
Published as a conference paper at ICLR 2024

SIMPLICIAL REPRESENTATION LEARNING WITH
NEURAL k-FORMS

Kelly Maggs1, Celia Hacker2, Bastian Rieck3,4
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ABSTRACT

Geometric deep learning extends deep learning to incorporate information about the
geometry and topology data, especially in complex domains like graphs. Despite
the popularity of message passing in this field, it has limitations such as the need for
graph rewiring, ambiguity in interpreting data, and over-smoothing. In this paper,
we take a different approach, focusing on leveraging geometric information from
simplicial complexes embedded in Rn using node coordinates. We use differential
k-forms in Rn to create representations of simplices, offering interpretability and
geometric consistency without message passing. This approach also enables us
to apply differential geometry tools and achieve universal approximation. Our
method is efficient, versatile, and applicable to various input complexes, including
graphs, simplicial complexes, and cell complexes. It outperforms existing message
passing neural networks in harnessing information from geometrical graphs with
node features serving as coordinates.

1 INTRODUCTION

Geometric deep learning (Bronstein et al., 2017) expanded the scope of deep learning methods to
include information about the geometry–and, to a lesser extent, topology—of data, thus enabling
their use in more complicated and richer domains like graphs. While the recent years have seen
the development of a plethora of methods, the predominant paradigm of the field remains message
passing (Veličković, 2023), which was recently extended to handle higher-order domains, including
simplicial complexes (Ebli et al., 2020), cell complexes (Hajij et al., 2020), and hypergraphs (Heydari
& Livi, 2022). However, despite its utility, the message passing paradigm suffers from inherent
limitations like over-smoothing, over-squashing, and an inability to capture long-range dependencies.
These limitations often require strategies like graph rewiring, which change the underlying graph
structure (Gasteiger et al., 2019; Topping et al., 2022) and thus affect generalisation performance.

Our paper pursues a completely different path and strives to leverage additional geometric information
from a data set to obtain robust and interpretable representations of the input data. Specifically, we
consider input data in the form of simplicial complexes embedded in Rn via node coordinates. This
type of complex can be built from any graph with node features, with node features acting as the
coordinates, for example. Our key insight is the use of differential k-forms in Rn. A k-form in Rn
can be integrated over any k-simplex embedded in Rn to produce a real number. Thus an ℓ-tuple
of k-forms produces an ℓ-dimensional representation of the simplex independently of any message
passing. From this perspective, k-forms play the role of globally consistent feature maps over the
space of embedded k-simplices, possessing the geometric semantics and interpretability of integration.
This enables us to use tools from differential geometry to prove a version of universal approximation,
as well as a number of other theoretical results. Moreover, the structure of differential forms in Rn
makes learning algorithms (computationally) feasible. In particular, a multi-layer perceptron with
the right dimensions induces a k-form on Rn that can be integrated. This implies that learnable,
finitely-parametrised differential forms can be woven into existing machine learning libraries and
applied to common tasks in geometric deep learning. We find that our method is better capable
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of harnessing information from geometrical graphs than existing message passing neural networks.
Next to being efficient, our method is also generally applicable to a wide variety of input complexes,
including graphs, simplicial complexes, and cell complexes.1

In a nutshell: We consider DATA in the form of simplicial chains on embedded simplicial
complexes, defining learnable differential k-forms as FEATURE MAPS, and introduce the concept
of an integration matrix, which serves as an overall REPRESENTATION of the data.

Organisation of Paper. We present the relevant background for simplicial complexes and differen-
tial forms in Section 2. In Section 3, we introduce neural k-forms and prove a universal approximation
statement. We also show how neural k-forms induce a so-called integration matrix, and use the prop-
erties of integration to prove a number of propositions. In Section 4 we present the basic architecture
and algorithms. Finally, in Section 5, we perform several intuitive experiments and benchmark our
method on standard geometrical deep learning data sets.

Related Work. Several methods focus on generalising graph neural networks (GNNs) to higher-
dimensional domains, proposing simplicial neural networks (Bodnar et al., 2021b; Bunch et al., 2020;
Ebli et al., 2020; Giusti et al., 2022; Goh et al., 2022; Keros et al., 2022; Roddenberry et al., 2021),
methods that can leverage higher-order topological features of data (Hajij et al., 2023; Hensel et al.,
2021; Horn et al., 2022), or optimisation algorithms for learning representations of simplicial com-
plexes (Hacker, 2020). All of these methods operate on simplicial complexes via diffusion processes
or message passing algorithms. Some works also extend message passing or aggregation schemes
to cell complexes (Bodnar et al., 2021a; Hajij et al., 2020; 2023) or cellular sheaves (Barbero et al.,
2022; Hansen & Gebhart, 2019). However, these existing methods exhibit limitations arising from the
use of message passing or aggregation along a combinatorial structure. Message passing often results
in over-smoothing (a regression to the mean for all node features, making them indistinguishable)
or over-squashing (an inability to transport long-range node information throughout the graph),
necessitating additional interventions (Gasteiger et al., 2019; Nguyen et al., 2023; Topping et al.,
2022). Hence, there is a need for methods that go beyond message passing. Our work provides a
novel perspective based on the integration of learnable k-forms on combinatorial domains like graphs
or simplicial complexes embedded in Rn, i.e. we assume the existence of (vertex) coordinates.

2 BACKGROUND

This section introduces the required background of simplicial complexes and differential forms. We
restrict our focus to simplices and differential forms in Rn, given this is the only setting we will use
in practice to make the theory more accessible. For additional background references, we recommend
Nanda (2021) for computational topology and Lee (2003) or Tao (2009) for differential forms. More
details are also provided in Appendix A.

Abstract Simplicial Complexes. An abstract simplicial complex S is generalisation of a graph
on a set of vertices S0 . In a graph, we have pairwise connections between nodes given by edges,
or 1-dimensional simplices (denoted by S1). In simplicial complexes, there are higher-dimensional
counterparts of these connections, called the k-dimensional simplices, or just k-simplices. The
k-simplices are connections between k+1 vertices of the set S0, with a 2-simplex forming a triangle,
a 3-simplex forming a tetrahedron, and so on. We denote a k-simplex by σ = [v0, . . . , vk], where
vi ∈ S0, writing Sk to refer to the set of all k-simplices. If a simplex σ ∈ S, then so are all of its
faces, i.e. all simplices formed by subsets of the vertices of σ.

Affine Embeddings. Data in geometric deep learning most often comes as a geometric object—a
graph or simplicial complex—combined with node features in Rn. Formally, node features correspond
to a node embedding of a simplicial complex S , which is a map ϕ : S0 → Rn. The standard geometric
k-simplex is the convex hull ∆k = [0, t1, · · · , tk] ⊂ Rk, where ti is the endpoint of the i-th basis
vector. For each k-simplex σ = [v0, . . . , vk] the map ϕ induces an affine embedding ϕσ : ∆k → Rn
whose image is the convex hull [ϕ(v0), . . . , ϕ(vk)].

1For example, by taking barycentric subdivision, integration of forms over cell complexes is recoverable by
integration over simplicial complexes.
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Chains and Cochains over R. For an oriented2 simplicial complex S, the simplicial k-chains
Ck(S;R) are the vector space

Ck(S;R) =
{∑

i

λiσi | σi ∈ Sk, λi ∈ R

}
(1)

of formal linear combinations of k-simplices in S. The simplicial k-cochains Ck(S;R) over R are
the dual space Hom(Ck(S);R) of linear functionals over the simplicial k-chains.

