀN1)⊤

)
.

Here 0d×d is the zero matrix of size d× d. By the same arguments as in (36) we conclude
that δ = ∥A∥max.

20

