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1 NEAR-FAR PARAMETER ROBUSTNESS

Near-Far Parameter Robustness
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Figure 1: PSNR vs. Iterations Under Various Near-Far Parameter Settings (Evaluation Metric)

Our model is designed to be near-far parameter-free. As shown in Figure 1, our
model demonstrates robustness to near-far parameter settings. This is achieved by
incorporating spatial boundary conditions into the learning process through Frus-
tum Score Regularization. In contrast, Nerfacto fails to learn effectively under
broad near-far conditions and exhibits suboptimal performance even under opti-
mized near-far settings.
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2 EFFECTIVENESS OF DYNAMIC LAMBDA

Effectiveness of Dynamic Lambda
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Figure 2: Contribution of Dynamic A to Performance and Model Stability

To prevent over-regularization, we employed a dynamic adjustment of \. The RGB
loss is duplicated and reused as the Shadow Zone Regularization loss. This ap-
proach ensures that the model functions identically to the base model during the
mid-to-late stages of training, minimizing the risk of over-regularization or training
collapse.

Regularization methods designed based on human intuition are prone to counterex-
amples and carry a significant risk of over-regularization. In contrast, our method
mitigates these risks, preserving the original potential of the model to the fullest
extent. We consider this an additional effective contribution of our approach.
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3  VISUALIZATION OF FRUSTUM SCORE
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Figure 3: Visualization of Frustum Scores Overlaid on Rendering Results

The view Frustum Score was visualized and overlaid onto the rendering. Misformed
fragments of objects in regions where position inference is impossible can be ob-
served. However, since the training loss converges without issues, the rendered
results appear normal from the input view positions. We believe the root cause
of this phenomenon lies in improperly defined spatial boundary conditions during
training.

When solving differential equations with incorrectly specified boundary conditions,
incorrect results do not imply a flaw or limitation in the equations themselves. Sim-
ilarly, if there are no inherent flaws in the general NeRF design, we believe that
its potential can be further unlocked with more rational configurations, including
address
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4 DATASET PROPOSAL: RANDOMIZED STRUCTURES AND PATTERNS
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Figure 4: Examples of Base Structures and Patterns.

Figure 5: Examples of Randomly Generated Structures and Patterns.

We propose a new dataset generator for evaluating the performance of NeRF. Ex-
isting datasets are often confined to a very limited number of classes, which nega-

tively impacts researchers’ ability to objectively assess their methods, especially in
the context of the sparse input problem.

In pursuit of better performance metrics, researchers may unintentionally design
overly regularized methods biased toward specific datasets, potentially degrading
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the model’s generalizability. Additionally, it is often observed that different param-
eters are set for each dataset to improve average performance.

To address this issue, we have designed a random structure and pattern-based
dataset generator that allows for a clearer evaluation of a model’s generalization
performance. The final structures are composed by randomly generating and com-
bining base structures and patterns.

Base Structures: Sphere, torus, tetrahedron, etc. (two basic topologies and struc-
tures with edges)

* Base Structures: Sphere, Torus, Tetrahedron, etc. (two basic topologies
and structures with edges)

* Base Patterns: Noise, Mip-map (checkerboard pattern)
* Camera Positions:

— Training Cameras: Centers of the faces of a cube enclosing the object
(total of 6)

— Evaluation Cameras: Centers of the edges and vertices of the cube
(total of 20)

Since the input data are far apart at 90-degree angles from each other, this is quite a
challenging dataset (more sparse compared to datasets concentrated in a hemisphere
or a quarter sphere). Even in such circumstances, our model consistently succeeds
in converging the object within a normal range.

The code for this generator will be publicly released, and it is designed to allow
users to generate datasets by specifying the desired level of randomness and scale,
as well as to easily add custom patterns and structures. In the future, we plan to
update the generator to automatically produce more reasonable and diverse random
datasets by advancing mathematical definitions, topology, patterns, geometry, and
so on, regarding patterns and geometric structures.
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GT nerfacto GT nerfacto+ours

Figure 7: Rendering results from 4 samples out of 16 training runs.
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5 VIDEO DEMONSTRATION OF NERF RENDERING AND LOSS CURVE
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Figure 8: Thumbnails of Rendering Video

Through the video materials, the fragments described in the Visualization of Frus-
tum Score section can be observed in greater detail.
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Figure 9: Loss results from experiments included in the video materials.
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Evaluation (All Eval Images) / PSNR
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Figure 10: PSNR results from experiments included in the video materials.

The figure shows the RGB Loss and PSNR (Batch Rays) curves corresponding to
the video experiment. Our model achieves rapid initial convergence, which can
make the curve appear nearly horizontal at a broader scale.

When applying our method, there is a significant performance improvement (in
evaluation metrics) compared to Nerfacto, while the training loss curves remain
nearly identical. This indirectly demonstrates that our method minimally disrupts
the learning mechanism of the base model.
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