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Continual Pre-Training of Large Language Models: How to (re)warm your
model?

Anonymous Authors1

Abstract
Large language models (LLMs) are routinely pre-
trained on billions of tokens, only to restart the
process over again once new data becomes avail-
able. A much cheaper and more efficient solution
would be to enable the continual pre-training of
these models, i.e. updating pre-trained models
with new data instead of re-training them from
scratch. However, the distribution shift induced
by novel data typically results in degraded per-
formance on past data. Taking a step towards
efficient continual pre-training, in this work, we
examine the effect of different warm-up strate-
gies. Our hypothesis is that the learning rate must
be re-increased to improve compute efficiency
when training on a new dataset. We study the
warmup phase of models pre-trained on the Pile
(upstream data, 300B tokens) as we continue to
pre-train on SlimPajama (downstream data, 297B
tokens), following a linear warmup and cosine
decay schedule. We conduct all experiments on
the Pythia 410M language model architecture and
evaluate performance through validation perplex-
ity. We experiment with different pre-training
checkpoints, various maximum learning rates, and
various warmup lengths. Our results show that
while rewarming models first increases the loss
on upstream and downstream data, in the longer
run it improves the downstream performance, out-
performing models trained from scratch—even
for a large downstream dataset.

1. Introduction
Large pre-trained models have enabled massive performance
improvements for many downstream tasks in vision (Kir-
illov et al., 2023; Oquab et al., 2023) and language (Brown
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et al., 2020; Zhao et al., 2023). However, training these foun-
dation models is prohibitively expensive. Existing works
aim to reduce the cost of large-scale model development
by enabling low-cost hyperparameter optimization (Yang
et al., 2022) or providing guidelines for maximizing per-
formance under a given compute budget (Hoffmann et al.,
2022). However, these works assume that models will be
trained from scratch. As the amount of data available for pre-
training is ever-growing, new and improved datasets (e.g.
RedPajama and SlimPajama (Together.xyz, 2023; Soboleva
et al., 2023; Touvron et al., 2023)) will continue to become
available. Should practitioners always combine existing
datasets (e.g. Pile (Gao et al., 2020)) and train from scratch
to obtain the best performance? Doing so would quickly be-
come prohibitively expensive and fails to leverage existing
pre-trained models.

Our approach circumvents the need for complete re-training
by continuing to pre-train existing models on new data.
We refer to this as “continual pre-training” and the goal is
to minimize the loss on new data while maintaining low
loss on previous data. Continual pre-training is a critical
challenge since it can lead to catastrophic forgetting (French,
1999). Moreover, the potential long sequence of training
stages may make common continual learning techniques
such as replay (Rebuffi et al., 2017; Ostapenko et al., 2022)
or regularisation (Kirkpatrick et al., 2017; Farajtabar et al.,
2020) not compute efficient enough (Lesort et al., 2023). A
simple and – from a compute cost perspective – scalable
solution to limit forgetting in such situations is to (only)
progressively decrease the learning rate every time new data
becomes available (Mirzadeh et al., 2020; Winata et al.,
2023). However, this solution is limited because repeatedly
decreasing the learning rate would cause it to eventually
become too small if the number of training stages becomes
high.

In this work, we take a step towards efficient continual pre-
training by studying how to re-increase a small learning
rate to keep training a pre-trained language model on new
data. We refer to this as re-warming the model. Re-warming
the model should improve learning efficiency by avoiding
a vanishing learning rate. We study warm-up strategies on
Pythia 410M model with various amounts of data, maximum
learning rates and different pre-trained checkpoints. This
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would allow a model trained initially on a large dataset to
benefit from resuming training on a newer large dataset
without having to retrain from scratch. In order to simulate
this setting, we fix our initial pre-training dataset to be Pile
and the newer dataset to be SlimPajama. We hope that this
may guide the adaptation of existing LLMs to future new
datasets.

Our results show that:

1. Progressively increasing the learning rate to warm-up
is not necessary but starting directly from the maxi-
mum learning rate creates an initial large spike in the
loss (chaotic phase a.k.a stability gap) with no conse-
quences later.

2. Adjusting the maximum learning rate can help trade-
off between upstream and downstream performance;
increasing the maximum learning rate leads to stronger
adaptation to the downstream dataset (SlimPajama),
while smaller learning rates preserve more perfor-
mance on the upstream dataset (Pile).