Differential Forms. The tangent space Tp(Rn) at p is the space of all vectors originating at a
point p ∈ Rn, and its elements are called tangent vectors. In our case, this is space is canonically
isomorphic to the underlying space Rn. A differential form is a function that assigns a notion of
volume to tuples of tangent vectors at each point in Rn. Given a tuple of k standard basis vectors
(ei1 , · · · , eik) in Rn indexed by I = (i1, i2, . . . , ik) and a vector v ∈ Tp(Rn), the vector vI is the
projection of v onto the I-subspace spanned by (ei1 , ei2 , . . . , eik). The associated monomial k-form

dxI(v1, v2, . . . , vk) = εI(v1, v2, . . . , vk) := det
[
vI1 , v

I
2 , . . . , v

I
k

]
(2)

represents the standard volume spanned by k tangent vectors vi ∈ Tp(Rn) in the I-subspace of the
tangent space.

Scaling Functions. General differential forms are built from locally linear combinations of re-
scaled monomial k-forms. Formally, a general differential k-form ω ∈ Ωk(Rn) can be written
as

ωp(v1, v2, . . . , vk) =
∑

I

αI(p)dxI(v1, v2, . . . , vk), (3)

where p ∈ Rn and vi ∈ Tp(Rn) and I ranges over the
(
n
k

)
subspaces spanned by sets of k basis

vectors in Rn. The scaling functions αI : Rn → R represent a re-scaling of the standard volume
in the I-subspace for each point p ∈ Rn. Intuitively, the scaling functions in a differential k-form
specify the size and orientation of a subspace for each point.

Integration. Differential k-forms can be integrated over embedded k-simplices ϕ : ∆k → Rn. Let
Dϕ(t) be the Jacobian matrix of ϕ at t ∈ ∆k. For affinely-embedded simplices, Dϕ(t) is given by

Dϕi,j =
[
ϕi(tj)− ϕi(0)

]
i,j
. (4)

The integral of ω ∈ Ωk(Rn) over the image of ϕ can be expressed as∫

ϕ

ω :=
∑

I

∫

∆k

αI(ϕ(t))ε
I
(
Dϕ
)
dt, (5)

where the integral is interpreted as a standard Riemann integral over the (compact) subset ∆k ⊆ Rk.
This represents the signed volume of the image of ϕ with respect to the differential form ω. In
practice, this integral is approximated with a finite Riemann sum. We provide more background on
integration of forms in Appendix A. The integral in Eq. (5) is well-defined if ϕ is a C1 embedding
function and αI ◦ ϕ is integrable.

3 NEURAL k-FORMS AND INTEGRATION MATRICES

Broadly speaking, representation learning is the process of turning data into vectors in Rℓ, followed
by the use of standard tools of machine learning to classify/predict attributes based on these vector
representations. In graph learning and simplicial learning more generally, data comes in the form of
simplicial complexes embedded in Rn. One simple vectorization is to take the standard volume of
a k-simplex embedded in Rn. The central idea of our paper is to create vector representations
of k-simplices as volumes relative to a tuple of differential k-forms. Indeed, a tuple of k-forms
ω1, ω2, . . . , ωℓ ∈ Ωk(Rn) determines a representation function

(ϕ : ∆k → Rn) 7→
(∫

ϕ

ω1, . . . ,

∫

ϕ

ωℓ

)
∈ Rℓ (6)

2The choice of orientation of each simplex corresponds to a choice of sign for each basis vector.
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that vectorises any k-simplex embedded in Rn by calculating its volume via integration of forms. In
this paradigm, each k-form takes the role of a feature map on the space of embedded k-simplices.

Neural k-forms. The key to making integral-based representations learnable is to model the
scaling functions in Eq. (3) as a multi-layer perceptron (MLP). For a set of k basis vectors I , let
πI : R(

n
k) → R be the projection onto the I-subspace and define ψI := πI ◦ ψ : Rn → R.

Definition 1. Let ψ : Rn → R(
n
k) be an MLP. The neural k-form ωψ ∈ Ωk(Rn) associated to ψ is

the k-form ωψ =
∑
I ψIdxI .

In words, the components of the MLP correspond to the scaling functions of the neural k-form. The
goal of a neural k-form is thus to learn the size and orientation of k-dimensional subspaces at
each point in Rn according to some downstream learning task. In case the activation function is
a sigmoid function or tanh, Definition 1 produces smooth k-forms, whereas for a ReLU activation
function, one obtains piecewise linear k-forms.
Remark 2. A neural 0-form over Rn with ℓ features is an MLP ψ from Rn to Rℓ. The 0-simplices
p ∈ Rn are points in Rn, and integration of a 0-form corresponds to the evaluation ψ(p). In this way,
neural k-forms are a direct extension of MLPs to higher-dimensional simplices in Rn.

Universal Approximation. We would like to know which k-forms on Rn are possible to ap-
proximate with neural k-forms. The following proposition translates the well-known Universal
Approximation Theorem (Cybenko, 1989; Hornik et al., 1989) for neural networks into the language
of neural k-forms. Here, the norm ∥ ∥Ωc(Rn) on k-forms is induced by the standard Riemannian
structure on Rn, as explained in Appendix C.
Theorem 3. Let α ∈ C(R,R) be a non-polynomial activation function. For every n ∈ N and
compactly supported k-form η ∈ Ωkc (Rn) and ϵ > 0 there exists a neural k-form ωψ with one hidden
layer such that ∥ωψ − η∥Ωc(Rn) < ϵ.

Figure 1: An integration matrix with data in di-
mension 1, where embedded oriented 1-simplices
correspond to paths and 1-forms are canonically
identified with vector fields (see Appendix A for
details). Integration of a 1-form against a path cor-
responds to path integration against the respective
vector field. Thus, integration of the paired paths
and 1-forms in the left matrix recovers real values
with the signs given in the right matrix.

Cochain Matrices. Most simplicial neural
networks follow a similar procedure. The key
step is that the k-simplices of each simplicial
complex S are replaced by a matrix XS(β, γ)
containing a selection of ℓ simplicial cochains
(γ1, . . . , γℓ) as columns. This can be thought of
as a matrix containing evaluations γj(βi) with
respect to some basis (β1, . . . , βs) for the sim-
plicial k-chains Ck(S;R). However, there is no
canonical initialisation when one starts with only
the data of a set of embedded finite simplicial
complexes.3 We address this issue by introduc-
ing the integration matrix induced by a neural
k-form. This produces the same data type, but
has the advantage that the feature cochains cor-
respond to integration of the same form defined
over the ambient space.

Integration Matrices. For an embedded finite simplicial complex, an ℓ-tuple ω = (ω1, ω2, . . . , ωℓ)
of k-forms induces a matrix suitable to simplicial learning algorithms in a natural way via integration.
Let ϕ : S → Rn be an affine embedding of a simplicial complex and β = (β1, β2, . . . , βm) ∈
Ck(S;R) be a set of specified k-chains.
Definition 4. The integration matrix with respect to β and ω is Xϕ(β, ω) =

[ ∫
βi
ωj
]
i,j
.

