Contents

Introduction

1.1 Relatedwork . . .. . .. . . . . . . ..

1.2 Notations and organization . . . . . . . . . . . . ... ...

The Bandit LQG Problem

2.1 ASSUMPHONS . . . . v o v e e e e e
2.2 Disturbance Response Controllers . . . . . . ... ... ... ......

2.3 Approach and Technical Challenges . . . . .. ... ... ... .....

BCO with Memory: Quadratic and Strongly Convex Functions

3.1 Setting and working assumptions . . . . . . ... ...
3.1.1 BCO-Massumptions . . . . . . . . .. ...,

3.2 Algorithm specification and regret guarantee . . . . . . . ... ... ...

Bandit Controller: Known and Unknown Systems

4.1 Knownsystems . . . . . . ... e e

4.2 Unknown systems: control after estimation . . . . . ... .. ......

Discussion and conclusion

Notations and Organization

Al Organization. . . . . . . . . o .ot e
A.1.1 Appendix B: Experiments . . . . . .. ... ... ... ... ..
A.1.2 Appendix C: Proof of EBCO-M regret guarantee . . . . . . .. . .
A.1.3 Appendix D: Proof of EBPC Regret Guarantee for Known Systems
A.1.4 Appendix E: Proof of EBPC Regret Guarantee for Unknown Systems

A.2 Complete List of Notations . . . . . . ... ... .............

Experiments

Proof of EBCO-M Regret Guarantee

C.1 Self-concordantbarriers . . . . . . . .. .. ... ... ...
C.2 Gradientestimator . . . . . .. ... .. ...
C.3 Regretanalysis . . . . . . . . ... e

C.3.1 RFTL withdelay RFTL-D) . . ... ... ... .. .......

Proof of EBPC Regret Guarantee for Known Systems

D.1 Construction of with-history loss functions . . . . . . ... .. ... ...
D.2 Regularity condition of with-history loss functions . . . . ... ... ..

D.3 Controller regret decomposition and analysis . . . . . .. ... ... ..

13

N N3 AN N »n A B

o

10

10

15
15
15
15
15
15
16

17

18
18
19
24
25



E Proof of EBPC Regret Guarantee for Unknown Systems 35

E.1
E.2
E3
E.4
E.5

System estimation error guarantee . . . . . . . . . ... ... e e e e 35
Construction of estimated with-history loss functions . . . . . .. ... ... ... 35
RFTL-D with erroneous gradients . . . . . . . .. ... ... ... ........ 36
Regularity conditions for estimated with-history loss functions and iterates . . . . . 39
Unknown system regret analysis . . . . . .. .. ... ... ... ... ... 42

14



A Notations and Organization

A.1 Organization

A.1.1 Appendix B: Experiments

Appendix B provides brief emprical results in a standard control problem with a few classic perturba-
tion patterns, and compares to classical LQR control and the more advanced control of Gradu et al.
[2020].

A.1.2 Appendix C: Proof of EBCO-M regret guarantee

Appendix C proves regret guarantee (Theorem 3.6.B) for EBCO-M (Algorithm 1) under Assump-
tion 3.1, a relaxed 3.2, and 3.3:

* Section C.1: properties of self-concordant barriers used in the proof
* Section C.2: conditional bias guarantee for the proposed gradient estimator in Algorithm 1
* Section C.3: regret analysis for Algorithm 1

A.1.3 Appendix D: Proof of EBPC Regret Guarantee for Known Systems

Appendix D proves EBPC regret guarantee for known systems as stated in Theorem 4.1:

* Section D.1: construction of with-history loss functions based on cost functions

 Section D.2: establishes the following regularity conditions for with-history loss functions

Construction of with-history functions and unary forms: Definition D.2.
Norm bound on y;, u;: Lemma D.4

Diameter bound B of ¢; and F;: Lemma D.5

Diameter bound D of M(H, R): Lemma D.5

Lipschitz bound L of F;: Lemma D.6

Conditional strong convexity parameter oy of f;: Lemma D.6

Smoothness parameter Sr of F}: Lemma D.6

 Section D.3: EBPC regret analysis for known systems

A.1.4 Appendix E: Proof of EBPC Regret Guarantee for Unknown Systems

Appendix E proves EBPC regret guarantee for unknown systems as stated in Theorem 4.2:

* Section E.1: system estimation error guarantee
* Section E.2: construction of with-history loss functions and pseudo loss functions

* Section E.3: regret guarantee for Regularized Follow-the-Leader with Delay (RFTL-D) with
erroneous gradients

* Section E.4: regularity conditions for pseudo-loss and with-history loss functions:

Construction of with-history functions, pseudo loss functions, and unary forms: Defini-
tion E.5, E.6

Norm bound on yt vy, u;: Lemma E.12

Diameter bound B of ¢; and Ft, }7}: Lemma E.13
Diameter bound D of M(H*, R"): Lemma E.13

Lipschitz bound L ; and L ;. for F; and F}: Lemma E.14

Smoothness parameter 3 and 3 for Ft and F: Lemma E. 14

Conditional strong convexity parameter o 7 and o 7 for ft and ft: Lemma E.14

» Section E.5: EBPC regret analysis for unknown systems
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A.2 Complete List of Notations

* Asymptotic equivalence. We use <, >, =, or equivalently, O(-),Q2(-), ©(+), to denote
asymptotic inequalities and equivalence. In particular, a < b (@ = O(b)), a 2 b if 3

universal constant ¢ such that a < ¢b, a > cb, respectively. a < bifa < band a 2 b.
* Derivative. For f : R™ — R™, we use Df € R™*™ to denote its derivative.

* Spectral radius. For A € R"*", p(A) measures A’s spectral radius, or maximum of the
absolute values of A’s eigenvalues.

* Norms.
Notation Meaning Domain* Definition
Il {,-norm R" v (S0 )7
|- 1l7 Frobenius norm RmXnxr M= (305 2001 M%k)%
Il llop operator norm Rm*n M = sup,epn |joj,=1 [M]|2
|- lar, M € R™ ™ local norm induced by M R™ v (v Mu)z
I llev.op {,-operator norm (R™ )N (My)ieren = Yieq | Millop
Il dual norm of || - || same as || - || v — sup{(u,v) : [Jul]] <1}
- lles I Hle e local norm at time ¢ R™ see Definition C.4

*

: m, n, r are arbitrary dimensions that may be specifically defined throughout the paper.

¢ System, dynamics, and parameters.

dx, dyu,dy dimension of states, controls, observations
A, B,C system matrices for linear dynamical system
G Markov operator for linear dynamical system
G estimated Markov operator
x; € R state at time ¢
u, € R% control at time ¢
w; € R system perturbation (disturbance) at time ¢
e; € R% state-observation projection noise at time ¢
y: € R% observation at time #
yrat ¢ Rdy nature’s y, the would-be observation at time ¢ assuming no controls are ever played
yrat ¢ Ry algorithm calculated nature’s y using the estimated Markov operator G
H,H,H* H*+ history length of a policy class, H = H — 1, H* =3H, H+ = Ht -1
R,RT DRC policy class ¢;-operator norm bound, BT = 2R
Rpat nature’s y £2-norm bound
Rg {1 -operator norm bound on G
M(H,R) DRC policy class with length H and ¢;-operator norm bound R
* Cost and loss functions.
Notation Meaning Domain
ci(y-) cost function for controlling linear dynamical system R% x R%u
Fi()), Ey() with-history loss function with history length H KH for convex Euclidean set K
(), f: () unary form induced by fi(z) = Fy(z,...,x) some convex Euclidean set
E,), f: () pseudo-loss and induced unary form K| K for convex Euclidean set K
B bound on function diameter
D bound on constraint set diameter

chLFaLﬁvLF'
5676F7ﬂﬁ‘75ﬁ
e

0f, 04,0

Lipschitz bound on function ¢, F}, }3‘,5, Ft

smoothness parameter of c;, Fy, Fy, F’t
strong convexity parameter of ¢,

conditional strong convexity parameter of f;, fh ft
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B Experiments

To compare our controller against previous work, we test our control scheme empirically in the same
settings as Gradu et al. [2020]. Our experiments use the package Deluca developed by Gradu et al.
[2021]. We test control of a barely-stable LDS — a damped double-integrator system given by

Lo =[]

We attempt control under several different classes of noise. Relevant details are below:

* As the controller of Gradu et al. [2020] does not support partial observation, we test in the
full-observation case.

