
Published as a conference paper at ICLR 2024

Algorithm 1 Proximal Policy Optimization
1: Initialize environment E containing local num envs parallel sub-environments
2: Initialize policy parameters ✓⇡ , value parameters ✓v , optimizer O
3: Initialize observation snext, done flag dnext

4: for i = 0,1,2,..., I do
5: Set D = (s, a, log ⇡(a|s), r, d, v) as tuple of 2D arrays
6: for t = 0,1,2,..., num steps do . Rollout Phase
7: Cache ot = snext and dt = dnext

8: Get at ⇠ ⇡(·|st; ✓⇡) and vt = v(st; ✓v)
9: Step simulator: snext, rt, dnext = E.step(at)

10: Store st, dt, vt, at, log ⇡(at|st; ✓⇡), rt in D
11: Estimate next value vnext = v(snext) . Learning Phase
12: Compute advantage ˆAadv

⇡ and return R using D and vnext

13: Prepare the batch B = D, ˆAadv
⇡ , R and flatten B

14: for epoch = 0,1,2,..., update epochs do
15: for mini-batch M of size m in B do
16: Normalize advantage M. ˆAadv

⇡
17: Compute policy loss L⇡ , value loss LV , and entropy loss LS using M
18: Back-propagate joint loss L = �L

⇡ + c1L
V � c2L

S

19: Clip maximum gradient norm of ✓⇡ and ✓v to 0.5
20: Step optimizer O w.r.t. ✓⇡ and ✓v

A PRELIMINARIES

Let us consider the RL problem in a Markov Decision Process (MDP) (Puterman, 2014), where S is
the state space and A is the action space. The agent performs some actions to the environment, and
the environment transitions to another state according to its dynamics P (s0 | s, a) : S ⇥A ⇥ S !
[0, 1]. The environment also provides a scalar reward according to the reward function R : S⇥A !
R, and the agent attempts to maximize the expected discounted return following a policy ⇡:

J(⇡) = E⌧ [G(⌧)] (1)
where ⌧ is the trajectory (s0, a0, r0, . . . , sT�1, aT�1, rT�1, sT)

and s0 ⇠ ⇢0, st ⇠ P (·|st�1, at�1), at ⇠ ⇡✓(·|st), rt = r (st, at)

PPO (Schulman et al., 2017) is a popular algorithm that proposes a clipped policy gradient objective
to help avoid unstable updates (Schulman et al., 2017; 2015):

J
CLIP(⇡✓) = E⌧

"
T�1X

t=0

min
⇣
rt(✓)Â

adv
⇡ (st, at), clip (rt(✓), 1� ✏, 1 + ✏) Âadv

⇡ (st, at)
⌘#

(2)

where ⇡✓old is the policy parameter before the update, rt(✓) = ⇡✓(at|st)
⇡✓old (at|st) , Âadv

⇡ is an advantage
estimator called Generalized Advantage Estimator (Schulman et al., 2016), and ✏ is PPO’s clipped
coefficient. During the optimization phase, the agent also learns the value function and maximizes
the policy’s entropy, therefore optimizing the following joint objective:

J
JOINT(✓) = J

CLIP(⇡✓)� c1J
VF(✓) + c2S[⇡✓], (3)

where c1, c2 are coefficients, S is an entropy bonus, and J
VF is the squared error loss for the value

function associated with ⇡✓. Algorithm 1 shows the pseudocode of PPO that more accurately re-
flects how PPO is implemented in the original codebase6. For more detail on PPO’s implemen-
tation, see (Huang et al., 2022a). Given this pseudocode, the following list unifies the nomencla-
ture/terminology of PPO’s key hyperparameters.

• world size is the number of instances of training processes; typically this is 1 (e.g., you
have a single GPU).

6https://github.com/openai/baselines

13

https://github.com/openai/baselines

Published as a conference paper at ICLR 2024

• local num envs is the number of parallel environments PPO interacts within
an instance of the training process (see line 1). num envs = world size ⇤
local num envs is the total number of environments across all training instances.

