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Supplementary Material

1 EXPERIMENTAL SETUP DETAILS (FIGURES & TABLES)

1.1 FIG.1 (IN THE MAIN TEXT)

Fig.1(c): This is an image generated during the actual learning process with graph-
ics added for understanding. It was generated through Nerfstudio’s Viser viewer. In
the figure below, the small image overlays the input view frustum onto the image
generated through Viser viewer.

Figure 1: Original image of Fig.1(c).

1.2 FIG.2 (IN THE MAIN TEXT)

No additional explanation

1.3 FIG.3 (IN THE MAIN TEXT)

No additional explanation

1.4 FIG.4 (IN THE MAIN TEXT)

For easy understanding, the top surface of the ground truth (GT) is represented
in blue, but the color of the top surface and the inside of the object could appear
red or black. The key point is that if the color of the surface and the inside of an
unobserved object remains undecidable, it can cause instability during the learning
process.
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1.5 FIG.5 (IN THE MAIN TEXT)

• Data : Blender synthetic datasets Mildenhall et al. (2020)

• Input resolution : 800× 800 (original resolution)

• Train eval method : Nerfstudio train eval split method

pipeline.datamanager.dataparser.eval_mode = "fraction"

• Number of input views :

pipeline.datamanager.dataparser.train_split_fraction =
0.5(50), 0.2(20), 0.1(10), 0.07(7), 0.03(3)

• Iteration : 10k

The original resolution was used and trained using only the data in the train folder.
The 100 train data were split by a certain ratio and used for training and evaluation.
For example, with a split ratio of 0.1, 10 images were used to training. The original
image resolution was used for training. The model was trained for 10k iterations.
The x-axis represents the split ratio : 0.5(50), 0.2(20), 0.1(10), 0.07(7), and 0.03(3).
The values in parentheses indicate the number of images used for training.

1.6 FIG.6 (IN THE MAIN TEXT)

• Data : Blender synthetic datasetsMildenhall et al. (2020)

• Input resolution : 800× 800 (original resolution)

• Train eval method : Nerfstudio train eval split method

pipeline.datamanager.dataparser.eval_mode = "fraction"

• Number of input views :

pipeline.datamanager.dataparser.train_split_fraction =
0.07(7 inputs)

• Iteration : 10k

Training was conducted with a split ratio of 0.07, using 7 out of 100 training im-
ages. The original image resolution was used for training, which was run for 10K
iterations.

1.7 FIG.7 (IN THE MAIN TEXT)

The image shows the rendering results for the chair class from the experiments in
Table 1.

1.8 TABLE 1 (IN THE MAIN TEXT)

• Data : Blender synthetic datasetsMildenhall et al. (2020)

• Input resolution : 400× 400 (2× downsampled)Yang et al. (2023)

• Train eval method : refer from FreeNeRF (preset train eval index)Yang et al.
(2023)
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• Number of input views : 8 input views (25 eval views)

train_indices = [26, 86, 2, 55, 75, 93, 16, 73]
(start from\0")

eval_indices = [0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88,
96, 104, 112, 120, 128, 136, 144, 152, 160,
168, 176, 184, 192]

• Iteration :

FreeNeRF : 50k
ours : 30k

For comparison on sparse input, we used the same experimental setup as FreeNeRF.
The experiments on FreeNeRF were conducted using its official GitHub repository.
The ”train eval split” method followed the approach described in the original FreeN-
eRF paper, downsampled by 2×. FreeNeRF was trained for 50k iterations, while
our model (and Nerfacto) was trained for 30k iterations.

1.9 TABLE 2 (IN THE MAIN TEXT)

• Data : Blender synthetic datasetsMildenhall et al. (2020)

• Input resolution : 800× 800 (original resolution)

• Train eval method : Nerfstudio train eval split method

pipeline.datamanager.dataparser.eval_mode = "fraction"

• Number of input views :

pipeline.datamanager.dataparser.train_split_fraction =
0.9 (90 input images, 10 eval images)

• Iteration : 10k

We used 90 out of the 100 training data as input for training, with the remaining 10
used for evaluation.

2 ADDITIONAL DATA SET

2.1 DTU

• Data : DTU datasets Yu et al. (2021)

• Input resolution : 300× 400 (4× downsampled form original DTU dataset)

• Train eval method : refer from FreeNeRF (preset train eval index)Yang et al.
(2023), evaluation with object mask

• Number of input views : 9 input views (25 eval views)

train_indices = [25, 22, 28, 40, 44, 48, 0, 8, 13]
(start from\0")
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eval_indices = [1, 2, 9, 10, 11, 12, 14, 15,
23, 24, 26, 27, 29, 30, 31, 32,
33, 34, 35, 41, 42, 43, 45, 46, 47]

• Iteration :

FreeNeRF : 132k (refer from FreeNeRF)
ours : 30k

Please note that the object mask was applied during evaluation, not during the learn-
ing process.