3. Continual pre-training with the latest pre-trained check-
point improves performance.

2. Setup
In our setup, the upstream (or pre-training) dataset is the Pile
(Gao et al., 2020). The downstream (or fine-tuning) dataset
is SlimPajama (Soboleva et al., 2023). SlimPajama is an ex-
tensively deduplicated version of RedPajama (Together.xyz,
2023) which is built based on the LLama dataset (Touvron
et al., 2023). In this work, we use “fine-tuning” and down-
stream continual pre-training interchangeably. However, in
our continual pre-training setting, we note that the down-
stream dataset is on the scale of the previous pre-training
dataset (i.e. very large, unlike many fine-tuning datasets).

The SlimPajama dataset is built from similar sources as the
Pile but with a higher quantity of data. Therefore, some
upstream data may be repeated during downstream pre-
training. Our experimental setup is comparable to the setup
of (Ash & Adams, 2020), where they train a classifier on
half of the samples of a dataset first, and fine-tune it later
on all samples. They show that warm starting for image
classification is challenging. Using a model pre-trained on
the Pile and continuing the pre-training on SlimPajama, we
follow an analogous setup for causal language modeling.

Datasets – We use the Pile with the same weights as Black
et al. (2022) for validation. We shuffle and randomly sample
the SlimPajama dataset (Soboleva et al., 2023) to form the
∼297B token training dataset and ∼316M validation token
dataset. We do not use replay. We use the same tokenizer as
(Black et al., 2022) that is trained specifically on the Pile.

Model – We use the 410M Pythia pre-trained on the Pile

Table 1. Token counts and train data weights for our subsampled
version of SlimPajama.

Dataset Sampling % Train Val

StackExchange 2.0 9.95B 13.08M
Arxiv 2.5 13.77B 22.73M
Wikipedia 4.5 11.78B 15.79M
Book 4.5 14.22B 22.04M
Github 4.5 15.41B 22.42M
C4 15.0 78.49B 72.49M
Commoncrawl 67.0 153.25B 147.28M

Totals 100 296.86B 315.83M

(Biderman et al., 2023), i.e. GPT-NeoX (Black et al., 2022)
models. We do not use flash attention (Dao et al., 2022).

Hyperparameters – We use the AdamW optimizer with
β1 = 0.9, β2 = 0.95, ϵ = 10−8, and a weight decay of 0.1.
The maximum learning rate is varied in our experiments
{1.5 · 10−4, 3 · 10−4, 6 · 10−4}. We use cosine learning rate
decay to a minimum of 0.1 · MaxLr. All warmup lengths
are calculated based on the full downstream dataset size
(297B tokens). We note that our cosine decay schedule
reaches the minimum learning rate at 240B tokens and is
constant thereafter. We set gradient clipping to 1.0. Training
is conducted at half-precision (FP16), without dropout.

3. Related Work
Large Language Models: LLMs are usually trained with
Adam (e.g., GPT3 (Brown et al., 2020), BLOOM (Scao
et al., 2022), Gopher (Rae et al., 2021), Pythia (Biderman
et al., 2023)) or AdamW (e.g., Chinchilla (Hoffmann et al.,
2022), LLaMA (Touvron et al., 2023)). In all the afore-
mentioned models, the learning rate schedule consists of a
warm-up followed by a cosine decay to 10% of the maxi-
mum learning rate.

Unsupervised Continual Learning: In this paper, we in-
vestigate various warm-up strategies for the continual pre-
training of LLMs. Continual pre-training uses a similar
type of training objectives as continual self-supervised train-
ing. Self-supervised pre-training was also studied in vision
datasets for image generation (Seff et al., 2017; Lesort et al.,
2019; Zhai et al., 2019; Nguyen et al., 2018; Davari et al.,
2022) or representation learning (Fini et al., 2022; Madaan
et al., 2021; Rao et al., 2019). In language, continual pre-
training was studied under the name of domain adaptation
pre-training (Ke et al., 2023a; Scialom et al., 2022; Guru-
rangan et al., 2021; Qin et al., 2022) where the new dataset
comes from a new domain. Another setting is where differ-
ent datasets are generated at different points in time (Han
et al., 2021; Jin et al., 2022; Jang et al., 2021; 2022; Loureiro
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et al., 2022). In our setup, the scenario is closer to domain
adaptation pre-training, because we do not take into account
the temporality of data.

