
Published as a conference paper at ICLR 2021

Supplement to “Improving Relational Regularized Autoencoders
with Spherical Sliced Fused Gromov Wasserstein”

In this supplementary material, we collect several proofs and remaining materials that were deferred
from the main paper. In Appendix A, we provide the proofs of the main results in the paper. In
Appendix B, further computational details of spherical sliced fused Gromov Wasserstein and its
corresponding relational regularized autoencoder are given. We discuss two key extensions of
spherical sliced fused Gromov Wasserstein (SSFG) in Appendices C and D. Additional experiments
for the generative models are presented in Appendix E. Finally, detailed experimental settings are in
Appendix F.

A PROOFS

In this appendix, we give the detailed proof for all the results in the main text.

A.1 PROOF OF THEOREM 1

In order to facilitate the ensuing presentation, for any probability measures µ and ν on P(Rd) and joint
probability measure γ of µ and ν, we denote proj1(γ) = µ and proj2(γ) = ν. From the definition
of spherical sliced fused Gromov Wasserstein, it is clear that SSFG is symmetric and non-negative.
Therefore, we will only need to prove that it satisfies the weak triangle inequality. Recall that, since
d1 is pseudo-metric, there exists a constant C > 0 such that for any x, y, z ∈ R, we have

d1(x, z) ≤ C
[
d1(x, y) + d1(y, z)

]
.

Now, assume that µ, ν, ξ are probability measures on Rd. For any θ ∈ Sd−1, we respectively denote
π1 and π2 as the optimal couplings that minimize the fused Gromov Wasserstein between θ]µ and θ]ν
and π2 and the fused Gromov Wasserstein between θ]ν and θ]ξ. Then, by the gluing lemma (Villani,
2003), there exists a probability measure γ ∈ P(R × R × R) such that proj1,2(γ) = π1 and
proj2,3(γ) = π2. Since proj1(γ) = θ]µ and proj3(γ) = θ]ξ, we obtain that proj1,3(γ) ∈ Π(θ]µ, θ]ξ).
From the definition of fused Gromov Wasserstein, we find that

Dfgw(θ]µ, θ]ξ;β, d1) = min
π∈Π(θ]µ,θ]ξ;β)

{
(1− β)

∫
Rd×Rd

d1(θ>x, θ>z)dπ(x, z)

+ β

∫
(Rd)4

[
d1(θ>x, θ>x′)− d1(θ>z, θ>z′)

]2
dπ(x, z)dπ(x′, z′)

}
≤ (1− β)

∫
Rd×Rd

d1(θ>x, θ>z)dproj1,3(γ)(x, z)

+ β

∫
(Rd)4

[
d1(θ>x, θ>x′)− d1(θ>z, θ>z′)

]2
dproj1,3(γ)(x, z)dproj1,3(γ)(x′, z′)

= (1− β)

∫
Rd×Rd×Rd

d1(θ>x, θ>z)dγ(x, y, z)

+ β

∫
(Rd)6

[
d1(θ>x, θ>x′)− d1(θ>z, θ>z′)

]2
dγ(x, y, z)dγ(x′, y′, z′).

(8)

Since d1(θ>x, θ>z) ≤ C
[
d1(θ>x, θ>y) + d1(θ>y, θ>z)

]
, we obtain that∫

Rd×Rd
d1(θ>x, θ>z)dγ(x, y, z) ≤ C

∫
Rd×Rd×Rd

[
d1(θ>x, θ>y) + d1(θ>y, θ>z)

]
dγ(x, y, z)

= C

{∫
Rd×Rd

d1(θ>x, θ>y)dπ1(x, y)

+

∫
Rd×Rd

d1(θ>y, θ>z)dπ1(y, z)

}
. (9)

12

Published as a conference paper at ICLR 2021

Furthermore, an application of Cauchy-Schwarz inequality leads to∫
(Rd)6

[
d1(θ>x, θ>x′)− d1(θ>z, θ>z′)

]2
dγ(x, y, z)dγ(x′, y′, z′)

≤ 2

{∫
(Rd)6

[
d1(θ>x, θ>x′)− d1(θ>y, θ>y′)

]2
dγ(x, y, z)dγ(x′, y′, z′)

+

∫
(Rd)6

[
d1(θ>y, θ>y′)− d1(θ>z, θ>z′)

]2
dγ(x, y, z)dγ(x′, y′, z′)

}
= 2

{∫
(Rd)4

[
d1(θ>x, θ>x′)− d1(θ>y, θ>y′)

]2
dπ1(x, y)dπ1(x′, y′)

+

∫
(Rd)4

[
d1(θ>y, θ>y′)− d1(θ>z, θ>z′)

]2
dπ2(y, z)dπ2(y′, z′)

}
. (10)

Plugging the results in equations (9) and (10) into the upper bound of Dfgw(θ]µ, θ]ξ;β, d1) in
equation (8), for any θ ∈ Sd−1 we have

Dfgw(θ]µ, θ]ξ;β, d1) ≤ max{C, 2}
{
Dfgw(θ]µ, θ]ν;β, d1) +Dfgw(θ]ν, θ]ξ;β, d1)

}
.

Based on that inequality, we obtain that
SSFG(µ, ξ;β, κ) ≤ max{C, 2}

[
SSFG(µ, ν;β, κ) + SSFG(ν, ξ;β, κ)

]
.

As a consequence, the spherical sliced fused Gromov Wasserstein satisfies the weak triangle inequality,
which concludes the theorem.

A.2 PROOF OF THEOREM 2

(a) We first prove that SSFG(µ, ν;β, κ) is continuous in terms of κ. Indeed, the function
Eθ∼vMF(·|ε,κ)

[
D2
fgw(θ]µ, θ]ν;β)

]
is continuous in terms of both ε and κ. Therefore, based on

maximum theorem, SSFG(µ, ν;β, κ) is continuous in terms of κ.

When κ goes to 0, the density of vMF(.|ε, κ) converges to that of U(Sd−1) (Sra, 2016). Therefore,
given the continuity of SSFG in terms of κ we have

lim
κ→0

SSFG(µ, ν;β, κ) = max
ε∈Sd−1

(
lim
κ→0

Eθ∼vMF(.|ε,κ)

[
Dfgw(θ]µ, θ]ν;β)

])
= max
ε∈Sd−1

(
Eθ∼U(Sd−1)

[
Dfgw(θ]µ, θ]ν;β)

])
= SFG(µ, ν;β),

which confirms our conclusion that the spherical sliced fused Gromov Wasserstein becomes the sliced
fused Gromov Wasserstein when κ→ 0.

When κ → ∞, the density of vMF(.|ε, κ) converges to the density of δε (Sra, 2016). Therefore,
based on Scheffe’s lemma (Feller, 1966), the density of vMF(.|ε, κ) converges in L1-norm to that of
δε. Given that result, as Dfgw(θ]µ, θ]ν;β) is uniformly bounded for all θ ∈ Sd−1, we arrive at

lim
κ→∞

SSFG(µ, ν;β, κ) = max
ε∈Sd−1

(
lim
κ→∞

Eθ∼vMF(.|ε,κ)

[
Dfgw(θ]µ, θ]ν;β)

])
= max
ε∈Sd−1

(
Eθ∼δε

[
Dfgw(θ]µ, θ]ν;β)

])
= max-SFG(µ, ν;β).

As a consequence, we obtain the conclusion of part (a) of the theorem.

(b) For any ε, θ ∈ Sd−1, using Cauchy-Schwarz inequality, we get −1 ≤ ε>x ≤ 1. Hence, for κ > 0,
it is clear that exp(−κ) ≤ exp(κε>x) ≤ exp(κ). Consequently, we obtain that

SSFG(µ, ν;β, κ) = max
ε∈Sd−1

(
Eθ∼vMF(·|ε,κ)

[
Dfgw(θ]µ, θ]ν;β)

])
≤ max
ε∈Sd−1

(
exp(κ)Eθ∼vMF(·|ε,κ)

[
D2
fgw(θ]µ, θ]ν;β)

])
= exp(κ)Cd(κ)SFG(µ, ν;β).

13

Published as a conference paper at ICLR 2021

Similarly, by using the bound exp(−κ) ≤ exp(κε>x), we also arrive at the bound
exp(−κ)Cd(κ)SFG(µ, ν;β) ≤ SSFG(µ, ν;β, κ). Therefore, we obtain the bounds of SSFG based
on SFG.

Regarding the upper bound of SSFG based on max-SFG, it is straight-forward from the inequality
Dfgw(θ]µ, θ]ν;β) ≤ maxθ′∈Sd−1 Dfgw(θ′]µ, θ′]ν;β). As a consequence, we obtain the conclusion
of part (b) of the theorem.