• num steps is the number of steps in which the agent samples a batch of
local num envs actions and receives a batch of local num envs next observations,
rewards, and done flags from the simulator (see line 6), where the done flags signal if the
episodes are terminated or truncated. num steps has many names, such as the “sampling
horizon” (Stooke & Abbeel, 2018) and “unroll length” (Freeman et al., 2021).

• local batch size is the batch size calculated as local num envs ⇤ num steps
within an instance of the training process (local batch size is the size of the B in
line 13).

• batch size = world size ⇤ local batch size is the aggregated batch size across
all training instances.

• update epochs is the number of update epochs that the agent goes through the training
data in B (see line 14).

• num minibatches is the number of mini-batches that PPO splits B into (see line 15).

• local minibatch size is m = local batch size / num minibatches, the
size of each mini-batch M (see line 15). minibatch size = world size ⇤
local minibatch size is the aggregated batch size across all training instances.

To make understanding more concrete, let us consider an example of Atari training. Typically, PPO
uses a single training instance (i.e., world size = 1), local num envs = num envs = 8, and
num steps = 128. In the rollout phase (line 6-10), the agent collects a batch of 8 ⇤ 128 = 1024
data points in D. Then, suppose num minibatches = 4, D is evenly split to 4 mini-batches of
size m = 1024/4 = 256. Next, if K = 4, the agent would perform K * num minibatches = 16
gradient updates in the learning phase (line 11-20).

We consider two options to scale to larger training data. Option 1 is to increment
local num envs – the agent interacts with more environments, and as a result, the training data is
larger. The second option is to increment world size – have two or more copies of Algorithm 1
running in parallel and average the gradient of the copies in line 20. Option 2 is especially desirable
when the users want to leverage more computational resources, such as GPUs.

Note that both options can be equivalent in terms of hyperparameters. For example, when setting
world size = 2, the agent effectively interacts with two distinct sets of local num envs envi-
ronments, making its num envs doubled. To make option 1 achieve the same hyperparameters, we
just need to double its local num envs. Below is a table summarizing the resulting hyperparam-
eters of both options.

Hyperparameter Option 1: Increment
local num envs

Option 2: Increment
world size

world size 1 2
local num envs 120 60
num envs 120 120
num steps 128 128
local batch size 15360 7680
batch size 15360 15360
num minibatches 4 4
local minibatch size 3840 1920
minibatch size 3840 3840

Importantly, we can get the same hyperparameter configuration for PPO by adjusting
local num envs and world size accordingly. That is, we can obtain the same num envs,
batch size, and minibatch size core hyperparameters.

14

Published as a conference paper at ICLR 2024

B DETAILED EXPERIMENT SETTINGS

For the experiments, the PPO and IMPALA’s hyperparameters can be found in Table 2. The Vtrace
implementation can be found in rlax7.

Table 2: PPO hyperparameters.
Parameter Names Parameter Values

Ntotal Total Time Steps 50,000,000
↵ Learning Rate 0.00025 Linearly Decreased to 0
Nenvs Number of Environments 128
Nsteps Number of Steps per Environment 128
� (Discount Factor) 0.99
� (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 4
" (PPO’s Clipping Coefficient) 0.1
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.01
! (Gradient Norm Threshold) 0.5
Value Function Loss Clipping False
Optimizer Setting Adam optimizer with ✏ = 0.00001

Table 3: IMPALA hyperparameters.
Parameter Names Parameter Values

Ntotal Total Time Steps 50,000,000
↵ Learning Rate 0.0006 Linearly Decreased to 0
Nenvs Number of Environments 128
Nsteps Number of Steps per Environment 20
� (Discount Factor) 0.99
� (mixing parameter) 1.0
Nmb Number of Mini-batches 4
⇢ (Clip Threshold for Importance Ratios) 1.0
⇢pg (Clip Threshold for Policy Gradient Importance Ratios) 1.0
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.01
! (Gradient Norm Threshold) 40.0
Optimizer Setting RMSprop optimizer with ✏ = 0.01,