The integral of ω over a simplicial chain β =
∑
λσσ ∈ Ck(S;R) with respect to the embedding

ϕ : S → Rn corresponds to the integral∫

β

ω =
∑

λσ

∫

ϕσ

ω. (7)

3Indeed, if one takes a random initialisation, the feature cochains do not have a shared interpretable meaning
across different complexes.
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Remark 5 (Interpretability). The key point is that the integration matrices of two different simplicial
complexes ϕ : S → Rn and ϕ′ : S ′ → Rn embedded in Rn have a shared interpretation. That is, the
j-th column of both of their integration matrices corresponds to the volume of k-simplices against
the same feature k-form ωj ∈ Ωk(Rn).

A tuple of ℓ neural networks ψj : Rn → R(
n
k) with associated neural k-forms ωψj induces a learnable

matrix representation

(β, ψ) 7→ Xϕ(β, ω
ψ) =

[ ∫

βi

ωψj

]
(8)

of the given simplicial chain data β with embedding ϕ : S → Rn. This intermediate representation is
finitely parametrised by ψ and can thus be updated via backpropagation. The matrix representation
of a simplex—and by extension a simplicial chain—depends on whether the neural k-form decides
that it is embedded in a large or small subspace, and with what orientation.

Basic Properties. There are a number of useful basic properties about integration matrices that
follow from the well-known properties of integration. In the next proposition, we conceptualise

β = (β1, . . . , βm)T ∈Mm×1
(
Ck(S;R)

)
and ω = (ω1, . . . , ωℓ) ∈M1×ℓ

(
Ωk(Rn)

)
(9)

as chain-valued column and k-form valued row vectors, respectively. Real-valued matrices act on
both vectors by scalar multiplication and linearity.
Proposition 6 (Multi-linearity). Let ϕ : S → Rn be an embedded simplicial complex. For any
matrices L ∈Mm′×m(R) and R ∈M ℓ×ℓ′(R), we have

Xϕ(Lβ, ωR) = LXϕ(β, ω)R (10)

A staple requirement of geometric deep learning architectures is that they should be permutation and
orientation equivariant. In our setting, these properties are a direct corollary of Proposition 6.
Corollary 7 (Equivariance). Let β = (β1, . . . , βm) be a basis for the k-chains Ck(S;R) of an
embedded oriented simplicial complex ϕ : S → Rn.

1. (Permutation) Xϕ(Pβ, ω) = PXϕ(β, ω) for all permutation matrices P ∈Mm×m(R).

2. (Orientation) Xϕ(Qβ, ω) = QXϕ(β, ω) for all signature matrices4 Q ∈Mm×m(R).

4 ARCHITECTURE

Embedded Chain Data. The input data D = {(Sα, ϕα, βα)} to our learning pipeline consists of a
set of triples (Sα, ϕα, βα) of embedded chain data, where

• Sα is a simplicial complex
• ϕα : S0α → Rn is an affine embedding and
• βα ∈

⊕
mα

Ck(S;R) is a tuple of mα data k-chains on Sα.

If no chains are provided, one can take the standard basis of oriented k-simplices of each simplicial
complex as the input chains. The canonical example is a dataset consisting of graphs {(Gα, ϕα, βα)}
with node features ϕα : G0α → Rn and βα corresponding to the standard edge chains with arbitrary
orientations.

Approximating Integration Matrices. The main departure from standard geometric deep learning
architectures is the transformation from embedded k-chain data to integration matrices. The high-
level structure of this process is presented in Algorithm 1. Given a tuple of neural k-forms, each
represented by an MLP ψj : Rn → R(

n
k), integrals of embedded k-simplices ϕσ : ∆k → Rn are

calculated by a finite approximation (Appendix B) of the integral formula∫

ϕσ

ωj =
∑

I

∫

∆k

ψI,j(ϕσ(t))ε
I
(
Dϕσ(t)

)
dt ≈ VolApprox(

∫

ϕσ

ωj) (11)

4A signature matrix is a diagonal matrix with ±1 entries.
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...
...

...

FEATURES: Neural k-form ψ : Rn → R(
n
k)×ℓ

∆k ϕ

DATA: Embedded simplicial complex

Xϕ(β, ω) =
[ ∫
βi
ωj
]
i,j

Integration matrix

...

Readout Task-specific network

Figure 2: A schematic of our proposed neural k-form learning architecture.

Algorithm 1 Generate Integration Matrix

Inputs: Embedded chain data (S, ϕ, β) with k-simplices σ ∈ Sk;
k-chains βi =

∑
λσ,iσ ∈ Ck(S;R); i = 1, . . . ,m;

MLPs5 ψj : Rn → R(
n
k); j = 1, . . . , ℓ.

X = 0 ∈Mm,ℓ(R) ▷ Initialise X as the 0-matrix with m× ℓ elements
for 1 ≤ j ≤ ℓ do ▷ Iterate over forms

for 1 ≤ i ≤ m do ▷ Iterate over chains
Xi,j ←

∑
λσ,iVolApprox(

∫
σ
ωψj )

Return: Xϕ(β, ω
ψ) = X ▷ Return Integration Matrix

appearing in Eq. (5). Integrals of chains βi are calculated as linear combinations. The entries of
the integration matrix Xϕ(β, ω

ψ) thus depend in a differentiable manner on the component
functions ψI,j of the underlying MLP.

Readout Layers. Once an embedded simplicial complex is transformed into an integration matrix,
it is then fed into a readout layer (as in the case for standard simplicial or graph neural networks).
The output of a readout layer is a single representation of the entire complex, and should not depend
on the number of simplices if one wishes to compare representations among different complexes.
Common read-out layers include summing column entries, and L1 or L2 norms of the columns. Note
that only the latter two are invariant under change of orientation.

Neural k-form Backpropagation. For a fixed dataset of embedded k-chains, neural k-forms are
the learnable feature functions. Algorithm 2 and Figure 2 illustrate the basic pipeline for performing
backpropagation of neural k-forms over embedded chain data and a loss function. Neural k-forms
and a user-determined classifier are randomly initialised using any standard MLP initialisation. Each
embedded chain data (Sα, ϕα, βα) is transformed into an integration matrix by Algorithm 1, before
being read out, classified, and evaluated against a loss function.

Implementation. Our methods can be realised using any deep learning framework that permits
training an MLP. We created a proof-of-concept implementation using PyTorch-Geometric (Fey
& Lenssen, 2019) and PyTorch-Lightning (Falcon & The PyTorch Lightning team, 2019) and
make it publicly available under https://github.com/aidos-lab/neural-k-forms.

5 EXPERIMENTS AND EXAMPLES

This section presents examples and use cases of neural k-forms in classification tasks, highlighting
their interpretability and computational efficiency.
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Algorithm 2 Neural k-form Backpropagation

Data: D = {(Sα, ϕα, βα
)
| ϕα : Sα → Rn, βα ∈

⊕
mα

Ck(S;R),mα ∈ N}
Initialise MLPs ψj : Rn → R(

n
k); 1 ≤ j ≤ ℓ; classifier η : Rℓ → Rℓ′ .

for (Sα, ϕα, βα) ∈ D do
Xϕα

(βα, ω
ψ)← IntegrationMatrix(ϕα, βα, ψ)

X ← Readout(Xϕα
(βα, ω

ψ)) ▷ Vector Representation
X ← η(X) ▷ Prediction
L = Loss(X)
Backward(L,ψ, η) ▷ Update k-forms and Classifier

(a) Learned 1-forms corresponding to paths in each class. (b) Path representations.