* Both controllers are given access to the optimal LQR controller K (that is, we run Algo-
rithm 2 as opposed to Algorithm 3 for simplicity of comparison).

* State is initialized randomly, and perturbations are stochastic (to facilitate direct comparison
with the experiments of Gradu et al., who did the same).

* We test both algorithms with I = 5, which was found to produce nearly-optimal results for
both algorithms (theoretical performance is increasing in H, but converges with exponential
falloff to a supremum).

* Noise magnitude is chosen arbitrarily across experiments. However, as the results are
linear in magnitude (since both the systems and the control algorithms are linear), direct
comparison to the experimental results of Gradu et al. [2020] is possible via scaling.

We also make two important nonstandard modifications to the experimental setup. Following the
example of Gradu et al. [2020], we searched to find optimal multipliers for learning rate. This was
found in their work to substantially enhance the performance of nonstochastic control algorithms
against stochastic inputs in practice (due to the fact that stochastic inputs are unlikely to cause
systematic learning errors early in the control run) and appears to be present in their experiments.
We also test Gradu et al. [2020] under a version of their implementation modified with controller-
magnitude bounding to ameliorate divergence issues (still visible in some spiking). We have not
been able to determine the source thereof, and we do not have access to the code used to generate
the plots visible in Gradu et al. [2020], so we are unable to determine the source of these spikes.
However, this modification strictly improves their performance on the benchmarks, thus maintaining
fair comparison.

Moving-average losses are graphed for EBPC, BPC, and LQR for the above problem with the three
perturbation types of Gradu et al. [2020]: Gaussian, ¢sin(rz) E] (with period 40), and Gaussian
Random Walk. H = 5 was used for both memory algorithms.

We observe that while our method has higher initial error, it has long-term error substantially lower
than that of competing methods in aggregate (except in the sanity-check case of Gaussian noise,
where it quickly converges to the LQR error as desired). Critically, it is able to adapt effectively
to trends in perturbations more effectively than previous higher-error-rate algorithms, allowing for
constant or decreasing error in environments with constant-size or increasing perturbations.
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Figure 1: Loss (y-axis) of the three tested algorithms on Gaussian (left), sinusoidal (right), and
Gaussian-walk (bottom) perturbation over time(z-axis). Error bars indicate standard deviation across
twelve draws of perturbation and controller randomness.

C Proof of EBCO-M Regret Guarantee

We prove the more general claim of Theorem 3.6.B, where the function F} is assumed to be condi-
tionally o-strongly convex. Denote Fy(z,_.+) = E[Fy(24_.4) | U1:t—m, fre—m].

Note that in Algorithm 1, with the delayed updates and the initialization g; = --- = gg = 0, we
have x; = -+ = w5, = argmin, ¢, R(x) and so learning begins only at the 2 + 1-th iteration.
We can therefore decompose the regret against any = € K as
2H T
Regret;(z) = Z Fy(yi—p) — fe(@) | + Z Ey(yi—ie) — fe(@) |
t=H t=2H+1
(burn-in loss) (effective regret)

with burn-in loss crudely bounded by H B. We thus turn our attention in bounding the effective regret
term.

The proof of the effective regret bound for Algorithm 1 consists of two main parts. In Section C.2,
we show that the proposed gradient estimator g; has a bounded conditional bias. In Section C.3, we
perform the analysis of a variant of the Regularized Follow-the-Leader (RFTL) algorithm, adding
both a history component and a delayed update. Then, we show that together with the bounded
conditional bias of our proposed gradient estimator, this yields an optimal regret bound for the bandit
online convex optimization with memory algorithm outlined in Algorithm 1.

C.1 Self-concordant barriers

The use of self-concordant barriers for bandit optimization is due to Abernethy et al. [2008], where
the following properties are stated and used.
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Proposition C.1. v-self-concordant barriers over K satisfy the following properties:

1. Sum of two self-concordant functions is self-concordant. Linear and quadratic functions are
self-concordant.

2. If z,y € K satisfies ||z — y||v2r(z) < 1, then the following inequality holds:
1
(1= llz — yllvere))?

(1~ llz = ylv2re)*V*R(z) = V'R(y) = V’R().

3. The Dikin ellipsoid centered at any point in the interior of IC w.r.t. a self-concordant barrier
R(-) over K is completely contained in K. Namely,

{y eR" | ly — z|ls2r@) < 1} CK, Vo €int(K).

where

de
vllv r@) 2 \/vT V2R(x)v
4. Vz,y € int(K):

R(y) — R(z) < vlog

)

1 —ma(y)
where 7, (y) dzefinf{t >0:x+t1(y—2)eK}

C.2 Gradient estimator

The goal of this section is to establish a bound on the conditional bias of the proposed gradient
estimator g, formally given by the following proposition:

Proposition C.2. The gradient estimator g: = nF:(y,_j.4) ZZH:() A;liut,i satisfies the following
conditional bias bound in ¢5: ¥t > 2H + 1,

- I(S\M,BnBH3
E sG]~V < VIR
|Elgt | vit—rr, Grr] — Vife(ze) |, ot 20)

Lemma C.3. The gradient estimator g; is a conditionally unbiased estimator of the sum of the H
coordinate gradients of F} : KH SR e Vt> H,

"
Elg: | wit—m,Ge—n| = Z ViFy (2 f.4),
=0

where Vi Fy(z1,...,25) = a‘zi Fy(z1,...,21).

Proof. Letq(z) = %xTAx + bz + ¢ be a (possibly random) quadratic function from R™ — R and
C be a (possibly random) symmetric, invertible matrix. Let 2o € R™ be a (possibly random) point
of evaluation. Let F be a filtration such that {A, B,C, ¢,zg} € F. Let u € R™ be a random vector
that is drawn from a symmetric distribution such that E[uuT] = Z1,xn for some r > 0, and u is
independent of F. Then,

r
n

E[C ™ ug(zo + Cu) | F] = %C’flE[u(xo +Cu) " A(zo + Cu) | F] + C'Eub" (2o + Cu) | F]

1
= 5C“lIE,[uuT]C’(zﬁl + AN zo 4+ C'Elun"|Ch

= C 'Eluu"])C (;(A + ANz + b)

r

=— (;(A + ATz + b)

n

= ~Vq(xo).
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Note that in Algorithm 1, u;’s are sampled uniformly at random from the unit sphere in R”, so the

distribution is symmetric and E[u,u, ] = L 1,,x,,, and thus E[u, a4l ) = L It xnp. Moreover,

Fyxy_ g, Ay gy € Foom and u,_ ., are independent of F;_ 7. Let A, &f diag(A;_g,...,Ar) €
RrH>nH (e the block matrix with diagonal blocks equal to A, g, ..., A;). Then we have

E[nFt(ytfﬁ:t)At_lutfH:t | Fi—n] = VFt(xtfﬁzt)'

Consider g; = nf: (Y 7.4 Z?:o A7 up ;. Note that A7 = diag(At__lg, ..., A7) and by defini-
tion of g;, we have

Elg: | Fi—n] = ZVFtiUt H:t)

On the other hand, x; and A; are completely determlned by {u1.t—m} U {fm:t—n}, and thus
Zio A;_liut,i, Yy - 1s determined by {u1.+} U { fr.c—n }. Therefore,

Mw

Elge | wia—m, Fra—n] =E [ nFu(y_ ) Y A7 | ure-m,Gin

=0

H
=E |E | nFi(y— th tzut1
=0

ul:tagt—H ul:t—Hagt—H

7
=E E[Ft(yt H:t |u1f7gf H Z i lut i | Vi—m,G—H
=0

=E |nFi(y_a.) A;liut—i Urt—H, Gt H

=

Il
o

?

