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A PRELIMINARIES AND PROOFS
A.1 Preliminaries on Important Notations
We �rst de�ne the following set of symbols:

Data Row Space Basis Coordinate vector Singular value matrix
-83 2 R?⇥3 ( 2 R3 , dim(() = ? � 2 R3⇥? I 2 R? I�>�

->>3 2 R@⇥3 * 2 R3 , dim(* ) = @ ⌧ 2 R3⇥@ E 2 R? I⌧>⌧

W 2 R<⇥3 ' 2 R3 , dim(') =< ⇢ 2 R3⇥< A 2 R< I⇢>⇢

5 (-83 ) 2 R?⇥< � 2 R<, dim(�) = ? ⇢>� 2 R<⇥? 0 2 R? ⌃⇢>�

5 (->>3 ) 2 R@⇥< ⌫ 2 R<, dim(⌫) = @ ⇢>⌧ 2 R<⇥@ 1 2 R@ ⌃⇢>⌧

wherein ? and @ are the sample numbers of the in-distribution data and out-of-distribution data in the training set, respectively. 3 and
< are the dimensions of the data and the model, respectively. Based on the above table, for each sample G83 2 -83 , it can be denoted as
G83 = (�I)>. Additionally, -83 is represented for the in-distribution training set as (�z)>, where z stands for the set of I. Similarly, v, r , a
and b are the set of E , A , 0 and 1, respectively.

De�nition A.1 (Row space). Give a matrix W 2 R<⇥3 , the rowspace ' of W is the span of the row vectors of W , which can be denoted
as I (W>).

De�nition A.2 (Basis and Coordinate). Let ⇢ 2 R3⇥dim(') have orthonormal columns that span '. For arbitrary vectorF 2 W, there exist
a A 2 Rdim(') that satis�esF = ⇢A , wherein ⇢ is called the orthonormal basis of space ' and A is the coordinate vector ofF under ⇢.

P���� �� E������. 4.
1’
C=1

mLC

mWC
=

1’
C=1

2
�
WC �W⇤� E[->- ]

= 2
1’
C=1

(⇢rt � ⇢r⇤)>
�
?83�z (�z)> + ?>>3⌧v (⌧v)>

 

= 2
1’
C=1

�
⇢⇢> (?83�at> + ?>>3⌧bt

>) � ⇢r⇤
 > ⇥

�
?83�z (�z)> + ?>>3⌧v (⌧v)>

 

= 2
1’
C=1

�
(?83at�> + ?>>3bt⌧

>)⇢⇢> � r⇤>⇢>
 
⇥

�
?83�z (�z)> + ?>>3⌧v (⌧v)>

 

= 2
1’
C=1

�
?83at�

> + ?>>3bt⌧
>�

⇢⇢>
�
?83�z (�z)> + ?>>3⌧v (⌧v)>

 
� r⇤>⇢>E[->- ]

= 2
1’
C=1

�
?28 at�

>⇢⇢>�z (�z)> + ?2>bt⌧
>⇢⇢>⌧v (⌧v)>

 

+ ?8?>at�
>⇢⇢>⌧v (⌧v)> + ?8?>bt⌧

>⇢⇢>�z (�z)> � r⇤>⇢>E[->- ]

(20)

Given that ⇢>� and ⇢>⌧ represent the feature projections of the ID data basis and OOD data basis in the model space, respectively, it
follows that �>⇢⇢>⌧ ⌧ �>⇢⇢>� and �>⇢⇢>⌧ ⌧ ⌧>⇢⇢>⌧ . Consequently, Equation 20 can be further simpli�ed as:

1’
C=1

mLC

mWC
⇡ 2

1’
C=1

?28 at�
>⇢⇢>�z (�z)> + ?2>bt⌧

>⇢⇢>⌧v (⌧v)> � r⇤>⇢>E[->- ]

⇡ 2
1’
C=1

n
?28 eat⌃2⇢>� ,C-83 + ?2> ebt⌃2⇢>⌧,C->>3

o (21)

where eat = at � a⇤ and ebt = bt � b⇤. Note that in order to make the expression clearer, we omit the representation of some coordinate
vectors (z) in Eq. 2, so as to highlight the transformation represented by singular matrix ⌃⇢>� ,C and ⌃⇢>⌧,C . ⇤
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A.2 Proofs For Biased Performance on OOD and ID Data
De�nition A.3 (Projector). Give a subspace ( of R3 , and P is the projection matrix which projects a vector G 2 R3 into the subspace ( . If
subspace ( has a orthonormal basis⇢, we have:

%2 = %> = %

% (G) = ⇢>G
(22)

Lemma A.4. There exists householder matrix � = � � 2DD� satisfying 34C (� ) = �1.
Lemma A.5. If �⇤ is the conjugate transpose of �, then �⇤ has the same nonzero singular values with �.