2.2 LLFF

• Data : LLFF datasets Mildenhall et al. (2020)

• Input resolution : 378× 504 (8× downsampled)

• Train eval method : refer from FreeNeRF Yang et al. (2023)

• Number of input views : 6 input views

• Iteration :

FreeNeRF : 140k (refer from FreeNeRF)
ours : 30k

3 METHOD IMPLEMENTATION DETAIL

3.1 MAJOR METHODS

3.1.1 FRUSTUM SCORE CALCULATOR

The definition of the isInside function is shown below.

isInside = ∀i ∈ {x, y, z} : −ClipSpacePoints...,3

≤ ClipSpacePoints...,i ≤ ClipSpacePoints...,3.
(1)

Then, ClipSpacePoints can be calculated as

ClipSpacePoints = ViewSpacePoints · ProjectionMatrixT, (2)

where ViewSpacePoints and Projection Matrix are defined as follows.

ViewSpacePoints = HomogeneousPoints·(TransformMatrices−1)T,
(3)

and

Projection Matrix =


1

tan( fovx
2

)×aspect ratio
0 0 0

0 1

tan(
fovy
2

)
0 0

0 0 − far+near
far−near −2×far×near

far−near
0 0 −1 0

 .

(4)
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3.1.2 CUSTUMGRAD

The implementation of our custom grad was inspired by the floater-no-more Philip
& Deschaintre (2023) paper, which reduces the learning rate close to the camera.
The approach is based on the difference in sampling rates in the unit space. In
contrast, our implementation is based on our assumptions about regions where po-
sitional inference is not feasible.

When the overlap score of the view frustum reaches a certain level, it is already
possible to make reasonable location inferences. Making a distinction in gradients
for increases beyond this point can negatively impact learning. Therefore, scores
above 9 are adjusted to 9. Furthermore, scores of 1 indicate regions where location
inference is theoretically impossible; thus, we subtract 1 from these scores to reduce
the gradient to 0. Then, we normalize this adjusted score for use in the backward
pass.

fcg,Forward(cθ, σθ,S) = (c∗θ, σ
∗
θ), (5)

Sadj = min(S, 9)− 1, (6)

Snorm =
Sadjusted

Smax

, (7)

fcg,Backward

(
∂L

∂c
,
∂L

∂σ

)
=

(
∂L

∂c
⊙ Snorm

2,
∂L

∂σ
⊙ Snorm

2

)
. (8)

3.1.3 SHADOW ZONE

Basic RGB blending formula: C ′
i = Ciwi + Ci−1wi−1. (9)

The total sum of wi is 1, which means the sum of wi and wi−1 can be less than
1. This may lead to a continuous decrease in the value of C ′

i, which can be more
pronounced, especially when the values of wi and wi−1 are small. To address this,
C ′

i should be adjusted by multiplying the reciprocal of wi + wi−1. This adjust-
ment prevents a rapid decrease in Ci and consequently helps achieve a more natural
blending. Additionally, for the first element of the sequence, C ′

0, we use C0 directly.

C ′
0 = C0, (10)

C ′
i = (Ciwi + Ci−1wi−1)×

1

wi + wi−1

. (11)
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3.2 MINOR METHODS

3.2.1 IGNORE BLACK AND WHITE

The RGB(0,0,0) color cannot occur in an unprocessed digital photo because all
photos contain physical noise (electrical and thermal), but it is easily observed in
synthetic images. RGB(1,1,1) occurs when the digital sensor is saturated by light.
Since these regions have no information or are completely lost, making positional
inference impossible. Therefore, we develop a method to exclude these regions
from learning. We introduce an additional regularization method to reduce the den-
sity of black or saturated parts in the GT image. This is implemented similarly to
our frustum mask regularization method. This newly calculated loss term is added
to the total loss, with the same dynamic lambda applied.

σmasked = σ ⊙M, (12)

where

M =

{
0, if lower threshold < Cgt < upper threshold

1, otherwise,
(13)

Libw = MSE(σmasked,0). (14)
It is also used by FreeNeRF in combination with its occlusion regularization
method. However, while FreeNeRF introduces it as a solution to the wall ap-
pearance phenomenon, we apply it based on our understanding of regions where
inference is not feasible.

3.2.2 IGNORE OUT OF INPUT VIEW FRUSTUM

We observe that rendering beyond the training view frustum causes numerous ar-
tifacts, a phenomenon also noted in Nerfbusters Warburg et al. (2023). Regions
outside of the input view frustum cannot contribute to learning; they merely extend
the model’ s fitting results in the training region. However, as the training region
is fitted more precisely, the more complex noise outside this region is generated,
which is completely irrelevant to our ROI. Therefore, we exclude the input view
frustum sampling points from rendering, as they do not contribute to learning and
only degrade rendering quality.

σi =

{
0, if scoresi = 0

σi, otherwise,
(15)

RGBi =

{
0, if scoresi = 0

Ci, otherwise.
(16)

Please note that this method applies only to the rendering process and does not
affect the training process.

The difference between Nerfbusters and our method is that Nerfbusters directly
samples areas outside the input view frustum by generating random ray and calcu-
lates visibility loss, which directly influences learning. In contrast, our method only
applies it to the rendering process and does not affect model learning.
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4 DETAIL EXPLANATION OF NERFACTO

We explore the intricate details of the Nerfacto model, a sophisticated extension of
the NeRF architecture. This model integrates advanced techniques from both Mip-
NeRF 360 and Instant-NGP, incorporating features such as scene contraction, multi-
resolution hash encoding, and spherical harmonics encoding. These enhancements
significantly improve visual accuracy and computational efficiency.