decay = 0.99

C MOOLIB EXPERIMENTS

By default, moolib uses 256 environments, 10 actor CPUs, and a single GPU. We followed the
recommended scaling instructions to add 8 training GPU-powered peers, which in total used 2048
environments, 80 actor CPUs, and 8 GPUs. While the training time was reduced to about 27 min-
utes, sample efficiency dropped, and it obtained a catastrophic 28.51% median HNS after 200M
frames. We suspected the drop was due to the 2048 environments used, so we set the total number
of environments back to 256. Furthermore, we did not restrict moolib to use 50 CPUs because we
worried it might change the learning behaviors due to the issues mentioned in Section 3, so we kept
the default scaling to 80 CPUs. For comparison with moolib, monobeast experiments also use
80 CPUs.

7https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/
rlax/_src/vtrace.py#L162-L193

15

https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/rlax/_src/vtrace.py#L162-L193
https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/rlax/_src/vtrace.py#L162-L193

Published as a conference paper at ICLR 2024

Figure 7: Top figure: the median human-normalized scores of the two sets of moolib experiments.
Middle figure: the IQM human-normalized scores and performance profile (Agarwal et al., 2021).
Bottom figure: the average runtime in minutes and aggregate human normalized score metrics with
95% stratified bootstrap CIs.

We conducted two sets of moolib experiments and reported the set with a lower median and higher
IQM, as shown in Figure 7 for legacy reasons. During our debugging, we found the Asteroids
experiments in the first set of moolib experiments to obtain high scores, but we ran Asteroids
specifically for ten random seeds and found lower scores; this suggests the Asteroids experiments in
the first set were likely due to lucky random seeds, so we re-run the moolib experiments.

D THE EFFECT OF DIFFERENT WRAPPERS ON MOOLIB’S PERFORMANCE

The Atari wrappers can be important to the agent’s performance. As a preliminary study, we used
moolib’s default Atari wrappers8 implemented with gym.AtariPreprocessing to run ex-
periments and compare the results with the ones presented in the main text of the paper. As shown
in Figure 8, Atari wrappers matter – moolib’s default AtariPreprocessing wrappers result
in lower median and mean HNS, although IQM is roughly the same. To make a fair comparison, the
experiments presented in the main text all use the same EnvPool Atari wrappers.

E DIRECT PPO AND IMPALA COMPARISON

To make a direct (but not fair) comparison between PPO and IMPALA, we ran Cleanba PPO using
IMPALA’s settings and the results can be found at Figure 9.

8https://github.com/facebookresearch/moolib/blob/main/examples/atari/
atari_preprocessing.py

16

https://github.com/facebookresearch/moolib/blob/06e7a3e80c9f52729b4a6159f3fb4fc78986c98e/examples/atari/atari_preprocessing.py
https://github.com/facebookresearch/moolib/blob/main/examples/atari/atari_preprocessing.py
https://github.com/facebookresearch/moolib/blob/06e7a3e80c9f52729b4a6159f3fb4fc78986c98e/examples/atari/atari_preprocessing.py
https://github.com/facebookresearch/moolib/blob/main/examples/atari/atari_preprocessing.py

Published as a conference paper at ICLR 2024

Figure 8: Atari wrappers matter. When using gym.AtariPreprocessing wrappers with a
comparable setting to our EnvPool setup, we found moolibto have lower median and mean HNS,
although IQM is roughly the same.

F MULTI-NODE TRAINING

Cleanba can also scale to the hundreds of GPUs in multi-host and multi-process environments by
leveraging the jax.distributed package, allowing us to explore training with even larger batch
sizes. Here we use an earlier version of the codebase to conduct experiments with 16, 32, 64, and
128 A100 GPUs. We keep doubling the num envs, batch size, and minibatch size with
a larger number of GPUs (except for the 128 A100 experiment which uses the same num envs as
the 64 A100 experiment accidentally).