= E[gt | Ul:tfH]'
We conclude that

Elg: | vit—m, Fre—n] =

S.Mm‘
<

Definition C.4 (Local norms). Denote the pair of dual norms || - ||¢, || - ||5 on K as
de)‘
lylle = [1ylla;> = \/y (VR(z¢) + notl)y = \/yTAt Y,

loll; 2 llyllaz = \/yT (VR(@,) + notD) -1y = \[yT A2y.
By Taylor expansion, VR and x,y € dom(R), 3z = tx + (1 — t)y for some t = t(x,y, R) € [0,1]
such that Dp(z,y) := R(z) — R(y) — R(y) " (x — y) = 3llz — ylRe oy We call || - ||z r(z) the
induced norm by the Bregman divergence w.r.t. R between x and y. Denote as || - ||;41 the induced

norm by the Bregman divergence w.r.t. Ry(x) « R(z)+ & Sty e =z 7|3 berween x; and
Tyy1. Denote its dual normas || - |5 ;11

Lemma C.5. Vt > H, assuming 2n||g,_gl|; <1, then ||z, — i1l < 2n|lg— 77

Proof. From Lemma 14 in Hazan and Levy [2014], ||z — arg min,, h(z)||vzn @) < 2[[VA(2)[[S2p ()
provided £ is self-concordant and [|VA(2)|[3z), () < 1. Define 4(z) L P 9. gv 4 Ri(x),

where R;(z) = R(x)+ ZZ:H |z —z,_ 7|3 ®:(-) is self-concordant since it is the sum of a self-
concordant function and sum of quadratic functions. Note that 2:;11 = arg min ®;(z) by specification
of Algorithm 1 and V2®; = VZR,. Moreover, ®;(z) = ®¢_1(z) + ng,| sz + Bl — z,_gl[3.
Since x; € int(K) and minimizes ®;_1, V®;(z) = ng,_ 5. Applying Lemma 14 from Hazan and
— eplle < 2nllg,all7- O
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Lemma C.6. Ifn < m, and ass?me that H = poly(log T') then the following inequali-
ties hold deterministically ¥Vt > H: ¥((t — H)V H) < s <,

lgs—mlli <2nBHlogH, |lgs_pllfiy1 <4nBHlogH.

Proof. We will show the joint hypothesis that: (1) ((1 — %) A t+1) Ay R Ay = fit;

B VT )T
@ llgs gl <2nBHlog H Wt — 0 < s < t:3) g, lli 41 < 4nBHlog H. ¥t — 0 < s <t,
for all ¢ by simultaneous induction on ¢t. We divide our induction into two steps:

* (1),(2),3) hold for t = H,...,2H: note that x; = --- = 7 = x = arg min R(z) and
zeK
g1=--=gg=0,thuszygi1 =--=xy5, =2 ThusVt = H,... ,2H, A1 2 A

holds trivially, to see the bound in the other direction, note that

t+1 (t+1
A = J;(‘L V2R(x)+na(t+1)f> <\ — A

g =0fort=1,...,H,so(2),(3) follow.

Given that (1), (2), (3) hold for all ¢ < T{, show that (1), (2), (3) hold for t = Tj:
We first prove (2) for s = ¢. The bound holds identically up to constant factor < 2 for
s € [t — H,t) by induction hypothesis of 4, ... Assume Ty > 2H. Observe that

(1 - \}T) A 7k = ¢ ifand only if £ < /T — 1. On the other hand, since by expression
of o = nFy(y,_ ) ZiH:O A;—lqtutfi’

H
2 — —
lom, sl = llgr, % < (B)* 3 ug,_aiAr 5 AR Az g jun-n-

Consider the induction hypothesis (1). For Ty < /T, this implies that Vi € [0, H], there
holds ||A; _g_iAnllop < # and thus

H T T Tt
* 2 2 0 0 2 0
252 < (nB - = = (nB
gz, —alln,”™ < (nB) ;O(TOH) (Ton) ) .Z};ITo—i
1,]= i=

which is a decreasing function in Ty and thus attains maximum at Ty = 2H + 1, giving that

l97,—i |l < (nB)? <2H+1 Z ) < 4(nBH)?(log(H))>.
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1— L

ﬁ) (H4+1)

( 1 ) —(2H+i4+7)
1 - —

i,j=0 T
oo (<1 R
= (nB)* ((1 - \}T)LLH\/T (1 — (1 — \}T)H»Q
<omp (-4 e (1 (1- )
< (nB)? (ﬁﬁ4H>2H2
< 4(nBH)?

where the second inequality uses the inequality (1 + x)" > 1 4 rz for z > —1, integer
r > 1, and the last inequality holds by assumption that H = poly(log T').

For Ty € (\/T,\/T+2FI+ 1),

1A A7 7 llop = 1Az A7) 1Azt Allop A7 - AL g llop -

—(To=VT) < YT
1 = —H—i
<(1—7) To—H—i

Thus, letting A def To— VT € [1,2H],

ﬁ :0 +A-—H-—
(1o Y (T
<o (1- 7z) <\F )
T
<(-%)
4(nBH)?.

Then by Lemma C.5 and choice of 1), ||zz, — 21, 41ll7, < 2097, —all3, < % Ry, ()

1
is self-concordant, and A7, 1 (VQRTO (xTO)) %, so by the local Hessian bound in Proposi-
tion C.1,

1 _ _
((1- 75) Mg Ard = Q= llom, = ol 47

1
_< AT +1
A;Ol
T 1= lzn, — zry41llTs
1 _
=< Az,

1 t
(1= V) A et

thus proving (1) for ¢t = Tj.
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To prove (4) for t = T}, observe that if 2 is a convex combination of z7, and 7,41, then

1
||Z - xTOHVQRTO(ITO) < ||$T0+1 - xTOHVQRTO(ITO) < ﬁ’

and thus again by Proposition C.1,

1\ 2
(V2R(2) +notl)~' = (1 - \/T> (V2R(z¢) +notI) ™,

and thus since 3z convex combination of z7,,r1,11: g7, —allT, 101

-2
lgr,-llv2rn ) and thus lgr _glt, e < (1=FF) lon-ali <
4nBH log H.

Lemma C.7 (Iterate bound). V¢t > H, the Euclidean distance between neighboring iterates is
bounded by

4./m . 16 /mmBH log H
Ty — X < — —_ g N
[l t+1ll2 < o(t — H) 94 H||t,t+1 (i — H)

Proof. The second inequality follows from the previous lemma, so we prove the first. Recall ®, as
defined in Lemma 14. By Taylor expansion, optimality condition and linearity of ®;(-) — R:(-),

O4(24) = Po(wer1) + (21 = 2441) V@ (wr41) + Da, (21, 2041) > o(w41) + D, (@0, 441),
which by decomposing ®; implies
Dp, (@, x41) < [®ro1(ze) — Poo1(me1)] + 19, g (@0 — 2e41) <ng,_ (e — ze41).

and thus for some z = sxy + (1 — s)x41, s € [0,1],

Ty — It+1||2szt(z) < QUQtT_H(xt
Te1) < 209 all%e g, () l7t — Te41llv2 R, (2), thus establishing the bound [|z; — z¢41v2r,(2) <

2019+~ zl152 g, () Since Ry(-) is no(t — H)-strongly convex,

NG
T — Tyl < ——==ll7t — Tit1llv2R, () < ——= 01— 77 141"
[y na(tiH)ll t — Te1llv2 R, (2) CT(%H)II 74

Corollary C.8. Define f, : K — Ry by fi(z) & Fy(x,. .., x). We have that ¥t > 21,

16,/76nBH?