4.1 SCENE CONTRACTION

As introduced by Mip-NeRF360, scene contraction deals with unbounded scenes
in the real world by compressing them into a bounding box. This approach uses
the L∞ norm to contract a cube rather than a sphere, enhancing compatibility with
voxel-based hash encoding. This scene contraction process fsc(x) in equation 17
maps infinite samples x into a range from -2 to 2 and is employed in conjunction
with the hash encoding introduced in Instant-NGP.

fsc(x) =

{
x if ∥x∥∞ ≤ 1,

(2− 1
∥x∥∞ )

(
x

∥x∥∞

)
if ∥x∥∞ > 1.

(17)

4.2 PROPOSAL MLP

Proposal MLP facilitates the efficient training and rendering of NeRF models. Pro-
posal MLP fδ in equation 19 takes the input ray origin o and direction d from
generated ray x(t) in equation 18 and identifies ROI in a scene by predicting vol-
ume density. It is trained using a weight histogram generated by the NeRF MLP.
This structure provides a new sampling interval for the NeRF MLP that renders the
final image, significantly increasing the capacity of the overall model while only
slightly extending the training time.

x(t) = o+ td, (18)

where o and d denote the ray origin and direction, respectively.

xδ = fδ(o,d). (19)

4.3 MULTI-RESOLUTION HASH ENCODING

Multi-resolution Hash Encoding in equation 20 encodes the position of a sampling
point into a lattice with different resolutions. This technique is designed to preserve
fine details, optimize memory usage, and improve computational efficiency. The
method divides the input space into grids of different resolutions and indexes feature
vectors using a hash function for each grid level. This multi-resolution approach is
particularly effective for modeling complex 3D scenes that contain a mixture of
structures with varying sizes.

x̂ = HashEncoding(xδ) =
L⊕

ℓ=1

interp (h (⌊xδ ·Nℓ⌋ , ⌈xδ ·Nℓ⌉)) , (20)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where h denotes a spatial hash function, Nℓ indicates the ℓ-th resolution, and N is
the total number of resolutions.

4.4 SPHERICAL HARMONICS ENCODING

In NeRF training, the directions of the sampled points are encoded using Spherical
Harmonics. Spherical harmonics Green (2003) can efficiently express the reflection
and radiation characteristics according to frequency. These encoded directions are
used as input to the NeRF MLP fθ in equation 22.

d̂ = SHEncoding(d) = (Y m
ℓ (d))m:−ℓ≤m≤ℓ

ℓ: 0≤ℓ≤ℓmax
, (21)

where Y m
ℓ denotes the spherical harmonic function.

ci, σi = fθ(x̂, d̂), (22)

where ci and σi denote the color and density values for the i-th point along the ray,
respectively.

4.5 VOLUME RENDERING

NeRF’s volume rendering process first uses Proposal MLP in equation 19 to sample
points above the ray. Each of these sampled points contains position x and direction
d in equation 18. These points are then encoded and fed into the NeRF MLP in
equation 22. The NeRF MLP outputs color c and density σ values for each point
along the ray. These outputs are used to calculate the transmittance in equation 23
and the weight of each point in equation 24. The transmittance and weight are
calculated based on the density of the points, which is then used to obtain a weighted
sum of the colors for the ray. This process determines the color of the final pixel,
enabling the reconstruction of a complex 3D scene into a high-resolution 2D image.

Ti = exp

(
−

i−1∑
j=1

σj∆tj

)
, (23)

where Ti denotes the transmittance values for the i-th point along the ray.

C(r) =
N∑
i=1

wici and wi = Ti(1− exp(−σi∆ti)), (24)

where C(r) calculates a weighted sum of the colors for the ray.

5 LIMITED EXPERIMENTS ON DISTANT BACKGROUNDS OR COMPLEX
SCENES

We conducted additional validation on the MipNeRF-360 dataset and our custom
indoor dataset. When using only 5% of the entire dataset, we observed that the
training error was eliminated and a significant improvement in performance was
achieved (Fig.2) Our initial motivation was to improve the performance of 3D
reconstruction for complex real-world indoor scenes. Although our experiments
with our own data did not achieve the highest quality, our approach substantially

8
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enhances 3D reconstruction performance with sparse data collected from indoor
scenes (Fig.3). Thus, our goal is to first address structured data and subsequently
build a foundation for its application to more complex scenes.

Figure 2: Mip-NeRF360 dataset. When using only 5% of the dataset, we observed that the object
converges to a region where positional inference is impossible, leading to incorrect results (an easier
but incorrect solution for NeRF model). This is similar to the phenomenon of objects splitting in
the Blender dataset. However, when applying our model, objects within regions where positional
inference is possible converge correctly.

Figure 3: Custom indoor dataset was captured from six indoor locations using a 360-degree camera
and can be considered sparse dataset.
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