Due to hardware scheduling constraints, we only ran the experiments for 1 random seed. The results
are shown in Figure 10. We make the following observations:

• Linear scaling w/ 97% of ideal scaling efficiency. As we increased the number of GPUs
to 16, 32, 64, we observed a linear scaling in steps per second (SPS) in Cleanba achieving
1013163/(258754 ⇤ 4) = 97% of the ideal scaling efficiency. This is likely empowered
by the fast connectivity offered by NVIDIA GPUDirect RDMA (remote direct memory
access) in our cluster. Note that the 128 A100 experiments did not double the batch size so
its FPS is lower.

• Small batch sizes train more efficiently. As we increase batch sizes, particularly in the
first 40M steps, the sample efficiency tends to decline. This outcome is unsurprising, given
that the initial policy is random and Breakout initially has limited explorable game states.
In this case, the data in the batch is going to have less diverse data, which makes the large
batch size less valuable.

• Large batch sizes train more quickly. Like (McCandlish et al., 2018), we find increasing
the batch size does make the agent reach some given scores faster. This suggests that we
could always increase the batch size to obtain shorter training times if sample efficiency is
not a concern.

While we observed limited benefits of scaling Cleanba to use 128 GPUs, the objective of the scaling
experiments is to show we can scale to large batch sizes. Given a more challenging task, the training

17

Published as a conference paper at ICLR 2024

Figure 9: A direct PPO and IMPALA comparison. Running Cleanba PPO using Cleanba IMPALA’s
setting. Note that this is not a fair comparison because Cleanba IMPALA’s setting is likely well-
tuned IMPALA setting but not well-tuned PPO setting

Figure 10: Cleanba’s results from large batch size training. Going from 16 GPUs to 128 GPUs.

data is likely going to be more diverse and have a higher gradient noise scale (McCandlish et al.,
2018), which would help the agent utilize large batch sizes more efficiently, resulting in a reduced
decline in sample efficiency.

G TORCHBEAST LOGS

$ python -m torchbeast.monobeast_study \
--num_actors 80 \
--total_steps 10000000 \
--learning_rate 0.0006 \

