Measuring Robustness to Natural Distribution Shifts in Image Classification

Rohan Taori¹, Achal Dave², Vaishaal Shankar¹, Nicholas Carlini³, Benjamin Recht¹, Ludwig Schmidt¹

ImageNetV2

Synthetic vs. Natural Distribution Shifts

Synthetic Distribution Shifts

Created by modifying existing images according to a defined transformation.

Adversarial Examples Artificial Corruptions

- Real-world distribution shifts are likely hard to predict or characterize. • They shift the image generation process rather than modify specific pixels.
- There has been much work in the community creating synthetically robust models.
- Main Question: Are vision models robust to natural distribution shift?
 - We construct a large testbed of 10⁹ model evaluations to answer this.

Measuring Robustness with Effective Robustness

Hypothetical Robust Model Example:

 Model B has higher target accuracy. Model A has a smaller accuracy drop. Which is more robust? 		In-distribution (Source) Accuracy	Out-of-distribution (Target) Accuracy	Accuracy Drop
	Model A	80%	75%	5%
	Model B	9 0%	77%	13%

More analysis, code, and data at: tinyurl.com/imagenet-testbed

Natural Distribution Shifts

Created by modifying the underlying procedure used to sample the distribution.

ImageNet-Vid-Robust

Measuring robustness is difficult as standard accuracy acts as a confounder. • Want to know: Does model B have target accuracy beyond what's expected from having a higher source accuracy?

• **Effective Robustness** is our notion of robustness beyond baseline accuracy. • The log-linear fit is straightforward to compute from our testbed as models display a clear trend under shift.

Main Result: Little to No Robustness

High-level takeaways:

Models and Datasets in our Testbed

200+ models:

- Standard models architectures from AlexNet to EfficientNet.

200+ distribution shifts:

- Most current natural distribution shifts:

¹UC Berkeley, ²CMU, ³Google Brain

• Most models & training strategies provide little to no effective robustness. • Main outlier to the above is models trained on more data (but the effect isn't uniform). • **Recommendations**: 1) Measure effective robustness, and 2) Evaluate on natural shifts.

• Robust models - adversarially robust models & models with data-aug (cutout, augmix, etc.). • Models trained on more data - Instagram-1B, JFT-300M, YFCC-100M, & other datasets.

ImageNetV2, ObjectNet, ImageNet-Vid-Robust, YTBB-Robust, ImageNet-A. • Synthetic distribution shifts - Lp attacks & image corruptions.