P���� �� L���� A.5. Given � 2 ⇠<⇥= and � has the rank of A (�) = min(<,=), �⇤ 2 ⇠=⇥< . Let � = ⇠<⇥=
A Then we have �⇤� and ��⇤

are both non-negative de�nite Hermite matrices. It can be obtained for Lemma A.4 that, for all _ 2 R, we have:
_<

���= ���⇤�� = _=
���< ��⇤�

�� (23)

⇤

P���� �� E������. 7.
L>>3 = (,1 �, ⇤)->

>>3

=

(
,0 � 2;A lim

C!1

1’
C=1

mLC

mWC
�, ⇤

)
->
>>3

= n>>3 � 2;A
1’
C=1

n
?28 ⌃

2
⇢>� ,C-83 + ?2>⌃

2
⇢>⌧,C->>3

o
-)
>>3

⇡ n>>3 � 2;A
1’
C=1

?28 ⌃
2
⇢>� ,C⌃�>⌧ + ?2>⌃

2
⇢>⌧,C I⌧>⌧

(24)

L83 =
�
,1 �, ⇤� ->

83

⇡ n83 � 2;A
1’
C=1

?28 ⌃
2
⇢>� ,C I�>� + ?2>⌃

2
⇢>⌧,C⌃⌧>�

(25)

From Lemma. 2, we have ⌃⌧>� = ⌃�>⌧ . And since dim(* ) = @ ⌧ dim(() = ? , the smallest singular value in singular value matrix
min ⌃�>⌧ = min ⌃⌧>� = f@⌧>� , wherein f@⌧>� represents the @-th largest value in the singular value matrix. Ignoring terms representing
data, it can be derived that:

L>>3 � L83 ⇡ (?28 � ?2> ) (1 � ⌃�>⌧ ) + n > 0, (26)
⇤

Discussion (Performance di�erence): The result intuitively shows that the undirectly learned model performs better on feature distribu-
tions with larger sample numbers. As shown in Eq. 7, the di�erence in model performance between OOD and ID data is linearly related to
the proportion of the corresponding samples and the correlation degree between the di�erent feature distributions. What’s more, when
the out-of-domain data has the same proportion as in-domain data in the training dataset (?8 = ?> ), or the data distributions of OOD are
consistent with ID, the task loss di�erence between OOD and ID data could be reduced to zero.

A.3 Proofs for ID-targeted Model Sparse
Lemma A.6. (3.7) Spurious features targeted model sparse can e�ectively reduce the performance deviation of the learned model between
in-domain data and out-domain data.���� R(->>3 ) � R(-83 )

R(->>3 )B?0AB4 � R(-83 )B?0AB4
���� ⇡

�����
Õ<

9=1 ?> f̃ 9 b 9W 9->>3 �Õ<
8=1 ?8f8b8_8-83Õ<

9=1 ?> f̃ 9 b 9W 9->>3 �Õo
8=1 ?8f8b8_8-83

����� � 1, (27)

where f8 , f̃8 is the 8-th maximums in ⌃⇢>� and ⌃⇢>⌧ . And we have f > 0 since the singular values are non-negative.< and o are the rank
of the singular value matrix after performing compact singular decomposition and truncated singular value decomposition on the projections,
respectively.

P���� �� L���� 3.7. As mentioned before, the projection space before the model sparse could be represented as:

⇢r =
<’
8=1

�
?83f8b8_

>
8 + ?>>3 f̃8b8W

>
8
�

(28)

SFP prunes the model by trimming the smallest singular values in ⌃ as well as their corresponding left and right singular vectors. In this
way, SFP could remove the spurious features in ID data space and substructures in the model space simultaneously in a targeted manner
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along the directions with weaker actions for projection. The projection space after sparse with only the most important o singular values
can be formalized as:

⇢rB?0AB4 =
o’
8=1

?83f8b8_
>
8 +

<’
9=1

?>>3 f̃ 9 b 9W
>
9 . (29)

