
Under review as a conference paper at ICLR 2023

A PROOFS

A.1 PROOF OF THEOREM 1

In this section, we give the proofs in detail. Due to the smoothness in Assumption equation 1, taking
expectation of f(wt+1) over the randomness in round t, we have

Et[f(wt+1)] (13)

≤ f(wt) + ⟨∇f(wt),Et[wt+1 − wt]⟩+
L

2
Et[∥wt+1 − wt∥2] (14)

= f(wt) + ⟨∇f(wt),Et[ηηL∆t + ηηLE∇f(wt)− ηηLE∇f(wt)]⟩+
L

2
η2η2LEt[∥∆t∥2] (15)

= f(wt)− ηηLE∥∇f(wt)∥2 + η ⟨∇f(wt),E[ηL∆t + ηLE∇f(wt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2η2L Et[∥∆t∥2]︸ ︷︷ ︸

A2

(16)

Note that the term A1 can be bounded as follows:

A1 =⟨∇f(wt),Et[ηL∆t + ηLE∇f(wt)]⟩ (17)

=⟨∇f(wt),Et[ηL∆̄t + ηLet + ηLE∇f(wt)]⟩ (18)

=

〈
∇f(wt),Et

[
− 1

K

K∑
k=1

E−1∑
τ=0

ηL∇F k(wk
t,τ ) + ηLet + ηLE

1

K

K∑
k=1

∇F k(wt)

]〉
(19)

=

〈√
ηLE∇f(wt),−

√
ηL

K
√
E
Et

[
K∑

k=1

E−1∑
τ=0

(∇F k(wk
t,τ )−∇F k(wt))−Ket

]〉
(20)
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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(21)
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∥∥∥∥∥
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∥∥∥∥∥
2
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2EK2
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2

+
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E
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(a5)

≤ ηLE(
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2
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where (a1) follows from that ⟨x,y⟩ = 1
2 [∥x∥

2+∥y∥2−∥x−y∥2], (a2) is due to that E∥x1+x2∥2 ≤
2E[∥x1∥2 + ∥x2∥2], (a3) is due to that E∥x1 + ... + xn∥2 ≤ nE[∥x1∥2 + ...∥xn∥2], (a4) is due to
Assumption equation 1 and (a5) follows from Lemma 2.

The term A2 can be bounded as

A2 =Et[∥∆t∥2] = Et[∥∆̄t + et∥2] (26)
(a6)

≤ 2Et∥∆̄t∥2 + 2Et∥et∥2

≤ 2
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∥∥∥∥∥
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∥∥∥∥∥
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2
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2
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where both (a6) is due to that E∥x1 + x2∥2 ≤ 2E[∥x1∥2 + ∥x2∥2], (a7) follows the fact that
E[∥x∥2] = E[∥x− Ex∥2] + ∥Ex∥2, and (a8) is due to Assumption equation 3

Substituting the inequalities of A1 and A2 into the original inequality, we have:

Et[f(wt+1)] (30)
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2
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E
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∥∥∥∥∥
K∑
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∥∥∥∥∥
2

(33)

(a9)

≤ f(wt)− cηηLE∥∇f(wt)∥2 + 5ηη3LE
2L2(ρ2L + 6Eρ2G) +

ELη2η2L
K

ρ2L +
(ηηL

E
+ 3η2η2LL

)
Et∥et∥2

(34)

where (a9) follows from
(

ηηL

2EK2 − 2Lη2η2
L

K2

)
< 0 if ηηL ≤ 1

4EL , and that there exits a constant

c > 0 satisfying ( 12 − 30η2LE
2L2) > c > 0 if ηL < 1√

60EL
.
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Rearranging and summing from t = 0, ..., T − 1, we have:
T−1∑
t=0

cηηLEE∥∇f(wt)∥2 (35)

≤f(w0)− f(wT ) + TEηηL

[
5η2LEL2(ρ2L + 6Eρ2G) +

ηηLL

K
ρ2L

]
+
(ηηL

E
+ 3η2η2LL

) T=1∑
t=0

Et∥et∥2

(36)

which implies,

min
t=0,...,T−1

E∥∇f(wt)∥2 ≤
f0 − f∗
cηηLET

+Φ+Ψ(e0, ..., eT−1) (37)

where

Φ =
1

c

[
5η2LEL2(ρ2L + 6Eρ2G) +

ηηLL

K
σ2
L

]
(38)

Ψ(e0, ..., eT−1) =
1 + 3ηηLLE

cE2T

T−1∑
t=0

Et∥et∥2 (39)

This completes the proof.