Vot —2H)

|Elge | wi—m, Gen) — Vft(%)“g <
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Proof. By the earlier bounds,
2
H — —_
> ViF(x,_g.) — Vi(xe) Lemma C.3

2
= HHVFt(mt—H:t) - VFt(xt’ T 7'7315)“%

|Elg: | wret—rr, Gr) — V(s HQ

< HBQH(xt—H? e vxt) - (mt, T ,l‘t)H%
H
<HBY ||l — el
i=1
H i
=HBD Y lwejar — 213
i=1 j=1
256n32n2B2H? log” H
< p ZZ*L‘—]—H Lemma C.7
=1 j=1
< 256n62n2B2H3 log? H H? 1
- o) 2 t—2H
_ 12877ﬁ2n232H_5 log> H
o(t—2H)
Then taking the square root of each side yields the desired bound. O

C.3 Regret analysis

The previous section established a conditional bias bound on the gradient estimator g; used in
Algorithm 1. In this section, we use this conditional bias bound together with an analysis on the
subroutine algorithm, Regularized Follow-the-Leader with Delay (RFTL-D), to establish a regret
guarantee for Algorithm 1.

Decomposition of effective regret. Letting w = arg min Zf: g ft(x), we divide the expected
el

regret into three parts, which we will bound separately:

T T
Effective-Regret, = [E Z Fy(y—ga) — Fe(xi_pgy) | +E Z Fy(@y_ ) — felz)
t=2H+1 t=2H+1
(1: estimator movement cost) (2: history movement cost)

T
+E | Y filwe) = fi(w)

t=2H+1

(3: RFTL-D effective regret)

To bound the estimator movement cost, note that || A?||op, = ||(V2R(z¢) +notD) ™ |op < ==, and
———

not’
>0
thus
B

Z E |E |VF(z,_ Hf) ( t—H:tut—H:t)+§||( t—aa—ga) 2 | Fi—n

t=2H+1

3 T t 3 T t 3 T toq
=3 YOE| DY lAsusls <35 YEL D 142w S oo Z Z S

t=2H+1 s=t—H t=2H+1 s=t—H i t=2H+1 s=t—
<ﬁHlogT.
- 2no
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To bound the history movement cost, note that by the iterate bound obtained in the analysis of
Corollary C.8,

T T
@) =E| > Fle )~ fele)| <L D @egome) = (@6, 302
t=2H+1 t=2H+1
- 16,/nLBH? log H ZT: I _ 16V/yTnLBH?log H
- Vo Vi—2H ~ NG '

t=2H+1
It remains to bound the last term in the regret decomposition. For this, we analyze RFTL with delay
(RFTL-D).

C.3.1 RFTL with delay (RFTL-D)

The subroutine algorithm we used in Algorithm 1 is Regularized-Follow-the-Leader with delay
(RFTL-D). We first analyze its regret bound in the full information setting. Consider a sequence of
convex loss functions {¢;}_,; and the following algorithm.

Algorithm 4 RFTL-D

1: Input: Bounded, convex, and closed set K, time horizon 7', delayed length H, step size > 0,
regularization function R(-).

2: Initialize x; = argmin, ¢ R(z), V¢t =1,..., H.

3: Setét :O,Vt: 1,...,H.

4. fort=H,...,T do

5:  Play x4, observe and store cost function £;(xy).

6:  Update 441 = arg min, ¢y {ZZ:H o_g(x)+ %R(m)}
7: end for

Again, note that by design of Algorithm 4, the learning begins only after 24 -+ 1-th iteration. Therefore,

it suffices to bound effective regret Effective-Regret, & S a 11 () —mingex S a 1 be().
First, we want to establish a regret inequality which is analogous to the standard regret inequality
seen in the Regularized Follow-the-Leader algorithm without delay.

Theorem C.9 (RFTL-D effective regret bound). With convex loss functions bounded by B, Algorithm
4 guarantees the following regret bound for every x € K:

*

T t
Effective-Regrety(x) < 2n Z IViemllf141,9, Z Ve m
t=2H+1 s=t—H

tt4+1,8,
R(z) — R(zopq
| R@) - Rlesae) o
n
where || - ||¢t11,0, and || - ||} ;11.4, denote the local norm and its dual induced by the Bregman

divergence w.r.t. the function ®;(x) d:efn ZZ:H ly_7(x) + R(x) between x; and 44 1.

Proof. The proof of Theorem C.9 follows from the following lemma.

Lemma C.10. Suppose the cost functions ¢, are bounded by B. Algorithm 4 guarantees the following
regret bound:

S v R(x) ~ R(@g141)
Effective-Regret(x) < V. gy g —o41) + +2HB.
— n

t=2A+1

Proof of Lemma C.10. Denote ho () &ef %R(a:), he(x) &ef

¢, g(z),¥t > 2H + 1. Then, by the
usual FTL-BTL analysis, Vo € IC, T > 2H, ZL%—I he(z) >

ZtT:y—I hi(xyy1). Thus, we can
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bound regret by

~
|

Regrety(z) <

(]

li(xy) — l(x) | +2HB

i
o X

v

|
(]

gt(mt) —ft(fE) +2HB

i
-

v

|
(]

gt(mt) — ft(xt+H) + Z ft($t+H) — Et(.’II) + 2HB

~+

Il
M’ﬂ =

T

t=2H+1 t=2H+1
T
< Z L a(@ g — w) + Z hi(zt+1) — he(z) | +2HB
=2H+ t=2H+1
T
R(z) — R(x95
=< Z i) + O B @ai) oy
—2f+

where the last inequality follows from the inequality 37, 5 he(2) > 3o o hi(2i41), Ve € K. O

Consider the function ®;(z) &f 7 Zi:QHJrl l,_p(z) + R(x),t > 2H + 1. By Taylor expansion
and optimality condition, we have that V¢ > 2H + 1,

®y(z,_g7) = Pe(w41) + (g — Te1) | VO4(2441) + Do, (T, Teg1)
> ®y(x441) + Do, (g, Tig1),

which implies a bound on the Bregman divergence between z;_ 7 and x;y; with respect to @,

Dq)t (l’t_H, xtJrl) é ét(xt_ﬁ) - @t(l’t+1)

t
< Op(r_pg) — Cemleen)+n Y V] (e, — i)

<0 s=t—H
*
t
<n > Ven lzi— g — Tesalleer1,0,
s=t—H ti41,®,
*
t
=1 § vsflfl \/2D¢‘t(xtfflaxt+l)?
s=t—H tt41,®,

which gives the bound on both the Bregman divergence and the iterate distance in terms of Bregman
divergence induced norm between x,_ g and z141,

*2
¢
2
Dq’t(ztfﬁ?zt-‘rl) < 277 Z vsffl 5
s=t—H ti41,®,
N
t
|- — zeralleerre, <20\ Y Vg
=t t,t+1,D;
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Following the expression of the regret bound established in Lemma C.10, we bound

R(z) — R(7yp41)

Effective-Regret . (z Z H (v, g — Tey1) + 1+ 9HB
t=2H+1 U
T
< Z ||Vt—H||;t+1,<Dt 2 —
t=2H+1

4 R(x) — R(IQHH) +2HB

T t
< ) >
t=2H+1 s=t—H {1, B,
| R(@) ~ R(xa41)

*

+2HB.

O

Corollary C.11. In Algorithm 4, if the loss functions are assumed to be o-strongly smooth and
bounded by B, and the updates are given by

t
. T o 9 1
Ti4+1 = argeﬁln{ <Z Vs—Hx + §||CE - xs—H||2> + nR(x)} )

s=H

then Algorithm 4 guarantees the following regret bound:

*

. = * d R(z) — R(za41)
Effective-Regret < 2n Z IViem |l a1 Z Ve g + ; + HB,
t=2H+1 Z

tt+1

with the local norms defined as in Definition C.4.