Figure 3: Synthetic Path Classification via Learnable 1-forms. The 1-form (a vector field in this case)
adjusts itself to the data, resulting in distinct path representations.

5.1 SYNTHETIC PATH CLASSIFICATION

Our first experiment is classifying paths in R2. The goal of the experiment is pedagogical; it illustrates
how to interpret the learned 1-forms rather than benchmark the method. A piecewise linear path in Rn
is a simplicial complex determined by an ordered sequence of node embeddings. The 1-simplices are
linear maps σi : I → Rn from the i-th embedded node and to the (i+1)-st embedded node, where the
full path corresponds to the 1-chain

∑
i σi. The integral of this chain against a 1-form corresponds to

the path integral. Figure 3a shows three classes of piecewise linear paths6 in R2 that we will classify
using our method. The idea is that we will learn three 1-forms, which correspond to each class. To
initialise the three 1-forms in R2, we randomly initialise an MLP ψ : R2 → R2×3. A forward pass
consists of two stages: integration of the 1-simplices in the path against each of the three forms to
produce an integration matrix, followed by taking a column sum and applying softmax to produce
a distribution over which we perform CrossEntropyLoss. The i-th column sum corresponds to
a path integral of the path against the i-th form; the prediction of a path is thus determined by which
feature 1-form produces the highest path integral. Backpropagation against this loss function thus
attempts to modify the i-th 1-form so that it produces a more positive path integral against the paths
in class i and more negative otherwise.

Figure 3a also shows the feature 1-forms as vector fields over their corresponding classes of paths.
Note that the vector fields are randomly initialised and updated while the paths are the fixed data
points. The learned 1-forms of each class resemble vector fields that roughly reproduce the paths in
their class as integral flow lines, and are locally orthogonal or negatively correlated to paths in the
other classes. This is a direct result of the objective function, which attempts to maximise the path
integral within each class and minimise it for others. Figure 3b depicts the paths as points coloured
by class, where the coordinates correspond to the path integrals against the three learned 1-forms.
We observe a clear separation between the classes, indicating that the representations trivialise the
downstream classification task. We also compare the model with a standard MLP in Appendix E.

6The orientation is indicated by the arrow at the end of each path.
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Table 1: Results (mean accuracy and standard deviation of a 5-fold cross-validation) on small graph
benchmark datasets that exhibit ‘geometrical’ node features. Parameter numbers are approximate
because the number of classes differ.

Params. BZR COX2 DHFR Letter-low Letter-med Letter-high

EGNN (Satorras et al., 2021) 1M 79.51 ± 1.87 78.16 ± 0.46 64.02 ± 2.68 93.20 ± 0.68 65.91 ± 1.60 68.98 ± 1.80
GAT (Veličković, 2022) 5K 81.48 ± 2.90 80.73 ± 2.45 73.02 ± 2.54 90.04 ± 2.23 63.69 ± 5.97 43.73 ± 4.13
GCN (Kipf & Welling, 2017) 5K 79.75 ± 0.68 79.88 ± 1.65 70.12 ± 5.43 81.38 ± 1.57 62.00 ± 2.07 43.06 ± 1.67
GIN (Xu et al., 2019) 9K 79.26 ± 1.03 78.38 ± 0.79 68.52 ± 7.38 85.00 ± 0.59 67.07 ± 2.47 50.93 ± 3.47

NkF (ours) 4K 78.77 ± 0.55 80.30 ± 2.42 64.42 ± 2.09 93.42 ± 1.94 67.69 ± 1.28 62.93 ± 4.13

5.2 SYNTHETIC SURFACE CLASSIFICATION

This example demonstrates how our framework is of interest to deal with higher-dimensional data, i.e.
simplicial complexes of dimension k ≥ 2. Conceptually, the difficulty is going from 1-dimensional
objects to k-dimensional objects with any k ≥ 2. We restrict ourselves to k = 2 since higher
dimensions are similar to this case. The data we consider here are triangulated surfaces embedded in
R3, the underlying combinatorial complex is always the same— a triangulation of a square—but the
embeddings are different. For a given surface, the embedding of each 2-simplex is given by linear
interpolation between the coordinates of its three vertices in R3. We consider two classes of surfaces,
in the first class the embeddings of the nodes are obtained by sampling along a sinusoidal surface
in the x-direction, while the second class is given by a surface following a sinusoidal shape in the
y-direction, in each case with added translation and noise. We use learnable 2-forms ω1, ω2 on R3

represented by an MLP ψ : R3 → R3×2. In a forward pass of the model, we integrate the 2-forms
given by the MLP over the 2-simplices of a surface. Each point in R3 has a value in R3×2 given
by the MLP evaluated at that point. The process of integrating over the 2-simplices corresponds to
integrating the point-wise evaluation of the MLP over the regions of R3 defined by each embedded
2-simplex. This process gives the integration matrix of the forms ω1, ω2 over the 2-simplices of the
complex.

4 2 0 2 4 6
6

4

2

0

2

4

Learned representations of the surfaces

Figure 4: Synthetic surface classifi-
cation via learnable 2-forms.

The next step is the readout layer, which sums the entries in each
column of the integration matrix, corresponding to summing
the value of each cochain over the simplicial complex, giving
the total surface integral. As there are two 2-forms this yields
a vector representation in R2, each entry corresponding to a
2-form. Finally, these representations are then passed through
a softmax for classification and CrossEntropyLoss is
used as a loss function. The MLP is then updated by backpropa-
gation. Figure 4 plots the representations in R2 learned through
the model described above. Each point represents a surface in
the data set and the colour is given by the class of the corre-
sponding surface, showing the clear separation learned by the
neural 2-forms. Further details can be found in Appendix E.2.

5.3 REAL-WORLD GRAPHS

In this experiment we attempt to use our model to leverage the geometry of non-equivariant node
features for graph classification on a set of benchmark datasets. The basic architecture of the model
follows that described in the Architecture and Parameters section. Graphs are represented as a 1-chain
consisting of all their edges. We randomly initialise a set of ℓ feature 1-forms, produce and read-out the
integration matrices before feeding through a simple MLP classifier and performing backpropagation.
We use an L2-column readout layer so the network is invariant under edge orientations. Please refer to
Appendix E.3 for specific architectural details. We use state-of-the-art graph neural networks (GNNs)
following a recently-described benchmark (Dwivedi et al., 2023), experimenting with different
numbers of layers. As an additional comparison partner, we also use a recent equivariant GNN
architecture that is specifically geared towards analysing data with an underlying geometry (Satorras
et al., 2021). Table 1 depicts the results on smaller graph datasets in the TU dataset (Morris
et al., 2020). Here the node features that carry both equivariant information (corresponding to 3D
coordinates of molecules, for instance) and non-equivariant information (one-hot atomic type, weight,
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Table 2: Results (mean AUROC and standard deviation of 5 runs) on benchmark datasets from
the ‘MoleculeNet’ database (Wu et al., 2018). While the GNNs also train for smaller numbers of
parameters, we observed significant drops in predictive performance. We thus report only the best
results for GNNs, using the most common models described in the literature.