A.2 PROOF OF LEMMA 2

Consider a dropout client k and a non-friend client i ̸∈ Bk. We analyze the probability that it is
selected by the algorithm. According to our selection rule, i is selected only if it has the highest
similarity score with client k so far. Hence, Ri,k

t must be greater than Rj,k
t for at least one j ∈

Bk ∩ St. Thus, the following inequality holds

Pr{ϕt(k) = i} ≤Pr{Ri,k
t ≥ Rj,k

t , for some j ∈ Bk ∩ St} (40)

≤Pr{Ri,k
t ≥ µi,k +

δ

2
}+ Pr{Rj,k

t ≤ µj,k − δ

2
} (41)

≤ exp

(
−N i,k

t δ2

2

)
+ exp

(
−N j,k

t δ2

2

)
(42)

≤2 exp
(
−βδ2kt

2

)
(43)

where δ = µj,k − µi,k ≥ δk. Because the number of non-friend clients of a client k is at most K,
the probability of selecting a non-friend client is thus upper-bounded by 2K exp

(
−βδ2kt

2

)
. Taking

into account δmin = mink δk completes the proof.

A.3 PROOF OF THEOREM 2

A sufficient condition for the bound to hold is that after T FL rounds, no friend of client k was
eliminated from Ctk by running our algorithm. Thus, we are interested in bounding the probability
that any particular friend client i is eliminated in a particular round t before T .

Pr(i is eliminated in round t) (44)

≤Pr(Rk,j
t −Rk,i

t ≥ Θt, for some j ̸= i) (45)

≤
∑
j ̸=i

Pr(Rk,j
t −Rk,i

t ≥ Θt) (46)

≤K
(

Pr(Rk,i ≤ µk,i − Θt − δf
2

) + Pr(Rk,j∗ ≥ µk,j∗ +
Θt − δf

2
)

)
(47)

≤2K exp

(
−β(Θt − δf )

2t

2

)
= q (48)
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where j∗ is the best friend of client k. The last equality holds by letting

Θt =

√
2 ln(2K)− 2 ln q

βt
+ δf (49)

Next, the probability that a friend client i is eliminated in any round up to round T is bounded as
follows

Pr(i is eliminated up to round T ) ≤
∑

t≤T−1

Pr(i is eliminated in round t) ≤ Tq (50)

Thus,

Pr(any friend of client k is eliminated up to round T ) ≤ |Bk|Tq (51)

Furthermore,

Pr(any friend of any client is eliminated up to round T ) ≤ K|Bk|Tq (52)

Therefore, by letting p = KBmaxTq and

Θt =

√
2 ln(2K2TBmax)− 2 ln p

βt
+ δf (53)

we ensure that the probability that no friend of any client was eliminated from the corresponding
candidate set by T is at least 1− p. This concludes the proof.

A.4 BOUNDS ON E∥et∥2

The error bound with client dropout:

E[∥et∥2] =E


∥∥∥∥∥∥ 1

K

∑
k∈K\St

(∆̃k
t −∆k

t )

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥ 1

K

∑
k∈K\St

1

St

∑
k′∈St

(∆k′

t −∆k
t )

∥∥∥∥∥∥
2
 (54)

≤ (K − St)
2

K2
σ2
P ≤ α2σ2

P (55)

The error bound with friend model substitution (full information) :

E[∥et∥2] =E


∥∥∥∥∥∥ 1

K

∑
k∈K\St

(∆̃k
t −∆k

t )

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥ 1

K

∑
k∈K\St

(∆
ϕt(k)
t −∆k

t )

∥∥∥∥∥∥
2
 (56)

≤ (K − St)
2

K2
σ2
F ≤ α2σ2

F (57)

where ϕt(k) is a friend of k that does not dropout in round t.

The error bound with friend model substitution (learning):

E∥et∥2 =E

∥∥∥∥∥∥ 1

K

∑
k∈K\St

(∆̃k
t −∆k

t )

∥∥∥∥∥∥
2

≤ K − St

K2

∑
k∈K\St

E∥∆̃k
t −∆k

t ∥2 (58)

≤K − St

K2

∑
k∈K\St

(
2K exp

(
−βδ2kt

2

)
σ2
P + (1− 2K exp

(
−βδ2kt

2

)
)σ2

F

)
(59)

≤ (K − St)
2

K2

(
σ2
F + 2K exp

(
−βδ2mint

2

)
(σ2

P − σ2
F )

)
(60)

≤α2

(
σ2
F + 2K exp

(
−βδ2mint

2

)
(σ2

P − σ2
F )