Proof. We make use of a lemma of Zinkevich [2003] and Hazan et al. [2007]:

Lemma C.12. The following inequality holds for two sequences of convex loss functions
{Et}thlv {ft}$:1 lf‘gt(fﬂt) = Et(l’t) and gt(.’l,') S Zt(x), Vx € K:

Zﬁt(xt manft < ZE (x¢) — géllrclzgt(x)
t=1 =

Since we assume /4s to be o-strongly convex, we can construct /, that satisfies Zt(:ct) = ly(x¢) and
li(z) < ly(x), Yo € K as the following:

ft(l‘) d:efft(fllt) + Vét(:ct)—r(x — Sll‘t) + g

2l — w3

The update then becomes

t
1
Tyy1 = arg min { (Z VI gz + = \x x5H|§> + nR(x)}
s=H
J’_

ze

—argmln{z o ;R(x)}

ze
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Note that Vgt(xt) = Vft(:tt) Let ||l'| tt+1 = Hx”tﬂH’l,Rt’ where Rt(x) = R(-T) + % Zi:H H.’E —
7,_ |3 Then from Theorem C.9 and linearity of ®;, — Ry,

*

T

t
Effective-Regret; < 27 Z IVl i1 0, Z V. i
=2 s=t-H t+1,P,
+ R(z) — R(zyq41) L HB
n
T " *
* R(z) — R(wyq41)
=20 Y Veealion| > Ven|| 4 B,
t=2H+1 s=t—M £e41 n

O

Corollary C.11 implies that the above regret bound holds if we run RFTL-D with the true gradient of
{fi}L_,; in the full information setting. In the bandit setting, Algorithm 1 is run with the gradient
estimators g; in place of the actual gradient Vf;(z;). We introduce the following lemma that bounds
the regret of a first-order OCO algorithm A when using gradient estimators in place of the true
gradient:

Lemma C.13. Let {y,...,¢p : K — Ry be a sequence of differentiable convex loss functions. Let
A be a first-order OCO algorithm over KC with regret bound
ey VKT(ZET))

) -
Define v1 + A0), z; + A(g1,---,9t—1) for t < T. Suppose AB(t) such that the gradient
estimator g, satisfies ||E [g; | G:] — V()| < B(t), where Gy is any filtration such that Uy, x4 € Gy.
ThenVx € K,

Regret% < DA(Vy (21

T T
E [Z t(w) - w)] <E[Da(gr,. ., gr)]| + DS B().

t=1

Proof. Define q;(z) & ¢,(x) + (g: — Ve (z¢)) T x. Then Vg (z;) = gs. Since A s a first-order OCO
algorithm, A(q1,...,q-1) = A(¢q1,-..,9t—1), Vt. Moreover, Vz € I,

T
> @) — @i(z) < Dalgr, - g7).

By assumption, Vt, x,

Elgi(w+) — g1(2)] = E[ls(0) — £o(2)] — El(g: — VEe(@1)) " (x — 21)]

= E[l(2;) — b(2)] — E[E[(g: — Vi(:)) " (2 — @) | G

= E[l(z¢) — Lo(2)] — E[(Elge | Ge] — Veu(z1)) " (2 — 24)]

> E[l,(2,) — £y(z)] — DB(t).

Then
T T T
E lZet(xt)e,(x) <E > alz) - a(x)| + DY B()
T
<E[Dalg1,....9r)] + DY B(t).

t=1

O

With Corollary C.11 and Lemma C.13, we are ready to bound the last term in the regret decomposition.
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Lemma C.14. For any sequence of loss functions {F;}_,; satisfying assumptions in 3.1.1, the
sequence {x,}L_,; returned by Algorithm 1 satisfies V& € K,

vlogT

16+/nTnBDH*

E| > filw) ~ file)| < 16qm>B>H?log? HT + =

t=2H+1

+2HB +

Proof. Recall the definition of the function 7, with respect to w € int(K) in Proposition C.1. For
a given w € int(K), 7, : K — Ry is given by m,(y) = inf{t > 0: v+t (y — w) € K}. Note
that we can assume without loss of generality that 7., , (x) <1 —T~1. Since F} is L-Lipschitz,
if  violates this assumption, i.e. m,,, () > 1—T7", 32’ € K with |lz — 2|, < O(T™1)
and 7, (2') < 1 — T~1, and if total loss playing 2’ is at most O(1) away from playing z. With
this assumption, Proposition C.1 readily bounds the quantity R(w) — R(x57 ), which is always
non-negative since o5 | = 1 = argmin, cx R(x).

Let A be the RFTL-D algorithm with updates for o-strongly convex functions. Then, the effective
regret of bandit RFTL-D with respect to any = € K is bounded by

T
E| Y filar) - filw)

t=2H+1
[
=E| Y Elfi(z)— fiw) | urs, G-l
[t=2H+1

T
K Z ﬁ(%)*ﬁ(w)

| t=2H+1
16,/1BnBDH® &
<E[Dalgu,...,97)] + —V—F—7+~+— (Corollary C.8, Lemma C.13)
o e
d t ] R@ - REan)

<2 Yy > 9em + +2HB

t=2H+1 =t—H L+l K

16y/nTBnBDH*

+ it n (Corollary C.11)
NG
R — R(zy5 16+/nTBnBDH*
< 1692 B2H?log? HT + (@) = R(@2m1) | oy, 10V 671 (Lemma C.6)
n o
logT 16+/nTBnBDH*
< 16nn*B*H3log> HT + vo8 +2HB + 0V \ﬁ/ﬁ (Proposition C.1) .
n o

O

Lemma C.14 establishes the bound on the expected bandit RFTL-D regret. Combining the above
bounds, with H = poly(log T') we have the following expected regret bound for Algorithm 1:

BH logT n 16v/nTnLBH?log H

Effective-Regret,; <

2no N
—_———
bound on (1) bound on (2)
vlogT 16+/nT3nBDH*
162 B H 10> T + 18T | o 4 1oVHTOn
NG
bound on (3)

<0 <fnpoly(H)\/T> =0 (f_npoly(log T)\/T) ,

by taking n = O ( with O(+) hiding polynomials in D, L, B.

1
nBHlogHﬁ)’
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D Proof of EBPC Regret Guarantee for Known Systems

This section proves the regret bound in Theorem 4.1 for the BCO-M based controller outlined in
Algorithm 2. We will reduce the regret analysis of our proposed bandit LQR/LQG controller to that
of BCO-M by designing with-history loss functions F; : M(H, R)¥ — R, that well-approximates
ct(+, ) for stable systems. In Section D.1, we provide the precise definitions of the with-history
loss functions and proceed to check their regularity conditions as required by Theorem 3.6.B in
Section D.2. In Section D.3, we analyze the regret of Algorithm 2 by bounding both the regret
with respect to the with-history loss functions and the approximation error of the with-history loss
functions to the true cost functions when evaluating on a single control policy parametrized by some
M e M(H,R).

D.1 Construction of with-history loss functions

In the bandit control task using our proposed bandit controller outlined in Algorithm 2, there are two
independent sources of noise: the gradient estimator g; used in Algorithm 2 and the perturbation se-
quence {(witoch estoch) 1T injected to the partially observable linear dynamical system. Formally,
we define the following filtrations generated by these two sources of noises.

Definition D.1 (Noise filtrations). Forall 1 < t < T, let F; & o({es}o<s<t) be the filtration
generated by the noises sampled to create the gradient estimator in the algorithm up to time t.

def . . .
Let G, ¥ o ({(wstoch [estoch)yo 1) be the filtration generated by the stochastic part of the semi-

S

adversarial perturbation to the linear systems up till time t.

The main insight in the analysis of online nonstochastic control algorithms is the reduction of
the control problem to an online learning with memory problem. To this end, we construct the
with-history loss functions as follows:

Definition D.2 (With-history loss functions for known systems). Given a Markov operator G of a
partially observable linear dynamical system and an incidental cost function c; : R% x R — R,
at time t, its corresponding with-history loss function at time t is given a (random) function F} :
M(H,R) — R of the form

. bZi béi t H H

e] . . : . i
Fi(Ni,.o Ny) Lo [ ypet+ 3 GIS N yeet S~ G P yeet N~ Nplyeet
j=0 j=0 j=0

i=1 i=H j

Additionally, denote the unary form f; : M(H,R) — R, induced by F; as fi(N) &
F, (N,...,N).