Params. BACE BBBP HIV

GAT (Veličković et al., 2018) 135K 69.52 ± 17.52 76.51 ± 3.36 56.38 ± 4.41
GCN (Kipf & Welling, 2017) 133K 66.79 ± 1.56 73.77 ± 3.30 68.70 ± 1.67
GIN (Xu et al., 2019) 282K 42.91 ± 18.56 61.66 ± 19.47 55.28 ± 17.49

NkF (ours) 9K 83.50 ± 0.55 86.41 ± 3.64 76.70 ± 2.17

etc.). For the non-equivariant models (ours, GCN, GAT) the position features are omitted. Overall,
our method exhibits competitive performance, in particular given the fact that it does not make use of
any message passing and has a smaller parameter footprint. In Table 2 we compare our model on the
larger datasets in the ‘MoleculetNet’ benchmark (Wu et al., 2018). Note that the datasets we have
chosen have no provided ’positional’ node features, so the given node features (i.e. atomic weights,
valence, etc.) are not equivariant and cannot be compared with EGNN. As Table 2 shows, our model
based on neural k-forms outperforms state-of-the-art graph neural networks in terms of AUROC,
using a fraction of the number of parameters (this also holds for accuracy and average precision,
which are, however, not typically reported for these data sets).

6 DISCUSSION

Summary. We developed neural k-forms, a method for learning representations of simplicial
cochains to solve tasks on embedded graphs and simplicial complexes. Deviating from the predom-
inant paradigms in geometric deep learning, our method adopts a fundamentally different novel
perspective based on integration of forms in the ambient feature space. We have shown the feasibility
of the method through a comprehensive experimental suite, demonstrating its effectiveness using
only a very small number of parameters. Notably, our method does not utilise any kind of message
passing, and we hypothesise that it is possible that this implies that issues like over-smoothing may
affect our method less than graph neural networks.

Limitations. A conceptual limitation is that we require (at least) the existence of node or vertex
coordinates, i.e. our method only operates on embedded complexes. The computational feasibility of
higher order k-forms in large embedding spaces is another possible limitation. Indeed, the number
of monomial k-forms in Rn is

(
n
k

)
, and similar issues arise for numerical integration over higher-

dimensional simplices. Further, we have only benchmarked our method on graph classification tasks.
It remains to be seen whether the method performs as well on graph regression tasks, as well as for
benchmark learning tasks on higher-dimensional simplicial complexes.7 Finally, our model currently
cannot deal with node features that are equivariant with respect to the embedding space.

Outlook. We aim to study these issues, as well as the behaviour of our methods in the context of
long-range dependencies, in a follow-up work. In addition, since our neural k-form formulation is
equivalent to an MLP, the learning process may benefit from the plethora of existing methods and
tricks that are applied to optimise MLPs in practice. We argue that our experiments point towards
the utility of using a geometric interpretation of our representations as integrals over k-forms may
provide valuable insights to practitioners. Lastly, we provide a small example of a Convolutional
1-form network in Appendix D that may lead to better incorporation of equivariant node embeddings.
We provide this auxiliary example as part of a broader future work program of rebuilding common
ML architectures on top of neural k-forms rather than message passing schemes.

7We note that a comprehensive, agreed-upon framework for benchmarking simplicial neural networks has
yet to be established.
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A DIFFERENTIAL FORMS IN Rn BACKGROUND

In this section, we provide a basic background in the theory of differential forms. The more complete
references see Lee (2003) for basic differential geometry and Jost (2017) for Riemannian geometry of
k-forms. Moreover, see Tao (2009) for a short but highly illuminating article on the intuition behind
differential forms.

Tangent and Cotangent Bundles on Rn. In Rn, the tangent space Tp(Rn) at a point p ∈ Rn
is the vector space space spanned by the partial derivatives ∂/∂xi(p). The cotangent space at p
is the linear dual T ∗(Rn) of the tangent space; i.e. the space of linear maps HomR(Tp(Rn),R).
Note that both spaces are isomorphic to Rn. The tangent bundle is the space T (Rn) = ⊔pTp(Rn)
consisting of gluing all tangent space together, where the topology is induced by the projection map
π : T (Rn)→ Rn. Likewise, the cotangent bundle is the space T ∗(Rn) = ⊔pT ∗

p (Rn).

The space of vector fields X(Rn) over Rn is the space of sections of the tangent bundle; that
is, maps v : Rn → T∗(Rn) such that π ◦ v = idRn . Vector fields decompose into the form∑
i vi(p)∂/∂xi(p), where vi : Rn → R. The space of 1-forms Ω1(Rn) over Rn consists of the

sections ω : Rn → T ∗(Rn) of the cotangent bundle.

Riemannian Structure on Rn. The space Rn is a Riemannian manifold. That is, it has a non-
degenerate bilinear form

⟨−,−⟩p : Tp(Rn)⊗ Tp(Rn)→ R. (12)
The inner product is defined on by linear extension of the formula

⟨∂/∂xi(p), ∂/∂xj(p)⟩p = ⟨xi, xj⟩ (13)

where the second inner product is the standard inner product on Rn. Over Rn, the spaces of vector
fields and 1-forms are isomorphic via the sharp isomorphism

# : X(Rn)→ Ω1(Rn) (14)
∑

i

vi∂/∂xi 7→
∑

i

vidxi (15)

where dxi is the 1-form which is locally dxi(p) = ⟨−, ∂/∂xi(p)⟩p : Tp(Rn)→ R.

Exterior Products. Let V be a real vector space. Recall that an alternating k-covector on V is a
map

α :
⊗

k

V → R (16)

that is alternating with respect to permutations. That is, that

α(v1, v2, . . . , vk) = (−1)sgn(τ)α(vτ(1), vτ(2), . . . , vτ(k)). (17)

The k-th exterior product Λk(V ∗) over V is the space of alternating k-covectors.

k-Forms. The k-th exterior product of the cotangent bundle ΛkT ∗(Rn) is the tensor bundle defined
by locally taking the k-th exterior product ΛkT ∗

p (Rn) of each cotangent space. A differential k-form
ω ∈ Ωk(Rn) over a Rn is a smooth section of the k-th exterior product of the cotangent bundle
ΛkT ∗M . The space of forms Ω∗(Rn) of any dimension has an algebra structure given by the wedge
product. The wedge product is multi-linear and satisfies anti-commutativity

dxi ∧ dxj = −dxj ∧ dxi (18)

as well as permutation equivariance

dxi1 ∧ . . . ∧ dxik = (−1)sgn(τ)dxiτ(1)
∧ . . . ∧ dxiτ(k)

(19)

for permutations τ . As described in the body of the paper, k-forms have a canonical monomial
decomposition given by

ω =
∑

I

αIdxI . (20)

where dxI = dxi1 ∧ . . . ∧ dxik for a multi-index I = (i1, . . . , ik) and scaling maps αI : Rn → R.
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Types of k-forms. Differential k-forms are k-forms where the scaling maps αI are smooth; this is
equivalent to the condition ω that is a smooth section of k-th exterior product of the cotangent bundle.
When working with both neural k-forms and over non-compact spaces like Rn, we often need to
define other types of forms.

