Computed tomography inverse problem

• We consider the task of recovering a 2D/3D image $x \in X$ from noisy tomographic data/sinogram $y \in Y$, where

$$y = T(x) + \delta(x) \,.$$

Learned iterative methods

- A machine learning based approach is the problem of finding a (non-linear) parametrized mapping T_{θ}^{\dagger} : $Y \rightarrow X$ that satisfies the pseudo-inverse property: $T_{\theta}^{\dagger}(y) \approx x$.
- Supervised training:

 $\mathsf{L}(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(T_{\theta}^{\dagger}(y), x)].$

- Training and deploying such methods for 3D CT reconstruction is still a challenge.
- Aim in this work is to explore the idea of invertibility for reducing GPU memory requirements.

Learned Primal-Dual

• This Learned Primal-Dual (LPD)[1] architecture incorporates a forward operator into a deep neural network by unrolling a proximal primal-dual optimization scheme and replacing proximal operators with convolutional neural networks (CNNs).

Figure 1: Learned Primal-Dual architecture.

INVERTIBLE LEARNED PRIMAL-DUAL Jevgenija Rudzusikat, Buda Bajićt, Ozan Öktemt, Carola-Bibiane Schönliebt, Christian Etmannt [†]KTH Royal Institute of Technology, [‡] University of Cambridge

Invertible Learned Primal-Dual

- A slight change in the LPD architecture is sufficient to make it invertible.
- One of the key benefits of invertible neural networks is that depth of the network can be increased, while maintaining a constant memory footprint.

5: return x_{2M}

 $u_{i+1} = u_i$

Figure 2: Invertible Learned Primal-Dual (iLPD) architecture.

• Implementation: github.com/JevgenijaAksjonova/invertible_learned_primal_dual.

Quantitative evaluation

Table 1: Performance metrics for various reconstruction methods in 2D low-dose CT.

	LPD	iLPD-10	iLPD-20
PSNR	47.05	46.10	46.6
SSIM	0.9997	0.9996	0.9996
GPU Memory (MiB)	16554	6268	6280

Table 2: Performance metrics for various reconstruction methods in 3D sparse-angle CBCT.

	FDK[2]	nnFDK[4]	U-Net[3] i	L
PSNR	22.85	30.14	33.10	
SSIM	0.30	0.76	0.74	
Execution time (sec)	1.06	4.69	3.22	

Qualitative evaluation

LPD-20

34.68 0.87 20.42

Conclusion and future work

- The proposed iLPD method requires significantly less GPU memory for training than the original LPD and therefore it is applicable for 3D CT reconstruction.
- Future work: extension to helical geometry.

References

- [1] Jonas Adler and Ozan Öktem. "Learned primal-dual reconstruction". In: IEEE Transactions on Medical Imaging 37.6 (2018), pp. 1322–1332.
- [2] Lee A Feldkamp, Lloyd C Davis, and James W Kress. "Practical cone-beam algorithm". In: *Josa a* 1.6 (1984), pp. 612–619.
- [3] Kyong Hwan Jin et al. "Deep convolutional neural network for inverse problems in imaging". In: IEEE Transactions on Image Processing 26.9 (2017), pp. 4509–4522.
- [4] Marinus J Lagerwerf et al. "A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks". In: Journal of Imaging 6.12 (2020), p. 135.