A.3 PROOF OF THEOREM 3

For any positive integer r, we first prove the following simple inequality{
|θ>x− θ>x′|r − |θ>y − θ>y′|r

}2

≤ C
{
|θ>x− θ>y|2 + |θ>x′ − θ>y′|2

}
, (11)

for any θ ∈ Sd−1 and x, y, x′, y′ ∈ Θ. Here, C is some universal constant depending only on the
diameter of Θ. For simplicity, denote

θ>x = a; θ>x′ = b; θ>y = c; θ>y′ = d;

C(Ω) = diameter of Ω.

By triangle’s inequality, we find that∣∣∣|a− b| − |c− d|∣∣∣ ≤ |a− c|+ |b− d|.
Moreover, we have the identity

|a− b|r − |c− d|r =
[
|a− b| − |c− d|

] r−1∑
i=0

|a− b|i|c− d|r−i−1.

Note that, the absolute values of a, b, c, d are not greater than C(Ω). It follows that∣∣∣|a− b|r − |c− d|r∣∣∣ ≤ [|a− c|+ |b− d|]r2r−1C(Ω)r−1.

By using Cauchy-Schwarz inequality, we obtain{
|a− b|r − |c− d|r

}2

≤ 22r−2r2C(Ω)2r−2
[
|a− c|+ |b− d|

]2
≤ 22r−1r2C(Ω)2r−2

[
|a− c|2 + b− d|2

]
.

Given the claim (11), we obtain that

SFG(µn, µ;β) ≤ C1Eθ∼U(Sd−1)

[
min

π∈Π(θ]µn,θ]µ)
(θ>x− θ>y)2dπ(x, y)

]
:= SW (µn, µ),

where C1 is some universal constant. The RHS of the above inequality is known as second order
sliced Wasserstein distance between µn and µ. Since Θ is compact, the result of Bobkov & Ledoux
(2019) leads to

E
[
SW (µn, µ)

]
≤ C2

n
.

Hence, it demonstrates that

E
[
SFG(µn, µ;β)

]
≤ C1C2

n
,

for all β ∈ [0, 1]. Combining the above result with the result of part (b) in Theorem A.2, we obtain
that

E
[

SSFG(µn, µ;β, κ)

]
≤ E

[
SFG(µn, µ;β)

]
≤ c

n
,

where c = C1C2. As a consequence, we obtain the conclusion of the theorem.

14

Published as a conference paper at ICLR 2021

1.000.750.500.250.000.250.50 0.75 1.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Uniform distribution

1.000.750.500.250.000.250.50 0.75 1.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Von Mises-Fisher distributions = 0.01
= 10
= 100

Figure 3: Illustrations of uniform distribution and von Mises-Fisher distribution.

B COMPUTATIONAL DETAILS OF SPHERICAL SLICED FUSED
GROMOV-WASSERSTEIN AND ITS RELATIONAL REGULARIZED
AUTOENCODER

In this section, we present the sampling algorithm (Algorithm 1) of von Mises-Fisher distribution,
which follows the scheme in (Ulrich, 1984; Davidson et al., 2018), and how to derive the gradient
estimator of the SSFG. Finally, we give the detail of the training procedure of s-DRAE (Algorithm 3).

B.1 ILLUSTRATION OF VON MISES-FISHER DISTRIBUTION

In Figure 3, we show the uniform distribution on the unit sphere and the von Mises-Fisher distribution
with 3 different concentration values κ = {0.01, 10, 100}. When κ = 0.01, the distribution is very
close to the uniform distribution; however, when κ is bigger (e.g. 10, 100), the masses of vMF
distribution are concentrated near the location vectors.

B.2 SAMPLING FROM VON MISES-FISHER DISTRIBUTION

As discussed in (Davidson et al., 2018) to sample θ ∼ vMF(.|ε, κ), we first need to sample h1 ∼
vMF(·|e1, κ) where e1 = (1, 0, .., 0). To do this step, we need to sample ω from the univariate
density g(ω|κ, d) ∝ exp (κω)(1− ω2)

d−3
2 (ω ∈ [−1, 1]) using an acceptance-rejection scheme, then

compute h1 = (ω,
√

1− ω2v>)> where v ∼ U(Sd−2). Next, we find a orthogonal transformation U
such that U(ε)e1 = ε by using Householder reflection. Finally, we compute θ = Uh1, then θ is a
sample from vMF(.|ε, κ) as proved in (Ulrich, 1984). Detailed process is provided in pseudo-code in
Algorithm 1.

Algorithm 1 Sampling from vMF distribution

Input: location ε, concentration κ, dimension d, unit vector e1 = (1, 0, .., 0)
Sample v ∼ U(Sd−2)

b← −2κ+
√

4κ2+(d−1)2

d−1 , a← (d−1)+2κ+
√

4κ2+(d−1)2

4 , m← 4ab
(1+b) − (d− 1) ln(d− 1)

repeat
Sample ψ ∼ Beta

(
1
2 (d− 1), 1

2 (d− 1)
)

ω ← h(ψ, κ) = 1−(1+b)ψ
1−(1−b)ψ

t← 2ab
1−(1−b)ψ

Sample u ∼ U(0, 1)
until (d− 1) ln(t)− t+m ≥ ln(u)

h1 ← (ω,
√

1− ω2v>)>

ε′ ← e1 − ε
u = ε′

‖ε′‖
U = I− 2uu>

Output: Uh1

15

Published as a conference paper at ICLR 2021

B.3 GRADIENT ESTIMATOR

Recall that d is the dimension of latent space, (ε, κ) be the parameters of vMF distribution, b =
−2κ+

√
4κ2+(d−1)2

d−1 , two distributions:

g(ω | κ) =
2
(
πd/2

)
Γ(d/2)

Cd(κ)
exp(ωκ)

(
1− ω2

) 1
2 (d−3)

Beta
(

1
2 ,

1
2 (d− 1)

) ,

r(ω|κ) =
2b1/2(d−1)

Beta
(

1
2 (d− 1), 1

2 (d− 1)
) (

1− ω2
)1/2(d−3)

[(1 + b)− (1− b)ω]d−1
,

distribution s(ψ) := Beta
(

1
2 (d− 1), 1

2 (d− 1)
)
, function h(ψ, κ) = 1−(1+b)ψ

1−(1−b)ψ , distributions

π1(ψ|κ) = s(ψ) g(h(ψ,κ)|κ)
r(h(ψ,κ)|κ) , π2(v) := U(Sd−2), and function

T (ω, v, ε) =
(
I− 2

e1 − ε
‖e1 − ε‖

e1 − ε
‖e1 − ε‖

>)(
ω,
√

1− ω2v>
)>

:= θ.

From Lemma 2 in (Davidson et al., 2018), we have:

EvMF(θ|ε,κ)

[
f(θ)

]
= E(ψ,v)∼π1(ψ|κ)π2(v)

[
f
(
T (h(ψ, κ), v, ε)

)]
, (12)

Note that, in SSFG we only need ∇εEvMF(θ|ε,κ)[f(θ)] which can be obtained directly from the
previous lemma:

∇εEvMF(θ|ε,κ)

[
f(θ)

]
= E(ψ,v)∼π1(ψ|κ)π2(v)

[
∇εf

(
T (h(ψ, κ), v, ε)

)]
, (13)

Then we can get a gradient estimator by using Monte-Carlo estimation scheme:

∇εEvMF(θ|ε,κ)

[
f(θ)

]
≈ 1

L

L∑
i=1

[
∇εf

(
T (h(ψi, κ), vi, ε)

)]
, (14)

where {ψi}Li=1 ∼ π1(ψ|κ) and {vi}Li=1 ∼ π2(v) and L is the number of projections. Sampling from
π1(ψ|κ) is equivalent to the acceptance-rejection scheme in vMF sampling procedure, sampling π2(v)
is directly from U(Sd−2). Moreover, we also can derive a gradient estimator for∇κEvMF(θ|ε,κ)

[
f(θ)

]
by using the log-derivative trick, however, this is unnecessary in our SSFG.

From this estimator we can estimate the gradient ∇εEvMF(θ|ε,κ)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
, then use

stochastic gradient ascent to find the optimal location ε∗, which induces the optimal vMF distribution.

B.4 COMPUTATIONAL DETAIL OF SPHERICAL SLICED FUSED GROMOV WASSERSTEIN

By using the estimator in section B.3, we present the algorithm to compute SSFG (Algorithm 2).

