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Measuring Robustness to Natural Distribution Shifts in Image Classification

Rohan Taori!, Achal Dave?, Vaishaal Shankar?!, Nicholas Carlini®, Benjamin Recht!, Ludwig Schmidt!

Synthetic vs. Natural Distribution Shifts

Synthetic Distribution Shifts Natural Distribution Shifts

Created by modifying existing images Created by modifying the underlying
according to a defined transformation. procedure used to sample the distribution.
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Near-i.i.d.

Real-world distribution shifts are likely hard to predict or characterize.

m They shift the image generation process rather than modify specific pixels.
There has been much work 1in the community creating synthetically robust models.
Main Question: Are vision models robust to natural distribution shift?

m We construct a large testbed of 10° model evaluations to answer this.

Measuring Robustness with Effective Robustness
Hypothetical Robust Model Example:

In-distribution  Out-of-distribution

e Model B has higher (Source) Accuracy (Target) Accuracy Accuracy Drop
target accuracy.

e Model A has a smaller Model A 80% 75% 5%
accuracy drop.

e Which is more robust? Model B 90% 77% 13%

Hypothetical Robustness Intervention

Measuring robustness is difficult as
standard accuracy acts as a confounder.
Want to know: Does model B have
target accuracy beyond what's expected
from having a higher source accuracy?

Effective Robustness is our notion of
robustness beyond baseline accuracy.
The log-linear fit 1s straightforward to
compute from our testbed as models
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o Standard models

70 75 80 85 display a clear trend under shift.
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Main Result: Little to No Robustness

High-level takeaways:
e Most models & training strategies provide little to no effective robustness.

e Main outlier to the above is models trained on more data (but the effect isn't uniform).
e Recommendations: 1) Measure effective robustness, and 2) Evaluate on natural shifts.

Near-1.1.d. test set:
Distribution Shift to ImageNetV2
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Video frames test set:
Distribution Shift to ImageNet-Vid-Robust
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Test set of objects:
Dis;ribution Shift to ObjectNet
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Linear fit (piecewise)
ResNet50 accuracy
Standard training
Robustness intervention
Trained with more data
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Models and Datasets 1n our Testbed

200+ models:
e Standard models - architectures from AlexNet to EfficientNet.

e Robust models - adversarially robust models & models with data-aug (cutout, augmix, etc.).
e Models trained on more data - Instagram-1B, JFT-300M, YFCC-100M, & other datasets.

200+ distribution shifts:
e Most current natural distribution shifts:

m ImageNetV2, ObjectNet, ImageNet-Vid-Robust, YTBB-Robust, ImageNet-A.

e Synthetic distribution shifts - Lp attacks & image corruptions.

More analysis, code, and data at: tinyurl.com/imagenet-testbed



https://tinyurl.com/imagenet-testbed