Based on the representation of the projection spaces, the model response to data features R(- ) = ⇢r- can be calculated as:

R(- ) =
�
?8⌅⌃⇢>�⇤

�1 + ?>⌅⌃⇢>⌧��1
 >

-> (30)

⇤

A.4 Proofs for the correspondence between model substructure and spurious features
Speci�cally, we de�ne 5 ; (G) as the feature maps output of G at layer ; . It represents the projection of G onto the model space de�ned over
the spanning set ⇢ to be learned. We abbreviate the �nal probabilities as 5 (G) for simpli�cation. Referring to Sec. 3.2.1, we have G 2 -83 if
L24 (G)  �. Thus, the optimization target of SFP can be formulated as:

min
⇢
EG⇠-L24 (G,W) + [

!’
;=1
EG⇠-83 | |5 ; (G) | |1, (31)

where [ is the sparsity factor imposed on the feature projections for the identi�ed ID data. It serves as an adjustable weight to calibrate the
feature response of ID data, as well as sparse the corresponding substructures.

Lemma A.7. (3.8) De�ne 4 = |5 ⇤ (G) � 5 (G) | as the ;1-norm between the true distibution 5 ⇤ (G) and 5 (G). When [ < 24 , SFP could e�ectively
reduce the learning of the model to spurious features but keep the performance on the same features.

P���� �� L���� A.7. The prediction errors of feature projections !5 can be de�ned as:

!24 = |5 ⇤ (G) � 5(G) |2

=
’

8, 9=91[92
(5 ⇤ (G) � f8, 91b8>_ 91 � f8, 92b8>W 92 )2, (32)

and the corresponding gradient is:
m!24

mf8, 91b8
=

m42

mf8, 9 b8
= 24

m4

mf8, 9 b8

= 24

��5 ⇤ (G) � f8, 91b8>_ 91 � f8, 92b8>W 92 )
��

mf8, 9 b8
= �24_ 91 ,

(33)

where 8 and 9 are the index of column vectors in the orthogonal basis for model space and feature space, respectively. For OOD data, the
gradient of the column vectors in the OOD projection matrix interacting with the 9C⌘ feature vector is �24W 92 .
Therefore, for all data samples in the training set, the update of the 8C⌘ direction vector of the projection matrix at round C is:

f8, 9 b
C
8 = f8, 9 b

C�1
8 � ?8 (�24_ 91 ) � ?> (�24W 92 ) + ?8[_ 91 (34)

Split the in-domain features into the spurious features � 0 and the invariant features �# , and split the out-of-domain features into the
unknown features ⌧ 0 and the invariant features �# . Since the environment features in-domain and out-domain are di�erent with high
probability under the OOD setting, we suppose � 0 and⌧ 0 are orthogonal and de�ne 0,1 2 ⌅ as the column vectors interact with � 0 and⌧ 0

respectively. The updates of 0, 1 could be formulated as:

f0,� 0bC0 = f0,� 0bC�10 � ?8 (�24_� 0 ) � ?8[_� 0

f1,⌧ 0bC1 = f1,⌧ 0bC�11 � ?> (�24W⌧ 0 )
(35)

Also, de�ne 2 2 ⌅ to be the set of the column vectors in the projection matrix that interacts with invariant features that are consistent in
domain and out of domain, and the updates of 2 can be computed as:

f2,�# bC2 = f2,�# bC�12 + 24?8_�# + 24?>W�# � ?8[_�# (36)

To achieve spurious features-targeted unlearning and invariant features-targeted learning of the model, the following constraints need to be
satis�ed:

24?8_�# + 24?>W�# � ?8[_�# > 24?>W⌧ 0

) [  24?8_�# + 24?>W�# � 24?>W⌧ 0

?8_�#
⇡ 24

(37)

Since the de-learning rate of the spurious feature is positively correlated with [, the upper bound [ = 24 is taken in this work. ⇤
12
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B ABLATION EXPERIMENTS
In this section, we mainly focus on two aspects: the initialization of the dense model, and the mapping relation versatility:

background-label mapping relation in the biased samples’ setting.

B.1 The initialization of the dense model

(a) Random initialization (b) Random digit-color mapping

Figure 8: The e�ect of some random settings on the performance of SFP.