1. A k-form ω ∈ Ωkc (Rn) is compactly supported whenever each of the αI are compactly
supported.

2. A k-form ω ∈ L2Ω
k(Rn) is L2 whenever each αI is square integrable.

3. A k-form ω ∈ ΩkPL(Rn) is piecewise linear if there exists a triangulation of Rn such that
each αI is piece-wise smooth over the triangulation.

Inner Products on k-forms. The choice of Riemannian metric on Rn extends to an inner product
on the k-th exterior product of the cotangent space by

⟨−,−⟩p : ΛkT ∗
p (Rn)⊗ ΛkT ∗

p (Rn)→ R
⟨ω1 ∧ . . . ∧ ωk, η1 ∧ . . . ∧ ηk⟩p 7→ det⟨ωi, ηj⟩i,j .

where ωi, ηj ∈ Ω1(Rn). This induces an inner product over the compactly supported k-forms Ωkc (M)
by integration

⟨ω1 ∧ . . . ∧ ωk, η1 ∧ . . . ∧ ηk⟩ =
∫

p∈Rn

⟨ω1 ∧ . . . ∧ ωk, η1 ∧ . . . ∧ ηk⟩p dV ol(Rn) (21)

against the volume form V ol(Rn) on Rn.

Orthonormal Coframes. Equip Rn with the usual Riemannian structure, the compactly supported
k-forms Ωkc (Rn) with the inner product ⟨−,−⟩Ω described above and induced norm

∥ω∥2Ω = ⟨ω, ω⟩Ω
for ω ∈ Ωkc (Rn). With this structure, the monomial k-forms form an orthornomal coframe in the
sense that

⟨dxI , dxI′⟩p =
{
1 if I = I ′

0 else
(22)

for each p ∈ Rn.

Integration of k-forms. Following (Taylor, 2006), we define integration of monomial k-forms
ω =

∑
I αIdxI then extend via linearity to arbitary k-forms. Let ϕ : ∆k → Rn be a smooth map

and coordinatize ∆k with (t1, t2, . . . , tk) as above.

The pullback map of ϕ is a map ϕ∗ : Ω(Rn) → Ω(∆k) taking forms on Rn to forms on ∆k. In
coordinates, the pullback ϕ∗ω ∈ Ωk(∆k) of ω along ϕ is defined by the formula

ϕ∗ω =
∑

I

αI(ϕ
∗dxi1) ∧ (ϕ∗dxi2) ∧ . . . ∧ (ϕ∗dxik) (23)

where

ϕ∗dxi =
∑

j

∂ϕi
∂tj

dtj (24)

and ϕi is the xi-component of ϕ. Note that by the monomial decomposition in Eq. (3), the pullback
can be written as

ϕ∗ω = fdt1 ∧ dt2 ∧ . . . ∧ dtk (25)

for some smooth function f : ∆k → R.

We define the integral
∫
ϕ

to be the standard Riemann integral
∫

ϕ

ω :=

∫

∆k

fdt1dt2 . . . dtk. (26)
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The function f can be computed explicitly by unwinding 23 using the algebraic relations 18 and 19.
Namely, for the monomial k-form ω = αIdxI we have

ϕ∗ω = αI(ϕ)
(∑

j

∂ϕi1
∂tj

dtj

)
∧ . . . ∧

(∑

j

∂ϕik
∂tj

dtj

)
(27)

= αI(ϕ)

(∑

τ

sgn(τ)
∂ϕi1
∂tτ(1)

· · · ∂ϕik
∂tτ(k)

)
dt1 ∧ . . . ∧ dtk (28)

= αI(ϕ)ε
I(Dϕ)dt1 ∧ . . . ∧ dtk (29)

The above calculation in conjunction with 26 recovers the formula for the integral
∫

ϕ

ω =
∑

I

∫

∆k

αI(ϕ)ε
I(Dϕ)dt (30)

of a general k-form ω given in 5.

Remark 8. In the special case that ϕ is an affine map, then the Jacobian is expressed as

Dϕi,j =
[
ϕi(tj)− ϕi(t0)

]
i,j

Properties of Integration. Throughout the paper, we refer to the linearity and orientation equivari-
ance of integration of forms over simplices. These are a consequence of the following theorem.

Proposition 9 ((Lee, 2003), 16.21). Suppose M is an n-manifold with corners and ω, η ∈ Ωn(M)
are smooth n-forms. Then

1. For a, b ∈ R we have ∫

M

aω + bη = a

∫

M

ω + b

∫

M

η

2. Let −M denote M with the opposite orientation. Then
∫

−M
ω = −

∫

M

ω.

B INTEGRATION OF k-FORMS IN PRACTICE

We give further practical details on how to approximate integrals in the case of 2-forms. For more
detailed and accessible introductions we recommend the following references (Tao, 2009; Taylor,
2006).

Explicit computations for 2-forms. In Section 5 we use integration of 2-forms on 2-dimensional
simplicial complexes in order to classify surfaces. We will derive an explicit method to approximate
the integral of 2-forms in Rn over an embedded 2-simplex based on the theory above.

Recall that a 2-form ω ∈ Ω2(Rn) can be written in coordinates as

ω =
∑

0≤i<j≤n
αi,jdxi ∧ dxj , (31)

where αi,j : Rn −→ R are smooth maps. We consider a map ϕ : ∆2 −→ Rn giving the embedding
of the standard 2 simplex in Rn. Using the expression from Equation 26:

∫

ϕ(∆2)

ω =

∫

∆2

ϕ∗(ω)

we will show how to integrate ω on the embedded simplex ϕ(∆2).
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Using local coordinates to express the embedding ϕ(t1, t2) = (x1, . . . , xn) we can write out explicitly
the pullback of a 2-form ω ∈ Ω2(Rn) via the map ϕ:

ϕ∗
( ∑

0≤i<j≤n
αi,jdxi ∧ dxj

)
=

∑

0≤i<j≤n

(
αi,j ◦ ϕ

)(∂xi
∂t1

dt1 +
∂xi
∂t2

dt2
)
∧
(∂xj
∂y1

dt1 +
∂xj
∂t2

dt2
)

=
∑

0≤i<j≤n

(
αi,j ◦ ϕ

)((∂xi
∂t1

dt1 ∧
∂xj
∂t2

dt2
)
+
(∂xi
∂t2

dt2 ∧
∂xj
∂t1

dt1
))

=
∑

0≤i<j≤n

(
αi,j ◦ ϕ

)( ∂xi
∂t1

∂xj
∂t2
− ∂xi
∂t2

∂xj
∂t1︸ ︷︷ ︸

A

)
dt1 ∧ dt2 (32)

In the computational context that we consider we want to integrate a 2-form on the 2-simplices of
a complex embedded in Rn. We set some notation here, each 2-simplex σ ∈ X is the image of an
affine map ϕ(t) = Φt + b : ∆2 −→ Rn, where Φ = Dϕ = [ϕi,1, ϕi,2]0≤i≤n is a (n × 2)-matrix.
Since ϕ is an affine map the term A in 32 becomes

A = ε(i,j)(Dϕ) = detΦji , (33)

with Φji denoting the (2× 2)−submatrix of Φ corresponding to the rows i and j.