B.5 TRAINING PROCEDURE OF S-DRAE

In this section, we give a detailed procedure to train the spherical deterministic relational autoencoder
in Algorithm 3. For each minibatch, the training procedure of s-DRAE includes computation of the
reconstruction loss and the SSFG between the empirical distribution of the prior and the encoded
latent distribution. The reconstruction loss is easy to compute while the computation of SSFG is
harder. To obtain the best vMF distribution from the SSFG, we use the stochastic gradient ascent
algorithm where the update depends on the gradient estimator of the location parameter of vMF, which
is derived in Lemma 2 in (Davidson et al., 2018). Its details are in Appendix B.3. Then we sample L
unit vectors from the obtained vMF and apply 1-d projections to obtain two sliced distributions. The
SSFG distance can be computed easily after sorting the supports of the two distributions.

16

Published as a conference paper at ICLR 2021

Algorithm 2 Computation of spherical sliced fused Gromov Wasserstein

Input: Empirical distribution {xi}Ni=1,{yi}Ni=1, concentration κ, fused parameter β, the number
of projections L, max iter
repeat

Initialize SSFG← 0
for l = 1 to L do

Sample θl ∼ vMF(θ|ε, κ) based on Algorithm 1
Sort {θ>l xi}Ni=1 and {θ>l yi}Ni=1 respectively
Caculate Dfgw({θ>l xi}Ni=1, {θ>l yi}Ni=1;β) based on its closed-form and sorted samples
SSFG← SSFG + Dfgw({θ>l zi}Ni=1, {θ>l z′i}Ni=1;β)

end for
SSFG← SSFG

L
Estimate∇εSSFG
Update ε← ProjSd−1(Adam(∇εSSFG))

until ε converges or reach max iter
Output: SSFG

1.000.750.500.250.000.250.50 0.75 1.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Von Mises-Fisher distribution

1.000.750.500.250.000.250.50 0.75 1.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Mixtures of vMF distribution vMF 1
vMF 2
vMF 3
vMF 4
vMF 5

Figure 4: Illustrations of von Mises-Fisher distribution and mixture of von Mises-Fisher distributions.

C MIXTURE SPHERICAL SLICED FUSED GROMOV WASSERSTEIN

In this appendix, we consider an extension of the spherical sliced fused Gromov Wasserstein to the
mixture spherical sliced fused Gromov Wasserstein (MSSFG). Then, we discuss an application of
MSSFG to the deterministic relational regularized autoencoder framework.

In order to facilitate the ensuing discussion, we recall the definitions of mixture of vMF distributions
and mixture spherical sliced fused Gromov Wasserstein (MSSFG). We first define mixture of von
Mises-Fisher distributions (Banerjee et al., 2005), which plays an important role in the definition of
mixture spherical sliced fused Gromov Wasserstein.
Definition 5. Given k ≥ 1 distinct pairs (ε1, κ1), . . . , (εk, κk) and the mixture weights {αi}ki=1, i.e.,
αi ≥ 0 and

∑k
i=1 αi = 1, the mixture of vMF distributions is defined as:

MovMF(·|ε1:k, κ1:k, α1:k) :=

k∑
i=1

αivMF(·|εi, κi).

When k = 1, the mixture of von Mises-Fisher distributions becomes the standard von Mises-Fisher
distribution. When k ≥ 2, we provide an illustration of mixture of vMF distributions in Figure 4. In
order to sample from mixture of vMF distribution, we first sample the mixture index by categorical
distribution parametrized by {αi}ki=1. Then, we sample the corresponding vMF component. Details
of the sampling procedure with mixture of vMF distributions in Algorithm 4.

With the definition of the mixture of vMF distributions in hand, we now define the mixture spherical
sliced fused Gromov Wasserstein between the probability distributions.
Definition 6. (MSSFG) Let µ, ν ∈ P(Rd) be two probability distributions, β ∈ [0, 1] be a constant,
{αi}ki=1 be given mixture weights, and {κi}ki=1 be given mixture concentration parameters. Fur-

17

Published as a conference paper at ICLR 2021

Algorithm 3 Training DRAE with spherical sliced fused Gromov Wasserstein

Input: Concentration κ, fused parameter β, coefficient λ, the number of mixtures K, max iter
minibatch’s size N , the number of projections L, empirical data distribution p̂(x)
Initialize Gθ, Eφ, µ1:K ,Σ1:K , ε
for each epoch do

for each minibatch {xi}Ni=1 ∼ p̂(x) do
{zi}Ni=1 ← Eφ({xi}Ni=1)

Sample {z′i}Ni=1 ∼ p(z) := 1
K

∑K
i=1N (µk,Σk)

Compute SSFG between {zi}Ni=1 and {z′i}Ni=1 with β, κ, L,max iter via the Algorithm 2.
Reconstruction← 1

N

∑N
i=1 d(xi, Gθ(zi))

Update θ, φ, µ1:K ,Σ1:K ← Adam(∇θ,φ,µ1:K ,Σ1:K
(Reconstruction + λSSFG))

end for
end for
Output: Gθ∗ , Eφ∗ , µ∗1:K ,Σ

∗
1:K

Algorithm 4 Sampling from mixture of vMF distributions

Input: The number of vMF components k, location {εi}ki=1, concentration {κi}ki=1, mixture
weights {αi}ki=1 , dimension d, unit vector e1 = (1, 0, .., 0).
Sample index i ∼ Categorical(α1, ..., αk)
Sample v ∼ U(Sd−2)

b← −2κi+
√

4κ2
i+(d−1)2

d−1 , a← (d−1)+2κi+
√

4κ2
i+(d−1)2

4 , m← 4ab
(1+b) − (d− 1) ln(d− 1)

repeat
Sample ψ ∼ Beta

(
1
2 (d− 1), 1

2 (d− 1)
)

ω ← h(ψ, κi) = 1−(1+b)ψ
1−(1−b)ψ

t← 2ab
1−(1−b)ψ

Sample u ∼ U(0, 1)
until (d− 1) ln(t)− t+m ≥ ln(u)

h1 ← (ω,
√

1− ω2v>)>

ε′ ← e1 − εi
u = ε′

‖ε′‖
U = I− 2uu>

Output: Uh1

thermore, let d1 : R× R→ R+ be a pseudo-metric on R. Then, the mixture spherical sliced fused
Gromov Wasserstein (MSSFG) between µ and ν is defined as follows:

MSSFG(µ, ν;β, {κi}ki=1, {αi}ki=1)

:= max
ε1:k∈Sd−1

Eθ∼MovMF(·|ε1:k,{κi}ki=1,{αi}ki=1)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
, (15)

where the fused Gromov Wasserstein Dfgw is defined in equation (3).

Computational complexity of MSSFG: Let µ and ν be two discrete distributions that have n
supports with uniform weights. For the general case of d1, computing MSSFG is costly as SFG
and SSFG due to the quadratic programming problem. However, MSSFG also has the complexity
of order O(n log n) with d1(x, y) = (x − y)2. To solve the optimization problem of MSSFG, we
can reuse the vMF’s gradient estimators in Section B.3 and find the locations of components of the
mixture vMF by stochastic gradient ascent. In detail, the gradient estimator of each vMF component’s
location is derived as follow:

∇εiEMovMF(θ|ε1:k,{κi}ki=1,{αi}ki=1)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
= ∇εiE 1

k

∑k
i=1 αivMF(θ|εi,κi)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
=
αi
k
∇εiEvMF(θ|εi,κi)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
(16)

18

Published as a conference paper at ICLR 2021

Here, we can reuse the result from Section B.3 to get an estimator.

Key properties of MSSFG: Similar to SSFG, MSSFG is also a pseudo-metric on the probability
space.
Theorem 4. For any β ∈ [0, 1], mixture concentration parameters {κi}ki=1, and mixture weights
{αi}ki=1, MSSFG(., .;β, {κi}ki=1, {αi}ki=1) is a well-defined pseudo-metric in the space of probabil-
ity measures, namely, it is non-negative, symmetric, and satisfies the weak triangle inequality.

The proof of Theorem 4 is similar to the proof of Theorem 1; therefore, it is omitted. Our next result
establishes some relations between MSSFG, SSFG, SFG, and max-SFG (see part (a) in Theorem 2
for a definition of max-SFG).
Theorem 5. For any probability measures µ, ν ∈ P(Rd), the following holds:

(a) For any mixture weights {αi}ki=1, we obtain that

lim
κ1,...,κk→0

MSSFG(µ, ν;β, {κi}ki=1, {αi}ki=1) = SFG(µ, ν;β),

lim
κ1,...,κk→∞

MSSFG(µ, ν;β, {κi}ki=1, {αi}ki=1) = max-SFG(µ, ν;β).

(b) For any mixture concentration parameters {κi}ki=1 and mixture weights {αi}ki=1, we find that

αī max
1≤i≤k

{SSFG(µ, ν;β, κi)} ≤ MSSFG(µ, ν;β, {κi}ki=1, {αi}ki=1) ≤ max
1≤i≤k

{SSFG(µ, ν;β, κi)},

where ī ∈ arg max
1≤i≤k

{SSFG(µ, ν;β, κi)}.