Monitoring Learning Rate for Continual Training of
Language Models: In continual learning (CL), models are
trained on sequences of datasets. Therefore, the data is
not independent and identically distributed which can lead
the model to lose plasticity or forget. In such situations,
particular monitoring of the learning rate schedule can be
beneficial. In CL of language models (Caccia et al., 2021;
Ke et al., 2023a; Loureiro et al., 2022; Han et al., 2021;
Loshchilov & Hutter, 2018; Scialom et al., 2022; Winata
et al., 2023) different approaches have been evaluated: con-
stant learning rate (Ke et al., 2023a; Scialom et al., 2022),
progressive decrease (Winata et al., 2023) or warm-up then
decrease (Caccia et al., 2021).

However, to the best of our knowledge, no existing work
studies specifically the influence of the warm-up phase in the
context of continual pre-training for large language models.

4. Continual Warm-up
4.1. How long to warm up?

In the literature, warm-up is usually conducted on at most
1% of the data (Zhao et al., 2023). In this experiment, we
investigate if the results are sensitive to this hyper-parameter.

Setup: We experiment with different warm-up lengths for
a schedule of 297B tokens: 0%, 0.5%, 1%, and 2% of the
data and measure the performance after the first 50B tokens.
From a different perspective, we could see this experiment
as running a 1% warm-up on different amounts of data. We
hypothesize that warming up for a larger number of itera-
tions could lead to a smoother transition with subsequent
performance improvements.

Results: The results of this experiment are provided in
Fig. 1. They show that the amount of data used for warming
up the learning rate does not significantly influence the per-
plexity on the downstream task (learning) or the upstream
task (forgetting). These results invalidate our hypothesis
that using more tokens for warm-up can smooth the transi-
tion and show that linear warmup is useless in this setting.
Nevertheless, the model trained without any progressive
warm up experiences an initial “choatic phase” causing a
spike in the loss in its first few iterations of training, this
phenomenon is also referred to as stability gap (Lange et al.,
2023; Caccia et al., 2022).
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Figure 1. (top) Evolution of perplexity on SlimPajama while fine-
tuning with various amounts of tokens for warm-up. (bottom)
perplexity on the same experiments on the Pile validation set
(upstream). MaxLr = 3 · 10−4, MinLr = 0.1 · MaxLr. This
figure shows that at that scale, the length of the warm-up phase
does not significantly influence results.

Takeaway 1:

• The length of the warmup phase does not ap-
pear to have a significant effect on the Pile and
SlimPajama validation losses.

4.2. How high to warm up?

One objective of re-warming the learning rate is to enable
compute-efficient continual pre-training. A learning rate
that is too small may lead to inefficient learning on the
downstream dataset, whereas, a learning rate that is too
large may lead to catastrophic forgetting of the upstream
dataset. One important aspect of re-warming the learning
rate is to decide how high to increase it. Therefore, in this
experiment, we vary the maximum learning rate to assess
its effect on performance.

Setup: We fix the length of the warm-up phase to the default
amount of 1% of the training data and vary the maximum
learning rate. We experiment with the default value of
3 · 10−4 used for pre-training Pythia 410M (Biderman et al.,
2023), 1.5 · 10−4, and 6 · 10−4. For the post-warmup cosine
decay phase, we set the final learning rate to 10% of the

3
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maximum learning rate. The learning rate schedule we used
decays to the minimum learning rate at 240B tokens and
is constant thereafter. The runs are reported to the end of
240B tokens (the end of decay period).
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Figure 2. Evolution of loss on SlimPajama for different maximum
learning rates. The blue curve reports a model trained from scratch.
Growing the maximum learning rate consistently decreases the
final loss on downstream data. At convergence, the models being
continually pre-trained outperform the scratch and constant LR
baselines. However, the constant learning rate model achieves best
performance within the first 100B tokens.
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Figure 3. Evolution of loss on Pile for different maximum learning
rates. The blue curve reports a model trained from scratch. Grow-
ing the maximum learning rate consistently increases the final loss
on upstream data, i.e. it increases forgetting. The from-scratch
baseline consistently improves its performance on Pile, while being
trained on SlimPajama, showing the significant synergy between
both datasets.