18

Published as a conference paper at ICLR 2024

--epsilon 0.01 \
--entropy_cost 0.01 \
--batch_size 8 \
--unroll_length 240 \
--num_threads 1 \
--env Pong-v5
actor_index 32 initial policy_version 8 policy_version after rollout 20
actor_index 13 initial policy_version 8 policy_version after rollout 20
actor_index 57 initial policy_version 8 policy_version after rollout 20
actor_index 12 initial policy_version 8 policy_version after rollout 21
actor_index 51 initial policy_version 8 policy_version after rollout 21
actor_index 2 initial policy_version 8 policy_version after rollout 21
actor_index 56 initial policy_version 8 policy_version after rollout 21
actor_index 38 initial policy_version 9 policy_version after rollout 21
actor_index 37 initial policy_version 9 policy_version after rollout 22
actor_index 59 initial policy_version 9 policy_version after rollout 22
actor_index 9 initial policy_version 9 policy_version after rollout 22
actor_index 69 initial policy_version 9 policy_version after rollout 22
actor_index 35 initial policy_version 9 policy_version after rollout 22
actor_index 66 initial policy_version 9 policy_version after rollout 22
actor_index 10 initial policy_version 9 policy_version after rollout 22
actor_index 55 initial policy_version 10 policy_version after rollout 22
actor_index 53 initial policy_version 10 policy_version after rollout 22
actor_index 46 initial policy_version 10 policy_version after rollout 22
actor_index 54 initial policy_version 10 policy_version after rollout 23
actor_index 50 initial policy_version 10 policy_version after rollout 23
actor_index 8 initial policy_version 10 policy_version after rollout 23
actor_index 64 initial policy_version 10 policy_version after rollout 23
actor_index 77 initial policy_version 10 policy_version after rollout 23
actor_index 3 initial policy_version 11 policy_version after rollout 23
actor_index 7 initial policy_version 11 policy_version after rollout 23
actor_index 28 initial policy_version 11 policy_version after rollout 23
actor_index 49 initial policy_version 11 policy_version after rollout 23
actor_index 16 initial policy_version 11 policy_version after rollout 23
actor_index 24 initial policy_version 11 policy_version after rollout 23
actor_index 11 initial policy_version 11 policy_version after rollout 23
actor_index 14 initial policy_version 11 policy_version after rollout 23
actor_index 43 initial policy_version 13 policy_version after rollout 26
actor_index 58 initial policy_version 13 policy_version after rollout 26
actor_index 23 initial policy_version 13 policy_version after rollout 26
actor_index 29 initial policy_version 13 policy_version after rollout 26
actor_index 68 initial policy_version 13 policy_version after rollout 26
actor_index 75 initial policy_version 14 policy_version after rollout 26
actor_index 48 initial policy_version 14 policy_version after rollout 27
actor_index 67 initial policy_version 14 policy_version after rollout 27
actor_index 5 initial policy_version 14 policy_version after rollout 27
actor_index 18 initial policy_version 14 policy_version after rollout 27
actor_index 41 initial policy_version 15 policy_version after rollout 27
actor_index 78 initial policy_version 14 policy_version after rollout 27
actor_index 15 initial policy_version 15 policy_version after rollout 27
actor_index 34 initial policy_version 15 policy_version after rollout 27
actor_index 45 initial policy_version 15 policy_version after rollout 28
actor_index 22 initial policy_version 15 policy_version after rollout 28
actor_index 4 initial policy_version 16 policy_version after rollout 28
actor_index 6 initial policy_version 16 policy_version after rollout 28
actor_index 20 initial policy_version 16 policy_version after rollout 28
actor_index 39 initial policy_version 16 policy_version after rollout 28
actor_index 33 initial policy_version 16 policy_version after rollout 29
actor_index 74 initial policy_version 16 policy_version after rollout 29
actor_index 60 initial policy_version 16 policy_version after rollout 29
actor_index 42 initial policy_version 17 policy_version after rollout 29
actor_index 72 initial policy_version 17 policy_version after rollout 30
actor_index 25 initial policy_version 17 policy_version after rollout 30
actor_index 31 initial policy_version 17 policy_version after rollout 30
actor_index 19 initial policy_version 17 policy_version after rollout 30
actor_index 1 initial policy_version 18 policy_version after rollout 31
actor_index 79 initial policy_version 18 policy_version after rollout 31

19

Published as a conference paper at ICLR 2024

actor_index 65 initial policy_version 18 policy_version after rollout 31
actor_index 73 initial policy_version 18 policy_version after rollout 31
actor_index 36 initial policy_version 18 policy_version after rollout 31
actor_index 21 initial policy_version 18 policy_version after rollout 31
actor_index 0 initial policy_version 18 policy_version after rollout 31
actor_index 30 initial policy_version 18 policy_version after rollout 31
actor_index 44 initial policy_version 18 policy_version after rollout 31
actor_index 63 initial policy_version 19 policy_version after rollout 31
actor_index 76 initial policy_version 19 policy_version after rollout 32
actor_index 47 initial policy_version 19 policy_version after rollout 32
actor_index 52 initial policy_version 19 policy_version after rollout 32
actor_index 26 initial policy_version 19 policy_version after rollout 32
actor_index 71 initial policy_version 19 policy_version after rollout 32
actor_index 70 initial policy_version 19 policy_version after rollout 32
actor_index 17 initial policy_version 20 policy_version after rollout 32
actor_index 62 initial policy_version 20 policy_version after rollout 33
actor_index 40 initial policy_version 20 policy_version after rollout 33
actor_index 27 initial policy_version 20 policy_version after rollout 33
actor_index 13 initial policy_version 20 policy_version after rollout 33
actor_index 57 initial policy_version 20 policy_version after rollout 33
actor_index 32 initial policy_version 20 policy_version after rollout 33
actor_index 51 initial policy_version 21 policy_version after rollout 33
actor_index 61 initial policy_version 20 policy_version after rollout 33
actor_index 2 initial policy_version 21 policy_version after rollout 33
actor_index 56 initial policy_version 21 policy_version after rollout 34
actor_index 12 initial policy_version 21 policy_version after rollout 34