The proof of part (a) in Theorem 5 is a simple extension of the proof of part (a) in Theorem 2 while
the proof of part (b) in Theorem 5 is straight-forward from the definition of MSSFG. Therefore,
the proof of Theorem 5 is omitted. The result of part (a) in Theorem 5 demonstrates that MSSFG
is an interpolation between SFG and max-SFG. Furthermore, the result of part (b) in Theorem 5
shows that MSSFG is equivalent to max1≤i≤k{SSFG(µ, ν;β, κi)}. Based on the result of part (b) in
Theorem 2, MSSFG is also equivalent to SFG.

Our next result shows that MSSFG also does not suffer from the curse of dimensionality as SSFG.
Theorem 6. Assume that µ is a probability measure supported on a compact subset Θ ⊂ Rd. Let
X1, . . . , Xn be i.i.d. data from P and d1(x, y) = |x − y|r for a positive integer r. We denote
µn = 1

n

∑n
i=1 δXi the empirical measure of the data points X1, . . . , Xn. Then, for any β ∈ [0, 1],

mixture concentration parameters {κi}ki=1, and mixture weights {αi}ki=1, there exists a constant c
depending only on r and the diameter of Ω such that

E
[
MSSFG(µn, µ;β, {κi}ki=1, {αi}ki=1)

]
≤ c

n
.

The proof of Theorem 6 is direct from the upper bound of MSSFG based on SSFG in part (b) of
Theorem 5 and the convergence rate of SSFG in expectation in Theorem 3; therefore, it is omitted.

Application of MSSFG to relational regularized autoencoder framework: Similar to the SSFG,
we can apply MSSFG to relational regularized autoencoder by using it as the discrepancy between
prior distribution and latent code distribution. We name this autoencoder – mixture spherical
deterministic autoencoder (ms-DRAE). The training procedure of ms-DRAE is similar to s-DRAE, it
includes computation of the reconstruction loss and the MSSFG between the empirical distribution
of the prior and the encoded latent distribution. To compute MSSFG, it also requires the stochastic
gradient ascent scheme to find the best MovMF distribution. Note that, in this autoencoder, we set a
uniform mixture weights αi = 1

k and each vMF component uses the same value of concentration
parameter κ.

D POWER SPHERICAL SLICED FUSED GROMOV WASSERSTEIN

In this appendix, we consider another variant of spherical sliced fused Gromov Wasserstein, which
is power spherical sliced fused Gromov Wasserstein (PSSFG). Then, we discuss an application of
PSSFG to the deterministic relational regularized autoencoder framework.

19

Published as a conference paper at ICLR 2021

1.000.750.500.250.000.250.500.751.00

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

von Mises-Fisher distributions = 10
= 100
= 1000

1.000.750.500.250.000.250.500.751.00

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Power spherical distributions = 10
= 100
= 1000

Figure 5: Illustrations of von Mises-Fisher and Power spherical distribution.

We first define power spherical distribution (De Cao & Aziz, 2020):

Definition 7. The power spherical distribution (PS) is a probability distribution on the unit sphere
Sd−1 where its density function is given by:

f(x|ε, κ) = C(κ, d)(1 + ε>x)κ, (17)

where κ ≥ 0 is the concentration parameter, ε ∈ Sd−1 is the location vector, and Cd(κ) :={
2d−1+κπ

d−1
2

Γ(d−1
2 +κ)

Γ(d−1+κ)

}−1

.

We now provide the following result showing that similar to vMF, PS is also an interpolation between
the uniform distribution and Dirac delta measure on the sphere.

Lemma 1. (a) When κ→ 0, the density of PS(.|ε, κ) converges to that of U(Sd−1).

(b) When κ→∞, the density of PS(.|ε, κ) converges to the density of δε.

Proof. (a) When κ → 0, the power spherical distribution approaches to the uniform distribution,
because for κ ∈ (0, 1], the density function f(x|ε, κ) is uniformly bounded. Moreover, for all x is
different from −ε

lim
κ→0

f(x|ε, κ) = C(0, d),

which corresponds to the density of the uniform distribution on Sd−1. Hence, by Lebesgue dominated
convergence theorem, for any continuous and uniformly bounded function g on Sd−1, we have

lim
κ→0

∫
Sd−1

g(x)f(x|ε, κ)dx =

∫
Sd−1

g(x)U(Sd−1)dx,

where U(Sd−1) stands for the uniform distribution on Sd−1. It means the convergence of the density
f of the power spherical distribution to the uniform distribution when κ→ 0.

(b) When κ→∞, as long as the function f at the mode ε goes to infinity, then the following holds
for any continuous and uniformly bounded function g on Sd−1

lim
κ→∞

∫
Sd−1

g(x)f(x|ε, κ)dx =

∫
Sd−1

g(x)δε(x)dx.

It is true since for x = ε, and κ→∞ we have

f(ε|ε, κ) = 2κ
Γ(d− 1 + κ)

Γ(d−1
2 + κ)

π
1−d

2 21−d−κ = π
1−d

2 21−dΓ(d− 1 + κ)

Γ(d−1
2 + κ)

→∞.

As a consequence, the density of the power spherical distribution with location vector ε converges to
the Dirac delta measure at ε when κ→∞.

20

Published as a conference paper at ICLR 2021

Sampling procedure of the power spherical distribution: We review the sampling algorithm of
PS in Algorithm 5 in (De Cao & Aziz, 2020). The important difference between the sampling of the
PS to that of the vMF is that it does not require rejection sampling as in vMF’s sampling algorithm
(Algorithm 1). As a result, sampling from PS is faster than sampling from vMF. Furthermore, we can
get an estimation of gradient of parameters of the density of the PS easier than that of vMF since
all the operations in the sampling algorithm of the PS are differentiable (note that, it also includes
sampling from Beta distribution which can use the implicit reparametrization trick (Figurnov et al.,
2018)).

Algorithm 5 Sampling from power spherical distribution

Input: location parameter ε, concentration κ, dimension d, unit vector e1 = (1, 0, .., 0).
Sample z ∼ Beta((d−1)

2 + κ, (d−1)
2)

Sample v ∼ U(Sd−2)
w ← 2z − 1
h1 ← (ω,

√
1− ω2v>)>

ε′ ← e1 − ε
u = ε′

‖ε′‖
U = I− 2uu>

Output: Uh1

Given the definition of the power spherical distribution, we are ready to define the power spherical
sliced fused Gromov Wasserstein between the probability distributions.

Definition 8. (PSSFG) Let µ, ν ∈ P(Rd) be two probability distributions, κ > 0, β ∈ [0, 1],
d1 : R×R→ R+ be a pseudo-metric on R. The power spherical sliced fused Gromov Wasserstein
(PSSFG) between µ and ν is defined as follows:

PSSFG(µ, ν;β, κ) := max
ε∈Sd−1

Eθ∼PS(·|ε,κ)

[
Dfgw(θ]µ, θ]ν;β, d1)

]
, (18)

where the fused Gromov Wasserstein Dfgw is defined in equation (3). Here, PS(.|ε, κ) denotes the
power spherical distribution with location vector ε and concentration parameter κ.

Comparison between PSSFG and SSFG: The PS distribution has similar behavior as the vMF
distribution on the unit sphere, suggesting that PSSFG and SSFG are similar discrepancies. However,
PS shows better sampling speed and stability than vMF, which leads to the computational benefits of
PSSFG over SSFG. In particular, to compute PSSFG and SSFG, we need to approximate the gradient
of the location parameter ε with L samples from the PS and vMF distributions respectively. With
the faster sampling algorithm of PS, we can find the best location parameter in PSSFG faster than
in SSFG. Therefore, PSSFG can be computed in lower time than SSFG. Moreover, as reported in
(De Cao & Aziz, 2020), the vMF distribution suffers from numerical issues on high dimension settings
or on high concentration parameter settings, namely, sampling vectors from the vMF distribution can
be returned as ”not a number” (NaN), which greatly affects the quality of SSFG. In contrast, PSSFG
does not have the similar numerical issues because the PS distribution provides more stable samples
in high-dimension settings with any values of the concentration parameter.

Computational complexity of PSSFG: Similar to SSFG, PSSFG between µ and ν, two discrete
distributions that have n supports and uniform weights, has the complexity of order O(n log n) when
d1(x, y) = (x− y)2 for all x, y ∈ R. With a faster sampling process, the gradient estimation step in
PSSFG consumes a smaller amount of time than SSFG. Therefore, it leads to faster optimization to
find the optimal location parameter ε in PSSFG than in SSFG.