N in all H indices

We immediately note a connection of the with-history loss functions constructed in Definition D.2 to
the cost functions. Observe that by expression y, u; resulted from running Algorithm 2 explicitly,

t

H H
ce(your) = c [yt + 3 G MPLyret ST MPlyret | = F(M, g.).
i=1 j=0 j=0

Remark D.3. Note that y?2* is independent of Fr. Therefore, by construction, Fy is a Fi— g U G;-
measurable random function that is independent of ¢,_ ... In particular, Assumption 3.3 on the
adversary is satisfied.

It is left to check the regularity assumptions of F}, which we defer to Section D.2.

D.2 Regularity condition of with-history loss functions

The goal of this section is to establish the other conditions to apply the result of Theorem 3.6.B. The
following table summarizes the results in this section.
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Parameter Definition Magnitude
R, {5 bound on observations Ruat(1+ RRg)
R {5 bound on controls based on M(H, R) Roat R
B diameter bound on c;, F}, f; L.RZ,.(1+ RRg)* + R?)
D diameter bound on M(H, R) 2y/du NdyR
oy conditional strong convexity parameter of f; o (02 + 02 I(THHA(HCz) )
op
Br smoothness parameter of I} 4B.RZ, RZH
Lrp Lipschitz parameter of F} 2L, \/ (1+ RRg)%+ R2 RoR2, VH

We start with bounding £2-norm on the observed signals y; and controls u; played by Algorithm 2.

Lemma D.4 (Observation and control norm bounds). Denote Ry, := sup, ||y¢||2 and Ry
sup, ||ut||2. Then, the following bounds hold deterministically:

Ry < Rnat(l + RRG)a Ru < RnatR-

Proof. By algorithm specification, y;, u; allow the following expansions:

H H
luclle = | DA yp | < max (lyi2le | S0 M| <o RuacR,
J= 2 == j=0 op
t t
||yt||2 = Y?at + Z G[l]ut—i S Rnat + frglza%(t ||ut—’iH2 Z G[Z] S Rnat + RnatRRGa
=1 2 i=1 op
where <; follows from ]\A/ft € M(H, R) for all ¢t by Remark 3.6. O

Lemma D.5 (Diameter bounds). Given a Markov operator G of a stable partially observable linear
dynamical system. Let U := {Zf:o MUI¢; « M € M(H,R),( € R, ||¢la < Rnat} and

{C + ZZT 11 Glilg; : ¢ e R% 2 < Ryats & € Z/{} Denote B = supsup sup c¢(y,u).
YEVUEUL<tZT

Denote D = sup |M — M'||p. Then,
M,M’'€M(H,R)

B < L.R%,((1+ RRg)*>+ R?), D <2\/dyNdyR.

Proof. Recall the quadratic and Lipschitz assumption on ¢;. Vy € Y,u e U,1 <t < T,
ci(y,u) < Lell(y, w)l3 = Le(ly[13 + ull3) < LR (1 + RRg)? + R?).
For any M, M’ € M(H, R), we have

H H
M = M|p <> M= MV p < \/dy Ndy Y ||MY = MV, < 2y/dy AdyR.
j=0 7=0
O

In particular, Lemma D.5 implies the diameter bound for ¢;(y;, u;), V¢, and ¢;(yM,ul), Vt, VM €
M(H, R) as well as F; on M(H, R) and f, on M(H, R), Vt. We proceed to check other regularity
conditions for F; and f;.

Lemma D.6 (Regularity conditions of F} and f;). Let F; and f; be given as in Definition D.2, and
G be the Markov operator of a partially observable linear dynamical system. F; and f; satisfy the
following regularity conditions Vt:

* The function E[f,(-) | Fi— g UGi_ u] defined on M(H, R) is o p-strongly convex with strong

. min (C
convexity parameter oy = 0, (Jg + 02, 1U+HA(H2) )
op
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o F; is quadratic and Bp-smooth with Br = 48.R natR2 H.

e Fy is Lp-Lipschitz with Lp = 2L./(1 + RRg)* + R?RgR2,,V H.

Proof. First, We show the conditional strong convexity. Recall that ¢; is quadratic, therefore
ey, ue) =y, Qtyt + ut T R;u,. Consider the followmg quant1t1es

yhat 4 ZGM ZM[]] nat - o eld ZM[J]Zy?aZt 5 Cur défiMJ]y?a;
i=H 0 j
Note that S, CM are 1ndependent of F;_gand F € ]:th U Gi_p. Thus,
E[fi(M)| FiegUGi—u] =E[ci(Sv + F,Cn) | Fieg U Gi—n]
=E[S;;Q:Sm | Gi—u] + F 1 (Q: + Q) )E[Ss | Gi—n]
FTQtF + ]E[CMRtCM | Gi— ]
= E[ct(Sar, Cur) | Ge—m] +L(M),

where {(M) = EET(Q + Q. )E[Sar | Gi—m] + FTQ,F is affine in M. The strong convexity of
Elci(Sar, Car) | Gi—m] is established by the following lemma from Simchowitz et al. [2020]:

Lemma D.7 (Lemma J.10 and Lemma J.15 in [Simchowitz et al., 2020]). VM € M(H, R),
na 2 Umm( )
B IS Con) = 0 001 6] = (o2 + o372 0 ) MM

+ [1Al12
The above lemma implies that E[c,(Sas, Car) | Gi—m] is oy-strongly convex for oy =
omin (C)
Oe (Ug + 02 H_HA(HQ ) on M(H, R).

By assumption, ¢ (-, -) is S.-smooth.
Ft(Nla .- NH) = (SN1 w T F)TQt(SNl:H + F) + C;HRtCNHa

where Sy, , & ynat | ZZ |Gl Z] 0 NY! ynat ; and Cy, &ef Zf:o Ng]y?a;? are linear
in Ni.g. F;is quadratlc by the above expression. Moreover, F; is Sp-smooth if and only if
¢t(SNy.4> Cnyy ) 1s Br-smooth as a function of Ny.;;. We proceed to bound Sr. Consider the
linear operator v : M(H, R) — R?% given by v(N1.z) = (Sn,. ;s Cny )- Then VN1, N{ .1 C
M(H, R),

H H H
[0(N1ar) — (N )ll2 = ZG“ STV - Nyt S T(NE - N yeet
i=1 7=0 j=0 9
H H H
<GS v - Nyl |V - Ny
=1 7=0 2 =0 9
H H H
/ n j n
<SG o |S(VEL, — NP yrat N+ SV - NPy pat
i=1 j=0 9 j=0 9
A 2
< Re max | (N = N ypet )|+ DDV Ny
= §=0
2 2

< 2RgRuat 121152% ”NZ - N’i’||£1»0p

< 2R RuatVH|| N1t = Nl |,
which bounds | Dv(Ny.5)||2 < 2RgRuasV H and thus
IV (ce(0o(Nv.m))lop = [Do(N1r) (VPer) (0(N1#))Do(N1ar) " lop
< Be|Do(Nv.g)lf3
< 4p.R:, R H
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Fyis Bp & 48,R2,, R% H-smooth since ¢;(Sy, ,,» Cn, ) is 48. R2
It is left to bound the gradient for F}. Note that

RZ% H-smooth.

nat

IVE(Ny, -, N2 = [|(Ver) (0(New) 2] Do(Nyes) [l2

<2L.\/(1+ RR¢)? + R2RgR2, VH
= Lp.

D.3 Controller regret decomposition and analysis

Recall the definition of regret for the controller algorithm:

Regret,(controller) = Jp(controller) — o ngl(fH ® Jr(mar)
€ )

T T

: M M
th (ye, w) inf th(}’t sug ),
P MEM(H,R) P}

where uy is the control played by the controller algorithm at time ¢ and y; is the observation attained
by the algorithm’s history of controls at time ¢. (y, u}) is the observation-control pair that would
have been returned if the DRC policy M were executed from the beginning of the time. The above
regret can be decomposed in the following way.