First, to demonstrate the consistent performance of the proposed SFP regardless of the randomness of the experiment environments, we
used ten di�erent random seeds to initialize the deep learning model and record the �nal accuracy on FullColoredMNIST (FCMNIST). We
use (0.9, 0.7, 0.0) as the biased ratio coe�cient in this experiment. Fig. 8a illustrates the mean accuracy of 10 di�erent experiment settings.
We notice that the proposed SFP outperforms MRM and ERM in all datasets. This indicates that SFP can successfully sparse the spurious
feature-associated network structure regardless of di�erent model initializations.

B.2 The mappings relations of OOD samples
In our experiment setting, we use the biased data samples, which have a static one-to-one digit-color relationship, as the ID data samples. On
the contrary, the OOD data samples have randomly assigned colored backgrounds. To further demonstrate that our method can successfully
prune spurious features regardless of the mapping relations, we evaluate the test accuracy in 5 di�erent mapping relation settings and draw
the mean accuracy in Fig. 8b. As the experiment result shows, the average accuracy of SFP is relatively higher, and the variance of the
accuracy is relatively lower, which shows the superiority of the proposed SFP is stable and robust. This suggests that SFP successfully prunes
the sub-network associated with any spurious feature.

B.3 The feature responses of spurious correlations
Furthermore, to validate the e�ectiveness of SFP in suppressing the learning of spurious features, we examine the progression of the network’s
feature responses to in-domain samples across the entire training trajectory. The response values are measured by the average attention
across all feature channels at each layer. Speci�cally, we introduced a channel attention mechanism, named Squeeze-and-Excitation (SE)
module [14], to score the channel saliency of feature maps for input G8 . The computed channel saliencies, denoted as c; (G8 ), are numerical
values produced by a Sigmoid function, ranging from 0 to 1. For models trained with ERM on unbiased data, the expected average attention
values for the feature channels at each layer are 0.5. These values represent the relative importance of the corresponding feature channel,
with smaller values denoting reduced importance. In summary, the sparsity of channel saliency determines the number of e�ective �lters for
structures. For inputs, the mean of these channel attentions indicates the models’ �tting degree to the current samples. We conducted the
experiments on ResNet-18 and ColoredMNIST.

The results are shown in Fig. 9. As the training progresses, SFP gradually weakens the feature responses to spurious correlated data,
while under ERM and MOD methods, this response shows no signi�cant changes. The failure of ERM is attributed to its inclination to learn
all correlations indiscriminately to enhance predictive accuracy. On the other hand, the failure of the MOD method, as a structured OOD
approach, lies in its utilization of existing pruning techniques without speci�c enhancements for OOD attributes. These pruning methods
often lack feature speci�city, meaning they do not consider the correspondence between the structure and features. Consequently, they

13
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(a) layer 0 (b) layer 1 (c) layer 2 (d) layer 3

(e) layer 4 (f) layer 5 (g) layer 6 (h) layer 7

Figure 9: The feature response intensity to in-domain samples at di�erent layers of the model.

(a) Domains (b) Waterbirds

Figure 10: The average testing accuracy over di�erent domains on CelebA. The hair color blond, dark is used as the target, and
the gender male, female is used as the spurious attribute. The smallest combination group is blond-haired males.

apply the same sparse penalty to branches responding to invariant and spurious features simultaneously. In contrast, SFP, designed with
OOD attributes in mind, employs feature-speci�c network pruning. Consequently, it sidesteps the above-mentioned issues.

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Dataset details
In this section, we will provide a clear description of the non-domainbed datasets in the main paper, including three synthetic dataset -
FullColoredMNIST, ColoredObject, and SceneObject, and two real-world datasets - CelebA and Waterbirds.

• FullColoredMNIST is a ten-class biased variant of the original MNIST dataset [42]. The digit shapes serve as invariant features
while colors as spurious ones. Ten di�erent colors were selected to de�ne a one-to-one corresponding relationship with ten-digit
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(a) Domains (b) Waterbirds

Figure 11: The average testing accuracy over di�erent domains on Waterbirds. The bird species waterbird, landbird are used as
the label, while the bird’s locations water background, land background are used as a spurious attribute. The smallest domain
is waterbirds on land.

(a) Blonde female (b) Dark female (c) Blonde male (d) Dark male

Figure 12: Testing accuracy of di�erent domains on CelebA.

(a) Waterbird, water (b) Landbird, land (c) Landbird, water (d) Waterbird, land

Figure 13: Testing accuracy of di�erent domains on Waterbirds.

classes (e.g., 2 ⌧ 6A44=, 4 ⌧ ~4;;>F ). For each domain, a bias coe�cient is de�ned to represent the ratio of images adhering to this
speci�c relationship, with non-conforming images randomly colored.