Putting all this together we obtain:

ϕ∗(ω) =
∑

0≤i<j≤n
αi,j(ϕ) detΦ

j
idt1 ∧ dt2. (34)

So the integration becomes

∫

ϕ(∆2)

ω =

∫

∆2

ϕ∗(ω) =
∫

∆2

∑

0≤i<j≤n
αi,j(ϕ) detΦ

j
i

︸ ︷︷ ︸
g

dt1 ∧ dt2. (35)

Computationally we cannot perform exact integration of 2-forms so in practise we approximate the
integral on ∆2 above by a finite sum, as is done with Riemann sums in the classical case. In general
this is how the VolApprox function is defined. To do so the first step is to subdivide the domain of
integration ∆2 into a collection S of smaller simplices with vertices denoted by v. Then the integral
is approximated by summing the average value of the map g on each simplex of the subdivision:

∫

∆2

gdt1 ∧ dt2 ≈
∑

s∈S2

1

3

∑

v∈s
g(v) · vol(s). (36)

An explicit method of this sort can be easily generalized to higher dimensional simplices in order to
compute integrals of k-forms on k-dimensional simplicial complexes.

C PROOFS

Universal Approximation I. We start with the proof of Proposition 3. First, recall the well-known
following universal approximation theorem for neural networks. We cite here a version appearing in
(Pinkus, 1999).

Theorem 10 (Universal Approximation Theorem, Thm 3.1 (Pinkus, 1999)). Let σ ∈ C(R,R) be
a non-polynomial activation function. For every n, ℓ ∈ N, compact subset K ⊂ Rn, function
f ∈ C(K,Rℓ) and ϵ > 0 there exists:

• an integer j ∈ N;

• a matrix W1 ∈ Rj×n;
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• a bias vector b ∈ Rj and

• a matrix W2 ∈ Rℓ×j

such that
∥f − g∥∞ < ε

where g is the single hidden layer MLP

g(x) =W2σ(W1x+ b).

Theorem 3. Let α ∈ C(R,R) be a non-polynomial activation function. For every n ∈ N and
compactly supported k-form η ∈ Ωkc (Rn) and ϵ > 0 there exists a neural k-form ωψ with one hidden
layer such that

∥ωψ − η∥Ω < ϵ.

Proof. Denote the scaling functions of η by

η =
∑

ηIdxI .

Since η is compactly supported, each ηI is compactly supported over some domain D. By 10, for
any ε > 0 there exists a one layer MLP ψ : Rn → R(

n
k) such that

∥ψ −
⊕

I

ηI∥∞ < ε/V ol(D)1/2.

Using the orthogonality form Eq. (22), we have that

∥ωψ− η∥2p = ⟨ωψ− η, ωψ− η⟩p =
∑

I

(ψI(p)− ηI(p))2 = ∥ψ(p)−⊕IηI(p)∥2
R(

n
k)
≤ ε2/V ol(D).

Integrating the above, we attain

∥ωψ − η∥2Ω ≤
∫

D

⟨ωψ − η, ωψ − η⟩pdV ol(Rn)

< ε2/V ol(D)

∫

D

dV ol(Rn)

= ε2

proving the result.

Equivariance. Integration is linear in both k-forms (Lee (2003), 16.21) and embedded simplicial
chains 7 in the sense that it defines a bilinear pairing∫

: Ck(S;R)⊗ Ωk(Rn)→ R (37)

for some embedded simplicial complex ϕ : S → Rn. This property directly implies the kind of
multi-linearity described in Proposition 6. We present a proof here for completeness.
Proposition 6 (Multi-linearity). Let ϕ : S → Rn be an embedded simplicial complex. For any
matrices L ∈Mm′×m(R) and R ∈M ℓ×ℓ′(R) we have

Xϕ(Lβ, ωR) = LXϕ(β, ω)R (38)

Proof. On the left we have

Xϕ(Lβ, ω)i,j = X
(∑

k

L1,kβk, . . . ,
∑

k

Lm′,kβk, ω
)
i,j

(39)

=

∫
∑

k Li,kβk

ωj (40)

=
∑

k

Li,k

∫

βk

ωj (41)

=
[
LXϕ(β, ω)

]
i,j
. (42)
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Similarly, on the right we have

Xϕ(β, ωR)i,j = Xϕ(β,
∑

k

Rk,1ωk, . . . ,
∑

k

Rk,ℓ′ωk

)
i,j

(43)

=

∫

βi

∑
Rk,jωk (44)

=
∑

k

Rk,j

∫

βi

ωk (45)

=
[
Xϕ(β, ω)R

]
i,j

(46)

D ADDITIONAL EXPERIMENTS

D.1 CONVOLUTIONAL 1-FORM NETWORKS

Convolution and Equivariance. Beyond orientation and permuation equivariance, the node em-
beddings themselves may be equivariant with respect to a group action on the feature space. The class
of geometric graph neural networks Han et al. (2022) were designed specifically to deal with such
equivariances. The lesson from image processing is that translation equivariance can be mitigated
via convolution. In this paradigm processing embedded (oriented) graphs with learnable, ‘template’
1-forms is directly analogous to processing images with learnable convolutional filters. To make this
connection precise, we will perform a small example to classify oriented graphs.

Synthetic Data. In Figure 5, there are two classes of cycle and star graphs. The cycle graphs have
clockwise orientation and the star graph are oriented so edges point inwards. Each data-point is
a simplicial complex representing the disjoint union of either three cycle or star graphs which are
randomly recentered around the unit square. The chains on each complex are initialised using the
standard oriented 1-simplices as a basis.

Architecture. We initialise a neural network ψ : R2 → R2×2 with a single 64-dimensional hidden
layer and ReLU activation which corresponds to two feature 1-forms. To perform a convolutional
pass, we first discretize the unit square to produce a set of translations. At each translation, we restrict
the embedded graph to the subgraph within a neighbourhood and weight it by the local node density
approximated by a standard kernel density estimator. This is equivalent to translating the 1-form by
the corresponding (negative) vector in R2 and integrating over a small neighbourhood (whose area is
a hyperparameter). Integration produces an integration matrix at each point with two columns, and
taking the column sum represents the oriented integral of the two convolutional filters against the
local neighbourhood of the oriented graph. CrossEntropyLoss is calculated by summing the
integrals over all translations and applying softmax.

Interpreting the Results. The integrals are shown in Figure 5 as a colouring of each point in the
grid of translations. We plot the learned ’template’ 1-forms next to an example of their respective
classes. By the construction of the objective function, the algorithm is trying to maximise the
sum of the integrals across all translations within the class. As in the synthetic paths example, the
learned filters successfully capture the interpretable, locally relevant structure; the edges in each class
resemble flow-lines of the learned vector field in different local neighbourhoods around the relevant
translations.

D.2 VISUALISING SIMPLICIAL LAPLACIAN 1-EIGENVECTORS

In this example, we show how we can use neural 1-form to visualise the 1-eigenvectors of the
simplicial Laplacian8 of a Rips complex in R2 (Figure 6). The idea is that we start with a collection of
eigenvectors of simplicial 1-cochains, and learn 1-forms which integrate to them. We see the results

8See Appendix for definitions.
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Figure 5: A convolutional 1-form network with the learned convolutional filters forms.

in Figure 6b, where the three eigenvectors belong to the harmonic, gradient-like and curl components
of the simplicial Hodge decomposition respectively.