)
(61)
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A.5 BOUNDS ON Ψ(e0, ..., eT−1) WITH FRIEND MODEL SUBSTITUTION (LEARNING)

Ψ(e0, ..., eT−1) (62)

=
1 + 3ηηLLE

cE2T

T−1∑
t=0

Et[∥et∥2] (63)

≤ α2σ2
F (1 + 3ηηLLE)

cE2
+ 2K

α2(σ2
P − σ2

F )(1 + 3ηηLLE)

cE2T

T−1∑
t=0

exp

(
−βδ2mint

2

)
(64)

≤ α2σ2
F (1 + 3ηηLLE)

cE2
+ 2K

α2σ2
P (1 + 3ηηLLE)

cE2T

T−1∑
t=0

exp

(
−βδ2mint

2

)
(65)

≤ α2σ2
F (1 + 3ηηLLE)

cE2
+ 2K

α2σ2
P (1 + 3ηηLLE)

cE2

1− exp
(

−βδ2minT
2

)
T
(
1− exp

(
−βδ2min

2

)) (66)

≤ Ψ∗ + 2KΨ̄
1− exp

(
−βδ2minT

2

)
T
(
1− exp

(
−βδ2min

2

)) (67)

B THE RELAXED FRIEND PRESENCE CASE

In this section, we consider a relaxed case without the Assumption 5. Suppose that a friend of
the dropout client is present in each round with a probability equals 1 − r, then the probability
that our algorithm selects a non-friend client for a dropout client in round t is upper bounded by
(1− r)2K exp

(
−βδ2mint

2

)
+ r. Then we can get the bound on E∥et∥2:

E∥et∥2 ≤ α2

(
σ2
F + 2(1− r)K exp

(
−βδ2mint

2

)
σ2
P + rσ2

P

)
(68)

Plugging this bound in Ψ(e0, ..., eT−1), we can get the accumulate substitution error

Ψ(e0, ..., eT−1) ≤ Ψ∗ + rΨ̄ + 2(1− r)KΨ̄
1− exp

(
−βδ2minT

2

)
T
(
1− exp

(
−βδ2min

2

)) (69)

The convergence bound without the Assumption 5 has an additional constant term resulting from
friend absence, and the additional constant term cannot be eliminated with time or batch size in-
crease.

Proof. The error bound with friend model substitution (learning) under relaxed friend presence case
equals:

E∥et∥2 = E

∥∥∥∥∥∥ 1

K

∑
k∈K\St

(∆̃k
t −∆k

t )

∥∥∥∥∥∥
2

≤ K − St

K2

∑
k∈K\St

E∥∆̃k
t −∆k

t ∥2 (70)

≤α2

(
(1− r)2K exp

(
−βδ2mint

2

)
+ r

)
σ2
P + α2

(
1−

(
(1− r)2K exp

(
−βδ2mint

2

)
+ r

))
σ2
F

(71)

≤α2σ2
F + α2

(
(1− r)2K exp

(
−βδ2mint

2

)
+ r

)
σ2
P (72)

≤α2

(
σ2
F + 2(1− r)K exp

(
−βδ2mint

2

)
σ2
P + rσ2

P

)
(73)
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And the corresponding accumulate substitution error equals:

Ψ(e0, ..., eT−1) (74)

=
1 + 3ηηLLE

cE2T

T−1∑
t=0

Et[∥et∥2] (75)
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≤Ψ∗ + rΨ̄ + 2KΨ̄
1− exp

(
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2

)
T
(
1− exp

(
−βδ2min

2

)) (79)

C EXPERIMENT SETTINGS

We use Python3 and the Pytorch library, and our code is adapted from Jadhav (2020), which is
under the MIT License. The experiments were run on an Ubuntu 18.04 machine with an Intel Core
i7-10700KF 3.8GHz CPU and GeForce RTX 3070 GPU. All experiments results are averaged over
10 repeats.

We perform experiments on two standard public datasets, namely MNIST and CIFAR-10, which are
widely used in FL experiments, in a clustered setting as well as a general setting. In the clustered
settings (one on MNIST and one on CIFAR-10), we artificially create 5 client clusters where clients
in the same cluster possess data samples with the same labels. Thus, clients in the same cluster
are naturally regarded as friends. However, the clustering structure is unknown to our algorithm.
Such a clustering setting provides a controlled environment for us to evaluate the friend discovery
performance of FL-FDMS. In the general setting (on CIFAR-10), 20 clients receive a random subset
of the whole dataset using a common way of generating non-iid FL datesets that is widely used in
existing works.