• ColoredObject is constructed by superimposing ten classes of objects extracted from the MSCOCO dataset [23] onto backgrounds
of ten distinct colors [42]. These ten classes of objects include boats, airplanes, trucks, dogs, zebras, horses, birds, trains, buses, and
motorcycles. The spurious correlation is de�ned as the one-to-one correspondence between objects and colors.

• SceneObject [42] consists of ten classes of objects extracted from the MSCOCO dataset, which are placed into ten scenic backgrounds
from the Places dataset [45]. These scenic backgrounds render the task more complex compared to ColoredObject. Similar to
FULLCOLOREDMNIST, SceneObject establishes a one-to-one object-scene relationship, making it more biased and consequently
more challenging than previous tasks.

• CelebA dataset is a widely-used celebrity face dataset with 162770 training examples [26]. It contains 40 attribute labels (like
"Smiling", "Wearing Hat", etc.) Following previous OOD works [24, 32, 35], we classify hair color as either blonde or non-blonde, a
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(a) PACS-ResNet18 (b) PACS-ResNet18 (c) O�ceHome-ResNet18 (d) O�ceHome-ResNet18
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Figure 14: The accuracy comparison of SFP+IRM and IRM.

(a) MLP-CMNIST (b) MLP-CMNIST (c) ResNet18-FMNIST (d) ResNet18-FMNIST

Figure 15: The accuracy comparison of SFP+VREx and SparseIRM+VREx.

feature spuriously associated with the gender binary of the celebrities (male or female). The training set is divided into four domains,
including drak-haired females, blond-haired females, dark-haired males, and blond-haired males, with 1387 in the smallest group
(blond-haired males).

• WaterBirds is a subset of the Caltech-UCSD Birds-200-2011 dataset [37] with 4795 training examples, speci�cally constructed for
studying image recognition with spurious correlations of backgrounds [32]. It incorporates images of waterbirds and landbirds from
the Caltech-UCSD Birds-200-2011 (CUB) dataset as the foreground, paired with either water or land backgrounds obtained from the
Places dataset. The training set is divided into four domains, including landbirds on land, waterbirds on water, landbirds on water,
and waterbirds on land, with 56 in the smallest group (waterbirds on land).

C.2 Evaluation on more datasets
We further expanded the evaluation scope of SFP to two real-world datasets: WaterBirds and CelebA. The experiment is divided into two
groups, including comparisons of average accuracy across all domains and comparisons of the accuracy on each individual domain.

Fig. 10 and Fig. 11 illustrated the comparative results of cross-domain average testing accuracy based on the CelebA and Waterbirds
datasets, respectively. First, we visualized each domain of CelebA on Fig. 10a, and Waterbirds on Fig. 11a. Subsequently, we compare the
cross-domain average accuracies of di�erent methods in Fig. 10b (CelebA) and 11b (Waterbirds). The results demonstrate the superior
performance of our proposed method, which reaches a remarkable accuracy of 96.41% on CelebA and 88.13% on Waterbirds. Speci�cally,
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Figure 16: The performance of SFP across various domains with distinct classes.

(a) ID accuracy (b) OOD accuracy (c) ID loss (d) OOD loss

Figure 17: The evaluation of SFP on di�erent domains.
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SFP’s cross-domain average accuracy on the CelebA dataset surpasses ERM by 16.8% and DRO by 6.45% (A.b), while on the Waterbirds
dataset, it exceeds ERM by 7.23% and DRO by 4.15%.

Further insights into the testing accuracy of individual domains based on the CelebA andWaterbirds datasets are provided in Figures C and
D, respectively. Within this framework, the models were trained across all domains while tested on individual domains, with inter-domain
sample quantities varied. Speci�cally, the CelebA dataset encompasses four domains: blonde-haired female, blond-haired male, dark-haired
female, and dark-haired male, with the fewest samples found in the blond-haired male domain. Similarly, the Waterbirds dataset consists of
four domains: waterbirds on water background, waterbirds on land background, landbirds on water background, and landbirds on land
background, with the fewest samples observed in the waterbirds on land background domain. In this context, SFP consistently demonstrates
a satis�ed performance. As depicted in Fig. 12c and Fig. 12c, SFP achieves a substantial accuracy improvement within the smallest domain,
exhibiting a remarkable 42.89% increase on CelebA (with blond male, ERM) and 20.28% increase on Waterbirds (with landbird on water
background, ERM). Across the remaining three domains, test accuracies are comparably high. SFP improves the test accuracy by a minor
3.9% over DRO on the blond-haired female domain and 7.02% over ERM on the waterbirds-on-land domain.