Key properties of PSSFG: Similar to SSFG and MSSFG, PSSFG is also a pseudo-metric on the
probability space.

Theorem 7. For any β ∈ [0, 1] and κ > 0, PSSFG(., .;β, κ) is a pseudo-metric in the space of
probability measures, namely, it is non-negative, symmetric, and satisfies the weak triangle inequality.

The proof of Theorem 7 is similar to the proof of Theorem 1; therefore, it is omitted.

21

Published as a conference paper at ICLR 2021

Our next result establishes some connections between PSSFG, SSFG, SFG, and max-SFG (see part
(a) in Theorem 2 for a definition of max-SFG).
Theorem 8. For any probability measures µ, ν ∈ P(Rd), the following holds:

(a) lim
κ→0

PSSFG(µ, ν;β, κ) = SFG(µ, ν;β),

lim
κ→∞

PSSFG(µ, ν;β, κ) = max-SFG(µ, ν;β).

(b) For any κ > 0, we find that

PSSFG(µ, ν;β, κ) ≤ 2κC(κ, d)SFG(µ, ν;β),

PSSFG(µ, ν;β, κ) ≤ max-SFG(µ, ν;β).

The proof of part (a) in Theorem 8 is a straightforward application of the proof of Theorem 2 and
the asymptotic properties of the power spherical distribution. The proof of part (b) in Theorem 8
is also similar to the proof of part (b) of Theorem 2. Note that, we do not have the lower bound of
PSSFG(µ, ν;β, κ) in terms of SFG(µ, ν;β). It is because the value of (1 + ε>x)κ can get arbitrarily
close to 0 as ε>x gets close to −1. Combining with the result of Theorem 8, we reach to a conclusion
that the SSFG, SFG, max-SFG are stronger discrepancies than the PSSFG.

Our next result shows that PSSFG does not suffer from the curse of dimensionality as SSFG and
MSSFG. Therefore, it is also a good discrepancy to use in the deterministic relational regularized
autoencoder framework.
Theorem 9. Assume that µ is a probability measure supported on a compact subset Θ ⊂ Rd. Let
X1, . . . , Xn be i.i.d. data from P and d1(x, y) = |x − y|r for a positive integer r. We denote
µn = 1

n

∑n
i=1 δXi the empirical measure of the data points X1, . . . , Xn. Then, for any β ∈ [0, 1]

and κ > 0, there exists a constant c depending only on r and diameter of Θ such that

E
[
PSSFG(µn, µ;β, κ)

]
≤ c

n
.

The proof of Theorem 9 is straightforward from the upper bound of PSSFG in terms of SSFG and the
convergence rate of SSFG in expectation in Theorem 3; therefore, it is omitted.

Application of PSSFG to relational regularized autoencoder framework: Similar to the SSFG,
we can apply PSSFG to relational regularized autoencoder by using it as the discrepancy between prior
distribution and latent code distribution. We name this autoencoder power spherical deterministic
autoencoder (ps-DRAE). The training procedure of ps-DRAE is similar to s-DRAE, namely, it
includes computation of the reconstruction loss and the PSSFG between the empirical distribution of
the prior and the encoded latent distribution.

E ADDITIONAL EXPERIMENTS

In this appendix, we provide qualitative results on MNIST and CelebA datasets, including randomly
generated images, reconstruction images, and latent space visualizations for the autoencoders in the
main paper. In addition, we provide more applications where the proposed discrepancies can be
applied. The first application in Section E.4 trains autoencoder via ex-post density estimation, which
is a new procedure to train an autoencoder and is proposed currently in (Ghosh et al., 2019). In this
application, we compare the SSFG with SFG and max-SFG to show the benefits of the SSFG. The
second application is GAN (Goodfellow et al., 2014) which is used to learn a generator only. In this
second application, we compare qualitatively our spherical sliced discrepancies (SSFG and MSSFG)
with SFG and max-SFG.

E.1 RESULTS ON SPHERICAL DETERMINISTIC RELATIONAL AUTOENCODER

Visualization of the latent space: First, we plot the t-SNE visualization of the latent distribution of
various types of autoencoders. For autoencoders that have a mixture of Gaussian distributions prior,
the Gaussian means are also visualized. In Figure 6 with MNIST dataset, we find that Vampprior
only learns collapsed Gaussian distributions that cannot cover the encoded distribution. Regarding

22

Published as a conference paper at ICLR 2021

40 20 0 20 40

80

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

60 40 20 0 20 40 60

60

40

20

0

20

40

60 0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80 0
1
2
3
4
5
6
7
8
9

j

VAE Vampprior GMVAE

40 20 0 20 40 60
60

40

20

0

20

40

60
0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40 60

60

40

20

0

20

40

0
1
2
3
4
5
6
7
8
9

40 20 0 20 40 60
80

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

PRAE SWAE WAE

40 20 0 20 40

60

40

20

0

20

40

60

80

0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40 60
60

40

20

0

20

40

60 0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40 60
60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

DRAE m-DRAE s-DRAE

40 20 0 20 40 60

60

40

20

0

20

40

60

80 0
1
2
3
4
5
6
7
8
9

j

40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

40 20 0 20 40

60

40

20

0

20

40

60
0
1
2
3
4
5
6
7
8
9

j

ps-DRAE mps-DRAE (k = 50) ms-DRAE (k = 50)

Figure 6: t-SNE on MNIST latent code, the µj are the means of components in the Gaussian mixture prior.

GMVAE, its latent modes are overlapped, which might affect the generative diversity. For PRAE, a
probabilistic relational regularized autoencoder, its Gaussian means seem to cover all the space but
the clustering effect is not obvious. Therefore, the generated images from PRAE might be blurred.
Three deterministic relational regularized autoencoders (DRAE, m-DRAE, s-DRAE) have diverse
Gaussian components, which cover the latent space well, however, they still miss some small parts.
With the CelebA dataset in Figure 7 whose latent space dimension is larger than that of MNIST (64
dimensions compared to 8 dimensions), the differences between DRAE, m-DRAE, and s-DRAE can
be seen clearly. In particular, s-DRAE gets a better visualized latent space and its prior can cover
well that space while m-DRAE and DRAE seem to miss some parts of the space.

23

Published as a conference paper at ICLR 2021

40 20 0 20 40

40

20

0

20

40

j

40 20 0 20 40
40

30

20

10

0

10

20

30

40
j

60 40 20 0 20 40
60

40

20

0

20

40

GMVAE PRAE SWAE

40 30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30

40 j

40 30 20 10 0 10 20 30 40

30

20

10

0

10

20

30
j

30 20 10 0 10 20 30
40

30

20

10

0

10

20

30
j

DRAE m-DRAE s-DRAE

40 30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30
j

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30
j

40 30 20 10 0 10 20 30 40

30

20

10

0

10

20

30

40 j

ps-DRAE mps-DRAE (k = 50) ms-DRAE (k = 50)

Figure 7: t-SNE on CelebA latent code, the µj are the means of components in the Gaussian mixture prior.

Synthesis images: We first present randomly generated samples on MNIST dataset in Figure 8.
Based on these images, we can see that DRAE, m-DRAE and s-DRAE produce significantly more
realistic images than other autoencoders. Because of the collapsing prior (see Figure 6), Vampprior
cannot generate diverse digits. Furthermore, by looking closely, images from s-DRAE are clear and
can be recognized as digits while some images from DRAE and m-DRAE are blurred.

Now, we move to the generated images with CelebA datasets in Figure 9. We see that GMVAE
and PRAE are not able to generate acceptable images. These two probabilistic autoencoders seem
unstable to train on CelebA dataset. On the other hand, images obtained from DRAEs, i.e., DRAE,
m-DRAE, and s-DRAE, are significantly better than other autoencoders. Nevertheless, just by only
looking at the generated images, it is hard to know which autoencoder among these three autoencoders
can produce better images. In order to evaluate their performances, we use FID scores and present
them in Table 1. According to those tables, s-DRAE is better than DRAE, m-DRAE and previous
autoencoders on CelebA dataset.

Reconstruction images: Regarding the reconstruction ability, we show the reconstructed test-set
images on MNIST dataset in Figure 10, and the reconstructed images test-set images on CelebA
dataset in Figure 11. These results show that relational regularizations in DRAE, m-DRAE, s-DRAE
do not harm the reconstruction ability of the autoencoders and the reconstruction images from these
models have at least the same quality as other considered autoencoders.

24

Published as a conference paper at ICLR 2021

VAE Vampprior GMVAE

PRAE SWAE WAE

DRAE m-DRAE s-DRAE

ps-DRAE mps-DRAE (k = 50) ms-DRAE (k = 50)

Figure 8: Generated images on MNIST dataset. Here, k denotes the number of components of mixture of vMF
distributions in MSSFG.