C.1 FL DATASET

Clustered Setting - MNIST: The MNIST dataset has 60000 training data samples with 10 classes.
The training dataset is first split into 10 sub-datasets with samples in the same sub-dataset having
the same label. There are 20 clients which are grouped into 5 client clusters with an equal number
of clients. Each client cluster is associated with 2 randomly drawn sub-datasets. Then each client
randomly draws 200 samples from its corresponding two sub-datasets. This approach to creating
the FL dataset was introduced in a recent clustered FL work Ghosh et al. (2020).

Clustered Setting - CIFAR-10: The CIFAR-10 dataset has 50000 training data samples with 10
classes. The training dataset is first split into 10 sub-datasets with samples in the same sub-dataset
having the same label. There are 20 clients which are grouped into 5 client clusters with an equal
number of clients. Each client cluster is associated with 2 randomly drawn sub-datasets. Then each
client randomly draws 1000 samples from its corresponding two sub-datasets.

General Setting - CIFAR-10: The CIFAR-10 dataset has 50000 training data samples. After shuf-
fling the samples in label order, all samples are divided into 250 partitions with each partition having
200 samples. There are 20 clients. Each client then randomly picks 2 partitions. This method is
a common way of generating non-i.i.d. FL dataset, which is widely used in the existing works
McMahan et al. (2017); Li et al. (2021)
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C.2 FL MODELS

MNIST: The CNN model has two 5 × 5 convolution layers, a fully connected layer with 320 units
and ReLU activation, and a final output layer with softmax. The first convolution layer has 10
channels while the second one has 20 channels. Both layers are followed by 2 × 2 max pooling.
The following parameters are used for training: the local batch size BS = 5, the number of local
iterations E = 2, the local learning rate ηL = 0.1 and the global learning rate η = 0.1.

CIFAR-10: The CNN model has two 5 × 5 convolution layers, three fully connected layers and
ReLU activation, and a final output layer with softmax. The following parameters are used for
training: the local batch size BS = 20, the number of local iterations E = 2, the local learning rate
ηL = 0.1 and the global learning rate η = 0.1.

C.3 THE DRAWBACK OF STALE BENCHMARK

Two apparent drawbacks of the stale approach are, firstly, the local model updates can be very
outdated if a client keeps dropping out, and secondly, the server has to keep a copy of the most
recent local model update for every client, thereby incurring a large storage cost when the number
of clients is large.

D ADDITIONAL EXPERIMENTS

The error bound of FL-FDMS E∥et∥2 in Eq.11 is influenced by the number of local iterations E and
the number of clients K. Next we perform additional experiments to explore their impacts.

D.1 IMPACT OF NUMBER OF LOCAL ITERATIONS E

We present more results on the performance comparison in the MNIST clustered setting and the
CIFAR-10 clustered setting with different E. We fix α = 0.5 and K = 20 for all the following
experiments. To investigate the impact of E, we consider two values E = 1 and E = 5.
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(b) MNIST (E = 5)
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(c) CIFAR-10 (E = 1)
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(d) CIFAR-10 (E = 5)

Figure 5: Performance comparison with α = 0.5 and K = 20

In Fig.5, we find that the FL-FDMS still shows the superior performance in terms of test accuracy
and convergence speed. However, Dropout and Stale show different trends for different E. For a
larger E, using staled models tends to help the dropout situation better.

D.2 IMPACT OF NUMBER OF CLIENTS K

To investigate the impact of K, we fix E = 2 and increase the number of clients to K = 40. To
keep the same total amount of data in the system, we adjust just the number of data samples on each
client. For MNIST, each client now has 100 samples. For CIFAR-10, each client has 500 samples.
Other settings are as described in Appendix C.

By comparing Fig.6 and the corresponding parts in Fig.1, we find that as K increases, the FL-
FDMS outperforms Dropout and Stale even more. This is because as K increases, more clients
dropout. If the model updates from dropout clients are not compensated, the global model can
gradually deviate from the optimal value and eventually degrade the learning performance and affect
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(a) MNIST (K = 40)
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(b) CIFAR-10 (K = 40)

Figure 6: Performance comparison with α = 0.5 and E = 2

the system stability. The additional experiments further verify that FL-FDMS can handle well the
client dropout in FL.

D.3 ADDITIONAL EXPERIMENTS ON THE FMNIST DATASETS

We present additional performance comparison results in the FMNIST clustered setting, and the
results are consistent with the conclusions we have drawn from prior other datasets.
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(a) FMNIST (α = 0.3)
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(b) FMNIST (α = 0.5)
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(c) FMNIST (α = 0.7)

Figure 7: Performance comparison on the FMNIST clustered setting with various α
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