Results: The results of this experiment are provided in fig-
ures 2, 3, and 4. We observe, at the end of training, that
larger maximum learning rates improve performance on
downstream data, while they hurt performance on upstream
data. Conversely, a smaller maximum learning rate im-
proves performance on upstream data, while limiting adap-
tation to downstream data—causing decreased performance.
These findings show that altering the maximum learning rate
can be an effective way to tradeoff between downstream
and upstream performance. Additionally, we observe a gen-
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Figure 4. Perplexity downstream vs perplexity upstream, RP fine-
tuning. Green points refer to the ends of the warm-up phases. The
red point represents the perplexity before starting the downstream
fine-tuning. Increasing the maximum learning rate improves per-
formance on the downstream data, but causes forgetting on the
upstream. This plot reports the same results as figures 2 and 3.

eral trend: fine-tuning on SlimPajama, causes the model
to forget what has been learned on the Pile leading to an
increase in the Pile validation perplexity. Finally, we note
that employing early stopping on the model trained from a
constant learning rate (similar to traditional fine-tuning) is
an economical way of adapting to the new data distribution
while retaining strong performance on the upstream dataset.

Takeaway 2:

• Rewarming then decaying the learning rate
appears necessary to learn well on the down-
stream task. Moreover, while keeping a con-
stant learning is initially advantageous on Pile,
this advantage vanishes when training long
enough on SlimPajama.

• A model that only learns on SlimPajama per-
forms worse on SlimPajama than models pre-
trained on Pile in spite of being optimised
solely for the downstream task, highlighting
positive transfer between the two datasets.

4.3. Comparing with from Scratch Training

In this experiment, we want to compare finetuned models
with models trained from scratch.

Setup: We train a model from random initialization using
the same cosine decay schedule as the MaxLr = 3 · 10−4

model in Section 4.2.

Results: As we can see in Fig. 2 and Fig. 3, all the fine-
tuned models with a warm-up perform better than the model
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trained from scratch. This shows that finetuning instead of
retraining might improve performance even when the down-
stream dataset is on the scale of the upstream dataset and
overlaps with the upstream dataset. We also observe that,
after 200B tokens, the model trained from scratch performs
better than the model finetuned using a constant learning
rate.

4.4. Re-warming on the same data

In the previous experiments, we have seen that finetuning
on new data leads to a quick increase of loss on past data,
that decreases later. The increase is higher when the max
learning rate is bigger. One hypothesis for the increase
in loss is that the distribution shift between upstream and
downstream data disturbs the training process. To assess this
hypothesis, we apply our warm-up policy in a setting with
no distribution shift. That is, we replicate our experiments
from figures 3 and 4 by fine-tuning on Pile.
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Figure 5. Pile validation loss while fine-tuning again on the Pile.
Warm-up phenomenon observed in Sec. 4.2 is also observed ap-
plied to fine-tuning again on the same data distribution. Warm-up
token=1% downstream tokens, MinLr = 0.1 · MaxLr.

Setup: In this experiment, instead of fine-tuning on SlimPa-
jama data, we fine-tune on 50B tokens of the Pile data with
the same parametrization of the warm-up policy as Sec. 4.2
experiments.

Results: Fig. 5, shows that re-warming the learning rate
while continuing to pre-train on the Pile has a similar effect
as re-warming on SlimPajama data Fig. 3 when looking
at the downstream validation loss. This suggests that the
distribution shift between Pile and SlimPajama is not solely
to blame for the negative impact of re-warming the learning
rate observed in sec. 4.2, and that the optimization dynamics
also plays a role in this increase of loss.

Fig. 6 shows that the training first increases perplexity on
both the Pile and SlimPajama data but reduces after on
both. Interestingly, Fig. 6 show a linear relationship between
SlimPajama perplexity and the Pile perplexity when fine-
tuning on the Pile, while it was not the case while fine-
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Figure 6. Perplexity on the Pile vs perplexity on SlimPajama when
fine-tuning on the Pile with various maximum learning rates.
Warm-up token=1% downstream tokens, MinLr = 0.1 · MaxLr.
Green points refer to the end of the warm-up phase.

tuning on SlimPajama (Fig. 3). One possible explanation
for this relationship is that models trained on Pile climb out
of a minimum during warmup and return towards the same
minimum as the learning rate is decayed, yielding the linear
trend.

Takeaway 3:

• Rewarming the learning rate appears to be a
significant cause for the degradation of perfor-
mance seen previously when starting to learn
on the downstream task, as evidenced by re-
warming then decaying the learning rate while
training on the same dataset.

• The models struggle to recover from the per-
formance hit due to rewarming the learning
rate when training on the same dataset.