Sensitivity to the concentration parameter: Here, we investigate the effect of κ in training s-
DRAE. We set the number of slices equal to 50, and κ ∈ {0.001, 0.01, 0.1, 1, 5, 10, 50, 100} and
report reconstruction loss and FID score in Figure 12 and Figure 13 . We find that the performance
of s-DRAE is close to that of DRAE when κ = {0.001, 0.01, 0.1, 1}, namely, the reconstruction
loss and FID score is nearly equal to the scores of DRAE . On the other extreme, when κ = 100,
s-DRAE behaves like m-DRAE in both evaluation metrics. It confirms our claim that SSFG is a

25

Published as a conference paper at ICLR 2021

GMVAE PRAE SWAE

DRAE m-DRAE s-DRAE

ps-DRAE mps-DRAE (k = 50) ms-DRAE (k = 50)

Figure 9: CelebA generated images.

generalization of m-DRAE and DRAE. About the best choice of κ, on MINIST, the best value of κ is
10 for both evaluation metrics. In detail, FID score and reconstruction loss decrease considerably
when setting κ from 1 to 10, then increase when κ > 10. Meanwhile, on CelebA, the best value of κ
for reconstruction loss and FID score are different. With κ = 10, s-DRAE reaches the best FID score
of about 46.6, while κ = 1 produces the lowest reconstruction loss. This partly explains why our
s-DRAE gets the best FID score, not the best reconstruction loss among all tested autoencoders.

Sensitivity to the size of minibatch: We conduct an experiment to see how the minibatch’s size
affects the performance of s-DRAE. In particular, we set the minibatch’s size in {10, 50, 100, 150}
and adjust the number of epochs to get the same number of iterations for each setting. The experiment
results are given in Table 2. These results show that the size of minibatch has a crucial role in the
quality of both DRAE and s-DRAE. The bigger minibatch size, the lower FID score and reconstruction
score.

E.2 RESULTS ON MIXTURE SPHERICAL DETERMINISTIC RELATIONAL AUTOENCODER

As mentioned in Section 3.2 and Appendix C, there is an extension of SSFG that uses mixtures of
vMF as the slicing distribution over directions and we denote the RAE using this new discrepancy as

26

Published as a conference paper at ICLR 2021

Data
VAE
Vampprior
GMVAE
PRAE
SWAE
WAE
DRAE
m-DRAE
s-DRAE
ps-DRAE
mps-DRAE (k=50)
ms-DRAE (k=50)

Figure 10: Reconstruction images on MNIST test set.

Data
GMVAE
PRAE
SWAE
DRAE
m-DRAE
s-DRAE
ps-DRAE
mps-DRAE (k=50)
ms-DRAE (k=50)

Figure 11: Reconstruction images on CelebA test set.

1 5 10 50 100

40

50

60

70

80

FI
D

MNIST
DRAE
m-DRAE
s-DRAE

1 5 10 50 100

10

12

14

16

18

Re
co

ns
tru

ct
io

n

MNIST
DRAE
m-DRAE
s-DRAE

1 5 10 50 100

46

47

48

49

50

51

FI
D

CelebA
DRAE
m-DRAE

1 5 10 50 100

65.5

66.0

66.5

67.0

67.5

Re
co

ns
tru

ct
io

n

CelebA
DRAE
m-DRAE
s-DRAE

Figure 12: The performance of s-DRAE (L = 50) on MNIST and CelebA datasets when changing the value of
κ ∈ {1, 5, 10, 50, 100} .

10 3 10 2 10 1 100

40

50

60

70

80

FI
D

MNIST
DRAE
s-DRAE

10 3 10 2 10 1 100

10

12

14

16

18

Re
co

ns
tru

ct
io

n

MNIST
DRAE
s-DRAE

10 3 10 2 10 1 100

48.5

49.0

49.5

50.0

50.5

51.0

51.5

FI
D

CelebA
DRAE
s-DRAE

10 3 10 2 10 1 100

65.4

65.6

65.8

66.0

66.2

66.4

66.6

66.8

Re
co

ns
tru

ct
io

n

CelebA
DRAE
s-DRAE

Figure 13: The performance of s-DRAE (L = 50) on MNIST and CelebA datasets when changing the value of
κ ∈ {0.001, 0.01, 0.1, 1} .

27

Published as a conference paper at ICLR 2021

Table 2: FID scores and reconstruction losses of DRAE, s-DRAE, and ps-DRAE with different sizes of
minibatches.

Method Minibatch’s size MNIST CelebA
FID Reconstruction FID Reconstruction

DRAE 10 100.31 20.51 67.41 72.34
DRAE 50 73.41 16.99 58.55 67.28
DRAE 100 58.04 14.07 50.09 66.05
DRAE 150 55.64 13.21 47.67 65.98

s-DRAE 10 88.45 22.72 67.02 67.73
s-DRAE 50 60.11 14.57 51.02 66.98
s-DRAE 100 47.97 11.17 46.63 66.62
s-DRAE 150 47.01 11.06 46.04 66.53

ps-DRAE 10 90.15 21.04 68.38 67.54
ps-DRAE 50 62.33 14.54 55.68 66.87
ps-DRAE 100 49.15 11.71 48.21 66.31
ps-DRAE 150 48.89 11.82 48.19 66.33

12 5 10 50
k

35

40

45

50

55

60

FI
D

MNIST

12 5 10 50
k

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

Re
co

ns
tru

ct
io

n

MNIST

12 5 10 50
k

45

46

47

48

FI
D

CelebA

12 5 10 50
k

65.6

65.8

66.0

66.2

66.4

66.6

66.8

67.0

67.2

Re
co

ns
tru

ct
io

n

CelebA

Figure 14: The performance of ms-DRAE when changing the number of vMF components (k).

ms-DRAE. In practice, we use the uniform weight αi = 1
k for the vMF mixture and use the same

value of κ for every component. For the number of projections, we set L = 50.

Visualization of the latent space: In Figure 6, with MNIST dataset, the ms-DRAE performs very
well, with k = 10 and k = 50, ms-DRAE does not miss any data’s mode, the clustering effect is
also very clear. With CelebA dataset in Figure 7, like s-DRAE, the latent space visualization of
ms-DRAE with k ∈ {10, 50} is well covered by the mixtures of Gaussian prior.

Synthesis images: As shown in Figure 8, generated MNIST images from ms-DRAE are very
realistic and easy to classify. With CelebA dataset, in Figure 9, ms-DRAE can also produce the highest
quality images among considered autoencoder. This quality is quantified in Table 1, ms-DRAE gets
the best FID score among all autoencoders.

Reconstruction images: According to the reconstructed test-set images on MNIST dataset in
Figure 10, and the reconstructed images test-set images on CelebA dataset in Figure 11, ms-DRAE
provides reconstructed images that are at least comparable to other autoencoders.

Increasing the number of vMF components: We conduct experiment to see the effect of increas-
ing the number of components, says k, and report results in Figure 14. For each value of k ∈
{1, 2, 5, 10, 50} we search for its best value of the concentration parameter κ ∈ {1, 5, 10, 50, 100}.
The figure shows that more vMF components enhance the quality of the generator on MNIST until
k = 10, then flats after that. The reconstruction loss on MNIST changes slightly when k increases,
but it always between 11.0 and 11.5. Whereas on CelebA dataset, until k = 5, both FID and
reconstruction loss go down sharply. When k = 10, the FID score rises a little bit to about 46, while
reconstruction loss continues to fall. In contrast, when k = 50, FID score is reduced to about 45.8
while reconstruction loss climbs to about 66. Overall, increasing the number of vMF components can
affect positively the performance of the learned autoencoder.

28

Published as a conference paper at ICLR 2021

E.3 RESULTS ON POWER SPHERICAL DETERMINISTIC RELATIONAL AUTOENCODER

In this appendix, we provide additional experiments with power spherical deterministic relational
autoencoder (ps-DRAE).

1 5 10 50 100

40

50

60

70

80

FI
D

MNIST
DRAE
m-DRAE
ps-DRAE

1 5 10 50 100

10

12

14

16

18

Re
co

ns
tru

ct
io

n

MNIST
DRAE
m-DRAE
ps-DRAE

1 5 10 50 100
47

48

49

50

51

52

FI
D

CelebA
DRAE
m-DRAE
ps-DRAE

1 5 10 50 100

65.0

65.5

66.0

66.5

67.0

67.5

Re
co

ns
tru

ct
io

n

CelebA
DRAE
m-DRAE
ps-DRAE

Figure 15: The performance of ps-DRAE (L = 50) on MNIST and CelebA datasets when changing the value
of κ ∈ {1, 5, 10, 50, 100}.