2H T
Regret,(controller) = th(yt,ut) + Z Fr(My_g.4) — Me/gtlfHR Z fo(M
t=1 t=2H+1 t=2H+1
(burn-in loss) (effective BCO-M regret)
T T
+ inf M) — inf ci(yM uM
MEMUH.R) Z fi(M) MeM(H,R) Z (y: ,up)
t=2H+1 t=2H+1

(control truncation loss)

The first term is the loss incurred by the initialization stage of the algorithm. The second term
entails the regret guarantee with respect to the with-history loss functions defined in Section D.]1,
which we bound by a combination of the result of Theorem 3.6.B and the regularity conditions
established in Section D.2. The third term is a truncation loss of the comparator used in the regret
analysis. In particular, ¢;(-, -) has history of length ¢, but the constructed f; only has history of length
H. Therefore, each term in the summand of the first term in the control truncation loss measures
the counterfactual cost at time ¢ had M been used in constructing the control since H steps back,
while each term in the summand of the second term in the control truncation loss measures the
counterfactual cost at time ¢t had M been applied to construct the controls from the beginning of
the time. The control truncation loss is bounded by the decaying behavior of stable systems, where
effects of past controls decay exponentially over time.

We bound each term separately. First, the burn-in loss can be crudely bounded by the diameter bound
B of ¢(+,-), which is established by Lemma D.5 in Section D.2 by the Lipschitz assumption of
¢t(+, +). In particular, applying the diameter bound and under the assumption that H = poly(log T'),

(burn-in loss) < 2HB < 2HL.R?,,(R? + (14 RR¢)?) = O(1),
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Then, we bound the control truncation loss. By the decaying behavior of stable systems, ¢ (H) <
O(T~1) for H taken to be poly(logT').

T
(control truncation loss) < sup { Z fe(M) = ci(yM, uM )}

MEMH.R) Ly _op 41
T H H
= sup { Ct( pat 4 Gl Y? at
MEM(H,R) t=§+1 ; ;0 g
t " t "
Y S T ) (y%“t S )
i=H =0 i=1 =0
T t q
cLp s |G, iy
MeMHR), o7 IliZH i ,
H
< L.BT%Yg(H)-sup sup Z — MUlyynat j
t MeM(HR) |55

2
< 2LCBT¢G (H)RRnat

< 0(1).

It is left to bound the effective BCO-M regret. By construction of £} in Section D.1 and algorithm
specification of our proposed bandit controller in Algorithm 2, we are essentially running the EBCO-M
algorithm with the sequence of loss functions {F;}7_;; on the constraint set K = M(H, R). Note
that further by the analysis in Section D.2 and Remark D.3 and substituting the parameters o = oy,
8 = Br, L = L, and diameter bounds B, D defined in Lemma D.5, Theorem 3.6.B immediately
implies that

E[(effective BCO-M regret)] < 10) <Bd“dy\/f) ,

Oc

since all the parameters for F; obtained in Section D.2 differ from the parameters of c; by factors of
at most logarithmic in 7". Putting together, the regret of the bandit controller is bounded by

E[Regret,(controller)] < O (M“dy\/f> '
Oc
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E Proof of EBPC Regret Guarantee for Unknown Systems

When the system is unknown, we run an estimation algorithm outlined in Algorithm 3, followed
by our proposed BCO-M based control algorithm with slightly modified parameters. In particular,
to compare with the single best policy in the DRC policy class parametrized by M(H, R), we
let X = M(HT,R"), where Ht = 3H and R™ = 2R and set history parameter to be H™.

Subsequently, we denote F+ &0 7+ — 1. This section will be organized as the following: Section E.1
introduces a previously known error guarantee for the estimation algorithm outlined in Algorithm 3;
Section E.2 defines the estimated with-history loss functions;

E.1 System estimation error guarantee

When the system is unknown, we would need to first run a system estimation algorithm to obtain an

estimator G for the Markov operator (G, which we use as an input to our control algorithm outlined in
Algorithm 2. It is known that the estimation algorithm we outlined in Algorithm 3 has high probability
error guarantee in its estimated Markov operator, formally given by the following theorem.

Theorem E.1 (Theorem 7, Simchowitz et al. [2020]). With probability at least 1 — § — N—(1e N)*|
Algorithm 3 guarantees that with eg(N, §) < X/%HQRHM (dy V dy) 4 log (§) +log(1 + Ruat),
the following inequalities hold:

I fuglls € Rus 25y /dy +21og (2), t € [N].

2. ||G - GHel,Op S 8G(N7 5) S Qmax{R}%G,Ru,g}'
Remark E.2. Denote E as the event where the two inequalities of Theorem E.I hold. We are
interested in the expected regret of our proposed bandit controller, which is
E[Regret;(controller) | EJP(E) + E[Regrety(controller) | ECJP(EC)
<E[Regrety(controller) | E] + (5 + N8 N)z)BT

where B denotes the bound on the cost ¢; when performing controls assummg G is the true Markov

operator. We will show in Section E.4 that B < B. Therefore, when 6 < T and N > /T, we have

(6+N— (log N)? )BT < (’)(\F) Therefore, from now on we make the following assumption:
Assumption E.3 (Estimation error). The estimation sample size N and error parameter § are set to
be N = [\/T | and 6 = ﬁ The estimated Markov operator G obtained from Algorithm 3 satisfies

the following two inequalities with e =< TlﬁHQRnat (dy V dy) +log (%) +log(1 + Ryat):

1. |lutll2 € Ry, ¥t € [N].

A 1

2. |G =Glloop € €6 < srmmeqrRe BasT
Additionally, without loss of generality we assume that e < Rg.
E.2 Construction of estimated with-history loss functions
Once we obtain & from Algorithm 3 for N iterations, we invoke Algorithm 2 treating G as the input
Markov operator on K = M (H ™, R™) with history parameter H . In this case, the cost functions

ct(y+, uy) evaluated by the (y;, u;) resulted from playing Algorithm 2 allows the following two
equivalent expressions:

t j
ce(ye, up) = ¢ <Y?at + ZG[i]ut—i7ut> = ¢ nat + ZG[Z] ZM[J]Zy?alt i ZMt y?aj
=0

i=1

(Anat_‘_ZG u,_ “ut> — ¢ Anat_i_ZG[v]ZM[J]ZA?azt ],ZM Anat 7
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where 2% is the nature’s y calculated by the algorithm at time ¢ using the estimated Markov operator
G. The last inequality follows from Gl = 0 fori > H*. We construct the two estimated with-
history loss functions. First, we construct with-history loss functions analogous to the F} constructed
in Section D.1 for the known system.

Remark E4. By speczﬁcatzon ln the bandit controller outlined in Algorithm 2, yP2¢ is obtained by
the formula y“at — Yy — Z G U;_1_;, and thus y“"’It € Fi_pg UG, with the filtrations defined
in Definition D. 1.

Definition E.5 (With-history losses for unknown system). Given an estimated Markov operator G of
a partially observable linear dynamical system and an incidental cost function c; : R% x R — R,
at time t, define its with-history loss at time t to be Ft  M(HT, R‘F)HJr — Ry, given by

F(Nyge) @ e | 997 +ZG“ ZNH+ il J,ZNHJ;“;

Define f; : M(H, R) — R to be the unary form induced by F}, given by ft(N) d:eth (N,...,N).

—_———
N in all H indices

Note that Ft(M _57.,) = ct(¥t, uy). Moreover, F, is a F,_py U G;-measurable random function by
Remark E.4 that is independent of £, .. In particular, Assumption 3.3 is satisfied. In addition to
the with-history losses, we introduce a new pseudo loss function Fy: M(HT, RH)H R R as the
following.

Definition E.6 (With-history pseudo losses for unknown system). Given a partially observable linear
dynamical system with Markov operator G and an incidental cost function c; : R% x R% — R, at

time t. define its with-history pseudo loss at tiem t to be ﬁ’t  M(HT, R‘*)H+ — Ry, given by
o d N R
E(Npgs) Do | ypat + ZG[Z ZN;L Bl J,szmy?a;

Define fot : M(H, R) — Ry to be the unary form induced by F, given by ft(N) d:efl:“t (N,...,N).