First we generate a point cloud in R2 as a noisey approximation of a circle, then take the Rips complex
for a fixed parameter ε. We then calculate the first 9 eigenvectors of the 1-simplicial Laplacian, sorted
by increasing eigenvalue, and store them as columns of a matrix Y with respect to the standard basis
β. We initialise 9 neural 1-forms

ω = (ω1, ω2, . . . , ω9) ∈
⊕

ℓ

Ω1
PL(R2)

on R2 using a ReLU activation function. Our loss function is then

L(ω) = ∥Xϕ(β, ω)− Y ∥
where the norm is the standard matrix norm, and Xϕ(β, ω) is the evaluation matrix yielded from
integrating ω over β. When L is small, the 1-forms over R2 will correspond to the selected simplicial
eigenvectors when integrated over the complex.

Figure 6 shows the results—one notes that the different 1-forms appear to coalesce around geometric
features in the underlying point cloud. Additionally, it is important to observe that the Laplacian
1-eigenvectors can be categorized into three distinct classes depending on their membership within
the components of the Hodge decomposition:

1. The first class consists of eigenvectors that belong to the image of the adjoint of the
differential operator d1,

2. The second class comprises eigenvectors that reside within the kernel of the Laplacian
operator ∆1,

3. Lastly, the third class includes eigenvectors that are part of the image of the differential
operator d0.

These classes correspond, in the context of simplicial structures, to analogues of rotational, harmonic,
and gradient-like vector fields found in Riemannian manifolds. By referring to Figure 6b, one can
visually identify the class to which each eigenvector belongs based on whether or not there exists
rotational structure. We have color-coded these as green, red, and blue, respectively.

E EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

E.1 SYNTHETIC PATH CLASSIFICATION

Synthetic Path Classification. We initialise neural 1-forms ω1, ω2, ω3 ∈ Ω1
PL(R2) with ReLU

activation for each of the three classes. Each path p is represented as an oriented simplicial complex,
where the orientation is induced by the direction of the path. Letting β be the standard basis, the
three 1-forms generate an evaluation matrix Xϕ(β, ω) whose entries are the integration of the 1-form∫
ei
ωj against each 1-simplex in the paths.

The readout function sums the entries in each column, which by the linearity of integration, represents
the path integral along p against each ωi. In short, each path p is represented as a vector in R3 using
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(a) Čech Cover (b) Learned 1-forms

Figure 6: Approximating the 1-eigenvectors of the simplicial Laplacian with learnable 1-forms using
the Čech Cover of a point cloud.

Figure 7: Learned 0-forms for Synthetic Path Classifcation.

the map

p 7→ (

∫

p

ω1,

∫

p

ω2,

∫

p

ω3) ∈ R3. (47)

We then use cross-entropy loss between this vector and the class vector. In this design, each 1-form
corresponds to a class, and a path should ideally have a high path integral against this form if and
only if it belongs to the class.

Comparison with Neural Networks. In our synthetic experiment, we test whether edge data is
necessary by examining whether we can attain comparable results using only the embedded vertices
of the path.

In our context, the right framework to analyse the vertices is a set of 0-forms on R2 - in other words,
scalar functions over R2. We use the same setup as before, where we initialise three functions
f1, f2, f3 ∈ Ω0

PL(R2) corresponding to the three classes. Integration of the vertices in the path
against each of fi simply corresponds to evaluating fi at the vertex. Summing the columns of the
evaluation matrix then sums up the value of fi at all points in a path. In this sense, each fi functions
much like an approximated ’density’ for the vertices of each class - albeit with negative values.

In Figure 7, we show example paths from each class against the learned scalar function representing
that class. In this example, the vertices of paths in each class have a similar density. One sees that the
algorithm learns something reasonable, picking out minor fluctuations in density, but struggles overall
to separate out the classes. With the same number of parameters and training time, the algorithm is
only able to achieve a training accuracy of 37%.

E.2 SYNTHETIC SURFACE CLASSIFICATION

We consider two classes of synthetic surfaces obtained by embedding a triangulated square in
R3. The embedding of the vertices of the triangulated square are given by functions of the type
ϕ1(x, y) = sin(x) + ϵ(x, y) for the first class and ϕ2(x, y) = sin(y) + ϵ(x, y) for the second class,
where ϵ is random noise. We initialise two neural 2-forms ω1, ω2 ∈ Ω2

PL(R3) with ReLU activation
for each of the classes. Letting β be the standard basis, the two 2-forms generate an evaluation
matrix Xϕ(β, ω) whose entries are the integration of the 2-form

∫
ei
ωj against each 2-simplex in the

surfaces. The readout function sums the entries in each column, which represents the integral of each
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(a) Integral of ω1 on a representative of the first
class.
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(b) Integral of ω1 on a representative of the first
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Figure 8: Representative surfaces of each classes, colored by the integral of the learned 2-form ω1

over the surface. The integral of ω1 over elements of the first class yields positive values whereas the
integral of the same form over elements of the second class yields negative values. For the form ω2

the opposite is true.

ωi over the entire surface, thus yielding a representation of the surfaces in R2 in the following way

s 7→ (

∫

s

ω1,

∫

s

ω2, ) ∈ R2. (48)

Finally, we use the cross entropy loss function to classify the surfaces into the two classes. In this
design, each 2-form corresponds to a class, and a surface should ideally have a high integral against
this form if and only if it belongs to the class.

Figure 8 shows the integral of ω1 on surfaces taken from each of the two classes. This integral is
positive for elements of the first class and negative for elements of the second class. Similarly the
values for the integral of ω2 is negative on surfaces of the first class and positive on elements of the
second class.

E.3 GRAPH BENCHMARK DATASETS

For the small graph benchmark datasets (AIDS, BZR, COX2, DHFR, Letter-low, Letter-med, Letter-
high), we use a learning rate of 1e − 3, a batch size of 16, a hidden dimension of 16, and h = 5
discretisation steps for all k-forms. For our comparison partners, i.e. for the graph neural networks,
we use h hidden layers to permit message passing, followed by additive pooling. As a result, all
models have roughly equivalent parameter budgets, with our model having access to the smallest
number of parameters.

Architectures. Our model architectures for our comparison partners follow the implementations
described in the respective papers (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019).
We make use of the pytorch-geometric package and use the classes GAT, GCN, and GIN,
respectively. Our own model consists of a learnable vector field and a classifier network. Letting H
refer to the hidden dimension and Din, Dout to the input/output dimension, respectively, we realise
the vector field as an MLP of the form Linear[Din,H] - ReLU - Linear[H,H/2] -
ReLU - Linear[H/2,Dout]. The classifier network consists of another MLP, making use the
number of steps h for the discretisation of our cochains. It has an architecture of Linear[h,H]
- ReLU - Linear[H,H/2] - ReLU - Linear[H/2,c], where c refers to the number of
classes.

Training. We train all models in the same framework, allocating at most 100 epochs for the training.
We also add early stopping based on the validation loss with a patience of 40 epochs. Moreover, we
use a learning rate scheduler to reduce the learning rate upon a plateau.
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