10 3 10 2 10 1 100

40

50

60

70

80

FI
D

MNIST
DRAE
ps-DRAE

10 3 10 2 10 1 100

10

11

12

13

14

15

16

17

18

Re
co

ns
tru

ct
io

n

MNIST
DRAE
ps-DRAE

10 3 10 2 10 1 100

49.0

49.5

50.0

50.5

51.0

51.5

52.0

FI
D

CelebA
DRAE
ps-DRAE

10 3 10 2 10 1 100

65.0

65.5

66.0

66.5

67.0

Re
co

ns
tru

ct
io

n

CelebA
DRAE
ps-DRAE

Figure 16: The performance of ps-DRAE (L = 50) on MNIST and CelebA datasets when changing the value
of κ ∈ {0.001, 0.01, 0.1, 1}.

Visualization of the latent space: In Figure 6, with the MNIST dataset, the ps-DRAE produces a
comparable latent structure to s-DRAE, namely, its mixture Gaussian prior can capture quite well the
latent code. With the CelebA dataset in Figure 7, the latent space visualization of ps-DRAE is also
well covered by the prior.

Synthesis images: As shown in Figure 8, generated MNIST images from ps-DRAE are comparable
to s-DRAE, namely, the images are easy to classify into classes. With the CelebA dataset, in Figure 9,
ps-DRAE can also produce the good images of human faces.

Reconstruction images: We find that ps-DRAE is also good at reconstructing images as s-DRAE.
In Figures 10, and 11, reconstructed images of ps-DRAE are also similar to the ground truth images.

Sensitivity to the concentration parameter κ: We find that the ps-DRAE has a similar effect as
s-DRAE when we change the value of the concentration parameter κ. In particular, we plot the
FID score and the reconstruction loss of ps-DRAE in Figure 15 and Figure 15 for each value of
κ ∈ {0.001, 0.01, 0.1, 1, 5, 10, 50, 100}. On the MNIST dataset, when κ = 1, both metrics of
ps-DRAE are close to the values of DRAE. When κ = 100, ps-DRAE behaves like m-DRAE in
both FID score and reconstruction loss. When κ ∈ {5, 10, 50}, ps-DRAE has better FID score and
reconstruction loss than both DRAE and m-DRAE. On the CelebA dataset, we also observe quite
similar phenomenon with the FID score as that of the MNIST dataset. The reconstruction losses of
ps-DRAE and those of m-DRAE and DRAE are very close regardless of the choice of κ.

Sensitivity to the size of minibatch: Like DRAE and s-DRAE, minibatch’s size affects the
performance of ps-DRAE greatly (cf. Table 2), namely, a larger minibatch helps to learn better an
autoencoder in both generation and reconstruction.

E.4 EX-POST DENSITY ESTIMATION AUTOENCODERS

In order to demonstrate the favorable performance of the SSFG, PSSFG and MSSFG over SFG, we
adapt the DRAE framework to the ex-post density estimation procedure and test its generative quality.

29

Published as a conference paper at ICLR 2021

Ex-post density estimation is a new procedure for training a generative autoencoder. It was proposed
by Ghosh et al. (2019) and consists of two main steps. The first step is to train a regularized
autoencoder by using the following objective:

min
θ,φ

Epd(x)[‖x−Gθ(Eφ(x))‖22 + λ1 ‖Eφ(x)‖22] + λ2 ‖θ‖22 , (19)

where λ1, λ2 are regularized positive parameters that will be chosen. After we find the optimal
parameters θ∗ and φ∗ of the above objective function, the second step is to fit a density estimator
pψ(z) to the latent distribution qE(z) := 1

N

∑N
i=1 δEφ∗ (xi). To generate samples from this model,

we will first sample z ∼ pψ(z) and then get a new x = Gθ∗(z).

In the experiments with ex-post density estimation, we compare SSFG and other relational discrepan-
cies in the training procedure. More specifically, we learn an autoencoder with λ2 = 1 and λ1 = 0.1
on the MNIST dataset (and λ2 = 1 and λ1 = 1 on the CelebA dataset) in the first step with 50
epochs. After this step, the trained autoencoder is shared among all methods. In the next step, we
again choose pψ(z) as a mixture of Gaussian distributions and fit it to the latent distribution using
relational discrepancies, e.g., SFG, max-SFG, SSFG, PSSFG, and MSSFG with again 50 epochs.

Generative quality: We compute the FID score on MNIST dataset and CelebA dataset, then present
them in Table 3. According to this table, SSFG achieves a better FID score than SFG and max-SFG
on this application. Compare to the traditional training of DRAE, the FID score on MNIST is
significantly improved, it is better than the score in Table 1. For example, s-DRAE gets 47.97 while
s-DRAE with ex-post density estimation training gets 37.42. On CelebA dataset, the new procedure
performs worse than the traditional procedure in Table 1, however, SSFG still gives the lowest FID
score among all distances. Moreover, PSSFG also performs well in this task, it gives a comparable
result to SSFG. About MSSFG, with more vMF components, the FID scores of MSSFG in both
datasets decrease. So, MSSFG becomes the best choice of discrepancy for this task.

Table 3: FID table of ex-post density estimation autoencoders

Method MNIST CelebA

SFG 41.85 ± 12.29 60.28 ± 2.56
max-SFG 40.69 ± 5.96 60.06 ± 2.45
SSFG 37.42 ± 6.06 58.8 ± 1.97
PSSFG 38.05 ± 5.17 58.76 ± 1.88
MSSFG (k=5) 33.54 ± 7.12 58.21 ± 1.75
MSSFG (k=10) 33.16 ± 6.96 57.48 ± 1.72
MSSFG (k=50) 33.11 ± 6.99 57.22 ± 1.7

Visualization of the latent space: Next, we show the t-SNE visualization of the autoencoder. On
MNIST, the mixture of Gaussian prior learned with MSSFG (k=50) can cover all the modes of the
latent code. SSFG and PSSFG performs quite well, they only miss one mode. About SFG and
Max-SFG, they both miss two modes of the latent code distribution. On CelebA, there is not too
much difference, however, MSSFG seems to learn Gaussian means the best, those can cover almost
all the latent space.

We show the generated images from trained models in Figure 19 and Figure 20 (the reconstruction
images are not shown because they are the same among all methods due to the shared first step in
ex-post density estimation procedure). It is easy to see that the quality of SSFG’s images is slightly
better than SFG and Max-SFG.

E.5 GAN MODELS

Authors in (Bunne et al., 2019) have introduced a generative adversarial net (Goodfellow et al., 2014)
variant that is based on Gromov Wasserstein, and it is adapted to used sliced Gromov Wasserstein in
(Vayer et al., 2019). In this work, we replace SG by our spherical discrepancies and compare their
performance in this application.

G∗ = arg min
G

D(pdata, G(Z)), (20)

30

Published as a conference paper at ICLR 2021

60 40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

SFG Max-SFG SSFG

60 40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40

60

40

20

0

20

40

60 0
1
2
3
4
5
6
7
8
9

j

60 40 20 0 20 40

60

40

20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

j

PSSFG MSSFG (k = 10) MSSFG (k = 50)

Figure 17: t-SNE on MNIST latent code with ex-post density estimation procedure, the µj are the means of
components in the Gaussian mixture prior.

40 30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40
j

40 30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40 j

40 30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30

40
j

SFG Max-SFG SSFG

40 30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40
j

30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30

40
j

40 30 20 10 0 10 20 30 40

40

20

0

20

40 j

PSSFG MSSFG (k = 10) MSSFG (k = 50)

Figure 18: t-SNE on CelebA latent code with ex-post density estimation procedure, the µj are the means of
components in the Gaussian mixture prior.

31

Published as a conference paper at ICLR 2021

SFG max-SFG SSFG

PSSFG MSSFG(k = 10) MSSFG(k = 50)

Figure 19: MNIST ex-post density estimation generated images

SFG max-SFG SSFG

PSSFG MSSFG(k = 10) MSSFG(k = 50)

Figure 20: CelebA ex-post density estimation generated images

where Z is a low-dimensional random noise distribution (typically Gaussian), G(Z) transforms Z to
a desired dimensional space.

32

Published as a conference paper at ICLR 2021

In this toy experiment, we learn a G function that is parametrized by a neural network to gener-
ate 4 Gaussian modes in 2-dimension. All settings are adapted from https://github.com/
bunnech/gw_gan, and we choose κ = 1000 for SSFG.

In Figure 22 , we show the learned distributions through iterations. The qualitative results show that
max-SFG, SSFG, PSSFG and MSSFG helps the distribution converge faster to the target than SFG,
the evidence is that the model distributions in the iteration 1000 of max-SFG and SSFG look more
similar to 4 Gaussian modes. The difference between SSFG, max-SFG, PSSFG and MSSFG is not
too clear, however, in the iteration 1000 we can see that MSSFG’s distributions do not put too many
samples on the intersection area between modes while distributions of other discrepancies do.