4.5. Evaluating Earlier Checkpoints

Setup: We select three checkpoints from model pre-training
to test if warm-up strategies benefit from starting with non-
converged checkpoints. Our hypothesis is that selecting
checkpoints farther from convergence may benefit adapta-
tion to the downstream task as these checkpoints may be
located at more favorable points in the loss landscape.

To select significantly different checkpoints, we compare the
last pre-training checkpoint (i.e. Pythia 410M after 143, 000
iters), to an earlier checkpoint achieving a Pile validation
loss near the maximum Pile validation loss attained by all
models in Fig. 1 (bottom) (∼ 2.5), and a third checkpoint in
between the two other checkpoints.

Results: The evolution of the validation losses on SlimPa-
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Figure 7. Pile validation loss of models trained from the fully con-
verged checkpoint (red), the upstream saturation point (black), and
1/2 of the upstream saturation point (blue).

jama are provided in Fig. 7 and the evolution of the vali-
dation losses on the Pile is provided in appendix A. We
see in Fig. 7 that, in our setup, selecting earlier check-
points for later fine-tuning does not lead to improvement
in downstream performance. Therefore, selecting the latest
checkpoint is the best option. We can conclude that the
pre-training did not lead the model into a loss of plasticity
that would make the model difficult to re-warm.

Local conclusion: The experiments conducted in this sec-
tion led to the conclusion that re-warming the pre-trained
model on new data is a challenging task, even when the
downstream data is of similar provenance to the upstream
data. Our results show that the amount of tokens used for
warm-up does not significantly alter performance, grow-
ing the maximum learning rate improves downstream per-
formance of the final model while decreasing it improves
upstream performance, and selecting earlier checkpoints
decreases performance on both upstream and downstream
data.

Takeaway 4:

• Using an earlier checkpoint of Pile pretraining
does not lead to learning faster on SlimPa-
jama.

5. Discussion / Limitation
Data similarity and overlapping: In our experimental
setup, upstream and downstream data have a high similarity,
notably because of data overlap. Since in continual learning,
different types of shifts can lead to variations in performance
(Lesort et al., 2021), our results may not generalize to setups
with different distribution shifts, such as language domain
adaptation pre-training setups (Xu et al., 2019; Gururangan
et al., 2020; Ke et al., 2023a; Chakrabarty et al., 2019; Ke
et al., 2023b). Nevertheless, comparing Fig. 4 and Fig. 6,

we see that the results are not identical when fine-tuning
on the Pile or when fine-tuning on SlimPajama. A possible
explanation is that even a slight shift in data distribution can
lead to a significant perturbation of the learning dynamics.
For example, in the context of image classification, Igl et al.
(2020) show how a sudden transition of 10 to 20 % of the
labels in the dataset can have a significant impact on the
downstream performance (see Fig. 5 of (Igl et al., 2020)).

Experiments Scale:

As described in Sec. 2, our investigation explores models
of size 410M and fine-tuning dataset of size 297B tokens.
While this is a preliminary study, in future work, we plan
to verify whether our conclusions hold at different model
scales (e.g., 3B and 7B) and different dataset scales (e.g.,
100B and 600B). Moreover, we plan to test our models
throughout using benchmarks such as HELM (Liang et al.,
2022) or Harness (Gao et al., 2021) instead of only loss
or perplexity, as these benchmarks can provide important
insight into the evolution of model capabilities.

6. Conclusion
Our experiments demonstrate that warming up to higher
maximum learning rates helps models pre-trained on the
Pile adapt to SlimPajama, while a smaller maximum learn-
ing rater preserves performance on the pile. In both cases,
however, models that are rewarmed improve over models
trained from scratch. These results motivate the use of con-
tinual pre-training on new datasets rather than restarting
training from scratch. More research is needed, however,
to establish similar results for larger model scales, differ-
ent distribution shifts, and verify that this strategy can be
applied repeatedly to update models.

Software and Data
GPT-NeoX (Andonian et al., 2021), DeepSpeed (Rasley
et al., 2020), nccl (NVIDIA, 2016), Apex (NVIDIA, 2019),
Pytorch (Paszke et al., 2017), HuggingFace Transformers
library (Wolf et al., 2020).
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A. Upstream loss when fine-tuning various checkpoints.
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Figure 8. Pile validation loss of models trained from the fully converged checkpoint, the upstream saturation point, and 1/2 of the
upstream saturation point. The experiments for this figure are described in Sec. 4.5.
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Figure 9. Training from a pre-trained checkpoint achieves lower Pile and SlimPajama validation loss faster than training from scratch.
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