$ python -m torchbeast.monobeast_study \
--num_actors 80 \
--total_steps 10000000 \
--learning_rate 0.0006 \
--epsilon 0.01 \
--entropy_cost 0.01 \
--batch_size 8 \
--unroll_length 240 \
--num_threads 1 \
--env Pong-v5 \
--learner_delay_seconds 1.0

actor_index 72 initial policy_version 9 policy_version after rollout 10
actor_index 22 initial policy_version 9 policy_version after rollout 10
actor_index 37 initial policy_version 9 policy_version after rollout 10
actor_index 41 initial policy_version 9 policy_version after rollout 10
actor_index 16 initial policy_version 9 policy_version after rollout 10
actor_index 61 initial policy_version 10 policy_version after rollout 11
actor_index 18 initial policy_version 10 policy_version after rollout 11
actor_index 13 initial policy_version 10 policy_version after rollout 11
actor_index 56 initial policy_version 10 policy_version after rollout 11
actor_index 28 initial policy_version 10 policy_version after rollout 11
actor_index 4 initial policy_version 10 policy_version after rollout 11
actor_index 7 initial policy_version 10 policy_version after rollout 11
actor_index 65 initial policy_version 10 policy_version after rollout 11
actor_index 12 initial policy_version 11 policy_version after rollout 12
actor_index 14 initial policy_version 11 policy_version after rollout 12
actor_index 5 initial policy_version 11 policy_version after rollout 12
actor_index 3 initial policy_version 11 policy_version after rollout 12
actor_index 35 initial policy_version 11 policy_version after rollout 12
actor_index 51 initial policy_version 11 policy_version after rollout 12
actor_index 0 initial policy_version 11 policy_version after rollout 12
actor_index 6 initial policy_version 11 policy_version after rollout 12
actor_index 60 initial policy_version 12 policy_version after rollout 13
actor_index 77 initial policy_version 12 policy_version after rollout 13
actor_index 48 initial policy_version 12 policy_version after rollout 13

$ python -m torchbeast.monobeast_study \
--num_actors 40 \

20

Published as a conference paper at ICLR 2024

--total_steps 10000000 \
--learning_rate 0.0006 \
--epsilon 0.01 \
--entropy_cost 0.01 \
--batch_size 8 \
--unroll_length 240 \
--num_threads 1 \
--env Pong-v5

actor_index 34 initial policy_version 12 policy_version after rollout 18
actor_index 25 initial policy_version 13 policy_version after rollout 18
actor_index 4 initial policy_version 13 policy_version after rollout 18
actor_index 5 initial policy_version 13 policy_version after rollout 18
actor_index 14 initial policy_version 13 policy_version after rollout 18
actor_index 16 initial policy_version 13 policy_version after rollout 18
actor_index 12 initial policy_version 13 policy_version after rollout 18
actor_index 39 initial policy_version 13 policy_version after rollout 18
actor_index 30 initial policy_version 13 policy_version after rollout 18
actor_index 18 initial policy_version 13 policy_version after rollout 18
actor_index 13 initial policy_version 13 policy_version after rollout 18
actor_index 23 initial policy_version 13 policy_version after rollout 19
actor_index 35 initial policy_version 13 policy_version after rollout 19
actor_index 3 initial policy_version 14 policy_version after rollout 19
actor_index 17 initial policy_version 14 policy_version after rollout 19
actor_index 9 initial policy_version 14 policy_version after rollout 19
actor_index 6 initial policy_version 14 policy_version after rollout 19

21

	Introduction
	Background
	Reproducibility Issues in IMPALA
	Towards Reproducible Distributed DRL
	Decoupling hyperparameters and hardware settings
	Deterministic Rollout Data Composition

	Experiments
	Comparison with moolib and monobeast's IMPALA
	Discussion about monobeast's IMPALA
	Synchronous Architecture vs Cleanba Architecture

	Limitation
	Conclusion
	Preliminaries
	Detailed experiment settings
	moolib Experiments
	The effect of different wrappers on moolib's performance
	Direct PPO and IMPALA comparison
	Multi-node Training
	torchbeast logs