E.6 IMAGE COLOR ADAPTATION

In this section, we show how our proposed sliced-fused discrepancies can be applied to image color
adaptation (color transfer) task, which is the most well-known application of optimal transport (Rabin
et al., 2014; Bonneel et al., 2015; Perrot et al., 2016). By using the vMF distribution, the Power
Spherical distribution, and their mixtures to capture area of ”informative” directions, we can enhance
the performance of the sliced based color transfer algorithms (Muzellec & Cuturi, 2019; Bonneel
et al., 2015; Rabin et al., 2010). First, we get the quantizations of two input images by K-means
algorithm (with 3000 clusters) to reduce the size of the images. With two compressed images,
we find the best von Mises-Fisher distribution (or power spherical distribution, or mixture of vMF
distributions, or mixture of power spherical distributions) by maximizing the expectation of the 1D
Wasserstein distance. After that, we draw samples (directions) from these distributions and then find
a optimal 1D Monge map between projected distributions of each direction. Finally, we move the
color plate of the source image to the color plate of the target image by the found Monge maps, then
average them to get the final result.

We present the qualitative results in Figure 21. We illustrate the adapted images between the source
images and the target images. Note that in all these experiments, we set κ = 10 in (M)vMF and (M)PS.
Furthermore, the subscript number is the number of directions that is used, and the superscript number
is the number of components of mixture of vMF (respectively PS). According to the experiment
results, images from the uniform distribution (i.e., normal slicing methods) are quite blurred and not
catchy. ”Max” direction often creates noises in the images (see the first two examples in Figure 21).
On the other hand, the proposed discrepancies vMF, PS, MvMF, and MPS perform very well, namely,
their adapted images have similar color style to the corresponding target images. It demonstrates that
in the color transfer task, the proposed sliced-fused discrepancies also outperform both the uniform
and max-sliced approaches. Finally, in the final experiment in Figure 21, we would like to remark
that the orange color from the suns in the target image is still in the transferred images though it is
quite blurred and may look a bit like yellow color. There are two reasons for this phenomenon. First,
the K-means clustering step uses the yellow color to represent the cluster that contains the orange
pixels, which reduces the brightness of the orange pixels. This phenomenon happens because there
are more yellow pixels than orange ones. We think that increasing the number of clusters of K-means
may help but with the cost of slower computation. Second, the average of transferred images in the
final step might reduce the brightness of the color. It is due to the difference between the 1D transport
maps which are found by different projecting directions in the sliced distances. For example, in one
map, a pixel is transferred to the orange color; however, in another map it is transferred to the blue
color. Therefore, the average will be no longer orange. Developing an efficient way to deal with these
two possible problems in the color transfer tasks is an important direction and we leave it for the
future work.

F EXPERIMENTAL SETTINGS

In this section, we provide detailed settings of experiments that we conduct in this paper.

F.1 NEURAL NETWORK ARCHITECTURE

For MNIST dataset:

33

Published as a conference paper at ICLR 2021

Encoder E: x ∈ R28×28 → Conv128 → BatchNorm → ReLU → Conv256 → BatchNorm →
ReLU→ Conv512 → BatchNorm→ ReLU→ Conv1024 → BatchNorm→ ReLU→ FC8 → z ∈
R8

Decoder G: z ∈ R8 → FC7x7x1024 → BatchNorm → ReLU → FSConv512 → BatchNorm →
ReLU→ FSConv256 → BatchNorm→ ReLU→ FSConv1 → x ∈ R28×28

where Convk denotes for a convolution with k 4× 4 filters, FSConvk denotes the fractional strided
convolution with k 4 × 4 filters and FCk is the fully connected layer mapping to Rk. For VAE,
PRAE, GMVAE and Vampprior, the encoder contains two FC layers for the mean and the logarithmic
variance in the last layer.

For CelebA dataset:

Encoder E: x ∈ R64×64×3 → Conv128 → BatchNorm → ReLU → Conv256 → BatchNorm →
ReLU → Conv512 → BatchNorm → ReLU → Conv1024 → BatchNorm → ReLU → FC64 →
z ∈ R64

Decoder G: z ∈ R64 → FC8x8x1024 → BatchNorm → ReLU → FSConv512 → BatchNorm →
ReLU→ FSConv256 → BatchNorm→ ReLU→ FSConv3 → x ∈ R64×64×3

The Conv in CelebA also uses 4× 4 filters.

F.2 HYPERPARAMETER SETTINGS

To train the autoencoder, we use Adam optimizer Kingma & Ba (2014) with learning rate equals
0.001, β1 = 0.5, β2 = 0.999. The number of epochs is 50 on MNIST and 40 on CelebA, batch size is
100 for both datasets. The coefficient λ (autoencoder regularization) is 1. The number of components
of Gaussian mixture prior is set to 10. The fused parameter of fused Gromov Wasserstein β = 0.1.
The number of projections of sliced-discrepancies is 50 for fairness.

For max-SFG, SSFG, PSSFG and MSSFG: The maximum iteration of the optimization for max-
direction (distribution over directions) is 10.

F.3 RECONSTRUCTION AND FID COMPUTATION

The reconstruction score is computed by the Mean square error between reconstructed images and
original images in corresponding test set.

The FID score is computed between 10000 randomly generated images and all images from test set
(for evaluation), and all images from validation set (for model selection). We use the implementation
at https://github.com/bioinf-jku/TTUR.

F.4 TUNING PARAMETERS

For SSFG, PSSFG and MSSFG: We choose the κ that has the lowest FID score on corresponding
validation set.

F.5 CODE AND COMPUTING SYSTEM

We use the code for SFG and autoencoder-baselines from https://github.com/
HongtengXu/Relational-AutoEncoders, the code for GAN from https://github.
com/bunnech/gw_gan, We run code on a single NVIDIA RTX 2080 Ti.

34

Published as a conference paper at ICLR 2021

Source Image Transferred by Uniform10 Transferred by Uniform100 Transferred by vMF10

Transferred by vMF100 Transferred by PS10 Transferred by PS100 Transferred by MvMF5
10

Transferred by MvMF5
100 Transferred by MPS5

100 Transferred by Max-Dirac Target Image

Source Image Transferred by Uniform10 Transferred by Uniform100 Transferred by vMF10

Transferred by vMF100 Transferred by PS10 Transferred by PS100 Transferred by MvMF5
10

Transferred by MvMF5
100 Transferred by MPS5

100 Transferred by Max-Dirac Target Image

Source Image Transferred by Uniform10 Transferred by Uniform100 Transferred by vMF10

Transferred by vMF100 Transferred by PS10 Transferred by PS100 Transferred by MvMF5
10

Transferred by MvMF5
100 Transferred by MPS5

100 Transferred by Max-Dirac Target Image

Figure 21: Sliced-based image color adaptation using various distributions over projecting direc-
tions. Images are taken from (Muzellec & Cuturi, 2019), https://github.com/HYPJUDY/
color-transfer-between-images/tree/master/images.

35

Published as a conference paper at ICLR 2021

0.1 0.2

0.0

0.1

iteration 1

2.5 0.0 2.5

2

0

2

iteration 1000

2.5 0.0 2.5

2

0

2

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

SFG

0.0 0.1 0.2

0.0

0.1

iteration 1

2.5 0.0 2.5

2.5

0.0

2.5

iteration 1000

2.5 0.0 2.5

2.5

0.0

2.5

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

max-SFG

0.0 0.1 0.2

0.0

0.1

iteration 1

2.5 0.0 2.5

2

0

2

iteration 1000

4 2 0 2

2

0

2

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

SSFG

0.1 0.2

0.0

0.1

iteration 1

4 2 0 2

2

0

2

4
iteration 1000

2.5 0.0 2.5

2

0

2

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

PSSFG

0.0 0.1 0.2

0.0

0.1

iteration 1

2 0 2

2.5

0.0

2.5

iteration 1000

2 0 2

2.5

0.0

2.5

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

MSSFG (k = 2)

0.0 0.1 0.2

0.0

0.1

iteration 1

4 2 0 2

2

0

2

iteration 1000

2 0 2

2

0

2

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

MSSFG (k = 5)

0.0 0.1 0.2

0.0

0.1

iteration 1

2 0 2

2.5

0.0

2.5

iteration 1000

2 0 2
4

2

0

2

iteration 2000

4 2 0 2 4
4

2

0

2

4
target

MSSFG (k = 10)

Figure 22: 4 Gaussian modes generation by variants of fused Gromov Wasserstein

36