Discussion: It can be seen that while ERM demonstrates satisfactory performance across multiple domains, it exhibits subpar performance
within the smallest domain. What’s more, despite DRO achieving an enhancement in average accuracy, it sacri�ces performance within
speci�c groups to bolster accuracy within others, exemplifying instances of trade-o�s. In contrast, SFP achieves the most robust generalization
accuracy by iteratively learning invariant features through feature-oriented model pruning, thereby outperforming the other methods.

C.3 Evaluation on combined methods
To demonstrate the orthogonal e�ect of SFP to non-structure OOD methods, we evaluate the performance of SFP combined with other
non-structure OOD methods. The experiments are conducted on DomainBed, including PACs, COLOREDMNIST, O�ceHome, FullCOL-
OREDMNIST, and RotatedMNIST. It can be seen that SFP achieves superior performance among all the competitors, and the improvements
are signi�cant in some cases. To be speci�c, Fig. 14 illustrates the performance comparison between SFP+IRM and the original IRM. It can be
seen that SFP outperforms IRM with 9.52% on ‘PACS-ResNet18’, 5.41% on ‘COLOREDMNIST-MLP’, 0.92% on ‘O�ceHome-ResNet18’, and
4.45 % on ‘RotatedMNIST-MLP’. The superior results on IRM and VREx demonstrate the orthogonal enhancement e�ect of SFP.

Fig. 15 presents the performance comparison between SFP+VREx and SparseIRM+VREx. SFP outperforms SparseIRM with 3.41% higher
test accuracy on MLP and even 29.12% on ResNet18. An interesting phenomenon is that, on small MLP, SparseIRM �rst shows over�tting
during the training stage, and then, after 7 (⇥ 300 iterations) steps, there is a signi�cant increase in test accuracy. The training process
of SparseIRM exhibits an obvious two-stage trend, which is the same as regular non-feature-targeted model pruning. Di�erently, SFP
consistently shows a stable learning curve and achieves higher performance in both ID (train) and OOD (test) environments. In summary, the
comparison results demonstrate that SFP has achieved preeminent performance across most structure-based OOD generalization methods.

C.4 Evaluation on di�erent domains
We further evaluated the performance of the SFP on each domain to explore whether varying invariant targets under the same intensity of
spurious features a�ect OOD generalization. The results are presented in the Fig. 16. We �rst illustrate several examples from the training
and testing sets. In the training set, most samples align with the previously described in-domain data settings, establishing a one-to-one
relationship between the background and the label for each digit. Each testing set contains digits of only one category, with the background
of that digit category di�ering from the training domain.

In this setup, we evaluated the performance of SFP on di�erent test domains and compared the results with the ERM method and another
popular structured method MRM. Firstly, vertically within the same graph, SFP achieved better generalization performance than MRM in
almost all cases. Secondly, horizontally across di�erent graphs, there was a signi�cant di�erence in the accuracy improvement of SFP over
ERM across di�erent classes. In examples where invariant features such as digits 0 and 1 are relatively easy to learn, the three methods
showed comparable accuracy. This indicates that ERM and MOD also learned invariant features well. However, in examples where invariant
features such as digits 5 and 8 are more challenging to learn, SFP outperformed MOD and ERM signi�cantly. This not only highlights the
strong OOD generalization performance of SFP but also re�ects the poor mastery of ERM in complex invariant feature scenarios. The
experimental conclusions in this section align with previous works [5, 27]: neural networks trained with the ERM inherently learn both
invariant and spurious features, but they tend to prioritize shortcuts at the early stage.

Similarly, we also split the dataset as in-domain and out-of-domain and tracked the performance separately during training. The results
are shown in Fig. 17. We conducted two evaluations with di�erent initializations for each method. It can be observed that in all cases,
SFP achieved outstanding OOD generalization performance, surpassing the baseline methods by approximately 5% during convergence.
Moreover, we compared the task loss of SFP and other methods across di�erent data domains, and the results further validated the superior
performance of the proposed approach.
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