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1 NEAR-FAR PARAMETER ROBUSTNESS

Figure 1: PSNR vs. Iterations Under Various Near-Far Parameter Settings (Evaluation Metric)

Our model is designed to be near-far parameter-free. As shown in Figure 1, our
model demonstrates robustness to near-far parameter settings. This is achieved by
incorporating spatial boundary conditions into the learning process through Frus-
tum Score Regularization. In contrast, Nerfacto fails to learn effectively under
broad near-far conditions and exhibits suboptimal performance even under opti-
mized near-far settings.
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2 EFFECTIVENESS OF DYNAMIC LAMBDA

Figure 2: Contribution of Dynamic λ to Performance and Model Stability

To prevent over-regularization, we employed a dynamic adjustment of λ. The RGB
loss is duplicated and reused as the Shadow Zone Regularization loss. This ap-
proach ensures that the model functions identically to the base model during the
mid-to-late stages of training, minimizing the risk of over-regularization or training
collapse.

Regularization methods designed based on human intuition are prone to counterex-
amples and carry a significant risk of over-regularization. In contrast, our method
mitigates these risks, preserving the original potential of the model to the fullest
extent. We consider this an additional effective contribution of our approach.
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3 VISUALIZATION OF FRUSTUM SCORE

Figure 3: Visualization of Frustum Scores Overlaid on Rendering Results

The view Frustum Score was visualized and overlaid onto the rendering. Misformed
fragments of objects in regions where position inference is impossible can be ob-
served. However, since the training loss converges without issues, the rendered
results appear normal from the input view positions. We believe the root cause
of this phenomenon lies in improperly defined spatial boundary conditions during
training.

When solving differential equations with incorrectly specified boundary conditions,
incorrect results do not imply a flaw or limitation in the equations themselves. Sim-
ilarly, if there are no inherent flaws in the general NeRF design, we believe that
its potential can be further unlocked with more rational configurations, including
address

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 DATASET PROPOSAL: RANDOMIZED STRUCTURES AND PATTERNS

Figure 4: Examples of Base Structures and Patterns.

Figure 5: Examples of Randomly Generated Structures and Patterns.

We propose a new dataset generator for evaluating the performance of NeRF. Ex-
isting datasets are often confined to a very limited number of classes, which nega-
tively impacts researchers’ ability to objectively assess their methods, especially in
the context of the sparse input problem.

In pursuit of better performance metrics, researchers may unintentionally design
overly regularized methods biased toward specific datasets, potentially degrading
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the model’s generalizability. Additionally, it is often observed that different param-
eters are set for each dataset to improve average performance.

To address this issue, we have designed a random structure and pattern-based
dataset generator that allows for a clearer evaluation of a model’s generalization
performance. The final structures are composed by randomly generating and com-
bining base structures and patterns.

Base Structures: Sphere, torus, tetrahedron, etc. (two basic topologies and struc-
tures with edges)

• Base Structures: Sphere, Torus, Tetrahedron, etc. (two basic topologies
and structures with edges)

• Base Patterns: Noise, Mip-map (checkerboard pattern)
• Camera Positions:

– Training Cameras: Centers of the faces of a cube enclosing the object
(total of 6)

– Evaluation Cameras: Centers of the edges and vertices of the cube
(total of 20)

Since the input data are far apart at 90-degree angles from each other, this is quite a
challenging dataset (more sparse compared to datasets concentrated in a hemisphere
or a quarter sphere). Even in such circumstances, our model consistently succeeds
in converging the object within a normal range.

The code for this generator will be publicly released, and it is designed to allow
users to generate datasets by specifying the desired level of randomness and scale,
as well as to easily add custom patterns and structures. In the future, we plan to
update the generator to automatically produce more reasonable and diverse random
datasets by advancing mathematical definitions, topology, patterns, geometry, and
so on, regarding patterns and geometric structures.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Average PSNR results for 16 random structure training runs.
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Figure 7: Rendering results from 4 samples out of 16 training runs.
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5 VIDEO DEMONSTRATION OF NERF RENDERING AND LOSS CURVE

Figure 8: Thumbnails of Rendering Video

Through the video materials, the fragments described in the Visualization of Frus-
tum Score section can be observed in greater detail.

Figure 9: Loss results from experiments included in the video materials.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 10: PSNR results from experiments included in the video materials.

The figure shows the RGB Loss and PSNR (Batch Rays) curves corresponding to
the video experiment. Our model achieves rapid initial convergence, which can
make the curve appear nearly horizontal at a broader scale.

When applying our method, there is a significant performance improvement (in
evaluation metrics) compared to Nerfacto, while the training loss curves remain
nearly identical. This indirectly demonstrates that our method minimally disrupts
the learning mechanism of the base model.
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