Computed tomography inverse problem

« We consider the task of recovering a 2D/3D image x € X from noisy tomographic
data/sinogram y € Y, where
y="T(x)+d(x).

Learned iterative methods

« A machine learning based approach is the problem of finding a (non-linear)
parametrized mapping Tg . Y — X that satisfies the pseudo-inverse property:

T)(y) ~ .
« Supervised training:
L(6) = E(y y)~plU(T) (y), 2)].
« Training and deploying such methods for 3D CT reconstruction is still a challenge.

« Aim in this work is to explore the idea of invertibility for reducing GPU memory re-
quirements.

Learned Primal-Dual

 This Learned Primal-Dual (LPD)[1] architecture incorporates a forward operator into
a deep neural network by unrolling a proximal primal-dual optimization scheme and
replacing proximal operators with convolutional neural networks (CNNs).

Algorithm 1 LPD

1: Choose initial primal and dual variables

(0, ug) = init(y), where (zg, ug) € (XN, YV)
2:For:=1,2,..., M do:

3: Dual update: u; = u;_| + I (ui_l, Tx,§2_>1, y)

4: Primal update: z; = z;_ + A\’ (xi—l’T*u(l))

(

. (1)
5: return Ty
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Figure 1: Learned Primal-Dual architecture.
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Invertible Learned Primal-Dual

A slight change in the LPD architecture is sufficient to make it invertible.
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« One of the key benefits of invertible neural networks is that depth of the network

can be increased, while maintaining a constant memory footprint.

Algorithm 2 iLPD

1: Choose initial primal and dual variables
(g, up) = init(y), where (zq, ug) € (X,Y)
2. Fori:=1,3,...,2M — 1 do:
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Ti = Ti_1
3: Dual update: ;

wp = ui—1 + 1" (Tzi_1,y)
Tir1 = x; + AN (T u;)

U] = Uy

4: Primal update: {
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Figure 2: Invertible Learned Primal-Dual (iLPD) architecture.
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« Implementation: github.com/JevgenijaAksjonova/invertible learned primal_ dual.

Quantitative evaluation

Conclusion and future work

Table 1: Performance metrics for various reconstruction methods in 2D low-dose CT.

LPD iLPD-10 iLPD-20 * The proposed iLPD method requires significantly less GPU memory for
PSNR 47.05 4610  46.65 training than the original LPD and therefore it is applicable for 3D CT re-
GPU Memory (MiB) 16554 6268 6280

» Future work: extension to helical geometry.

Table 2: Performance metrics for various reconstruction methods in 3D sparse-angle CBCT.

FDK[2] nnFDK[4] U-Net[3] iLPD-20
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