—_———
N inall H indices

While the learner has no access to F}, it is useful for regret analysis: we will show that the gradient
of f; is sufficiently close to the gradient of f; and therefore the running bandit-RFTL-D on the loss
functions { ft}tT: N4+ 18 nearly equivalent to running bandit RFTL-D with erroneous gradients on

the loss functions {ft}tT:N+H+'

We analyze how error in the computed gradient affects the final regret guarantee in Section E.3. In
Section E.4, we prove the regularity conditions needed for both Section E.3 and the downstream
regret analysis performed in Section E.5, which gives our desired final regret bound.

E.3 RFTL-D with erroneous gradients

We establish a regret guarantee for RFTL-with-delay (RFTL-D) with erroneous gradient against
loss functions that are conditionally strongly convex and satisfying other regularity conditions stated
below in Assumption E.7 and E.8. The proof follows similarly to that in Simchowitz et al. [2020],
where they proved a similar regret guarantee for Online Gradient Descent (OGD). In particular, we
establish that when run with conditionally strongly convex loss functions, (1) the error in gradient
propagates quadratically in the regret bound, and (2) the regret bound has a negative movement cost
term.

We begin with the working assumptions on the feasible set XL C R and the sequence of loss functions
{f+ YL ;; defined on K.

Assumption E.7 (Conditional strong convexity). Let { ft}?: 11 be a sequence of loss functions
mapping from KK — R. Letting H; be the filtration generated by algorithm history up till time t for

allt > H, assume that fy.g(-) = Y E[f:(-) | Hi—g] is o-strongly convex on K.
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Assumption E.8 (Diameter). Assume that diam(K) = sup, _.cx ||z — 2'||2 < D. Moreover, assume
that { fi}{_ ; obeys the range diameter bound sup,, ¢ | fe(z) — fi(2')| < B.
Assumption E.9 (Gradient error) Let {6;}L_;; denote the sequence of errors injected to the gradients

{6}, satisfies that for Vt Vft(zt) + 3, Iy <
L for some norm || - || () with dual || - || (1) « possibly varying with t.

We consider RFTL-D run with erroneous gradients, outlined by Algorithm 5.

Algorithm 5 RFTL-D with erroneous gradients

1: Input: feasible set X C R¢, time horizon T, history parameter H, strong convexity parameter o,
step size n > 0, regularization function R(-) : £ — R.
2: Initialize: Vi =--- =Vg =0,21 =--- =z € K.
3: fort =H,...,Tdo 5
4:  Play z, incur loss fi(z¢), receive gradient with error V; = Vf;(z¢) + 0;.
. ~T
5:  Update z;41 = argmin_ (Zi:H (VS,HZ + 2z — zs_g||§) + %R(z))
6: end for

Lemma E.10 (Conditional regret inequality for RFTL-D). Under Assumption E.7, E.8, and E.9,

let At Vft(zt) V. (2t) denote the difference between the true gradient and the conditional
gradient. Then we have that, ¥z € K, {z;}_;; output by Algorithm 5 satisfies the following regret
inequality:

T

T
R(z
S fun() — o) S Lp S e — 2ol +2HB + 1)
=H t=2H+1 "
o T—H T—H
B DY Rt P DRSO CE
t=H t=H

Proof. Define hy(z) &f @:_gz + Z||lz_g — 2||3 fort > 2H + 1 and %R(z) otherwise. By standard
FTL-BTL lemma, 3/, 5 ht(2) > 31—, 5 he(2141), Vz € K. Then

T—H T-H O_T—
;{ft;H(Zf — fiu(z) < _ZvatH zt) (Zt*Z)*g Z Iz — 2113

-H
—-H T—
Y ()= Sl ) - 3 6+ A0
t=H t=
T T—H 5 T
= Z hi(z_g) Z 5t+At Zt*Z)*Z Z 1z = =I13-
t=2H+1 t=H t=H

()
Applying the FTL-BTL lemma, the first part on the right hand side is bounded by

T
<Y heleg) = helzen) th ze41) — ha(2)
t=2H+1
d R(z)
< Z Vhi(z-i) ' (g — 2e41) + HB + ——=
t=2H+1 g
vt—ﬁ
T
R(z)
< L]E Z ||Zt_]f] - Zt+1||(t),* .
t=2H+1
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Combining,

T

T
R(z
S hanG) — fn () <Ly S e =zl +2HB + 22
t=H t=2H+1
O_T—H T-H
g 2 Mzl = D0 e+ AT (2 - 2).
t=H t=H

O

Lemma E.11 (Regret inequality for bandit RFTL-D). Suppose RFTL-D is run with gradient estima-

tors g such that g, satisfies |Elg; | Gi] — E[V; | Gi]ll2 < B(t), where Gy is any filtration such that
2y € Gy, thenVz € K,

T

T
E| Y filz) = £(2)| SLE| D lzeg —z1ll@.| +3HB+
t=2H+1 t=2H+1

o T—H 3 T—H T—H
— ZE S e — 2113 +°E ST lal3| +2D Y B()
t=H t=H t=H

R(z)

where L, = sup, HgtH(t)‘

Proof. Define ¢:(z) &ef fe(z) + (g¢ — Vg)Tz + 0, Vt > H, and note that Vg;(z;) = g+ by con-
struction. Then since RFTL-D is a first-order OCO algorithm, we have RFTL-D(qy,...,q:i—1) =
RFTL-D(gg, - -.,gt—1), Vt. Moreover, by Lemma 6.3.1 in Hazan [2016], Vz € K, we have

Z qi(21) — qi(2) < Regrety P (gr, ..., g7) + Z a(2) — qe(2t)

< Regrety P (g, ..., g7) + Z fi(z) — fe(z)

< Regrety "“P(gy, ..., g7) + HB,

where the second inequality follows from VH <t < 2H, g; = V, = 0 and thus q1(z) = fi(z) + 04,
Vz. Additionally, Vt > 2H + 1,z € K,

—El(ge — Vi) T (2 — 2)]

Elgi(2t) — ¢1(2)] = E[fi (1) — fi(2)]
=E[fi(2) — fo(2)] = E[E[(g: — Vo) " (2 — 2) | Gi]]
= E[fi(z:) — fe(2)] — E[(Elge | Gi] — E[V: [ Ge]) T (21 — 2)]
> Efi(2) — fi(2)] = DB(1).

Moreover, by Lemma E.10, Vz € I, since
E[A; " (2 — 2)] =E[E[A, " (20 — 2) | He—n]] = E[E[A, | Hi—n] " (20 — 2)] = 0,
the expected regret is bounded by

T

R(z
E [Regrety "P(g1,...,g7)] < L,E Z lze—mg — zeqalle) | +2HB + R(z)
t=2H+1
o T—H T—H
_Z]E ;{H%—ZH% —E ;{ = Vfi(z) (2 — 2) |,

()
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where we can further decouple (x) as

T T—

W=E| S (o)) | +E| S 6 (o).
t=H t=

1) (2)

i Elg: | G¢] — )(Zt—Z)SDz_:B(t), (2) <E
t=H t=H

Combining, Vz € K,

T
E Z fe(ze) = fi(2) | < LgE Z l2e—a — ze+1ll 1),
t=2H+1 t=2H+1

3
_4@ ant_zng +-E

T—H

3 o
S UGB + e — I

t=H

+3HB+R( 2)

T—H T—
I16:/13| +2D > B(t).
t=H t=H

O

E.4 Regularity conditions for estimated with-history loss functions and iterates

This section is analogous to Section D.2, and establishes regularity conditions for Ft, Ft, K =

M(H*, R*).

The following table summarizes the results in this section.

Parameter Definition Magnitude

Rpat {5 bound on the signals 2Rt

Ry /5 bound on observations 2Ryt + 4Rg max{ Ry 5, RRyat }
Ra /5 bound on controls based on M(H ", RT) 2max{Ry,s, RRnat }

B diameter bound on c¢; 4L.((R2,, + 3R max{ Ry s, RRpat })?)

D diameter bound on M (H, R) 2y/du ANdyR*

o conditional strong convexity parameter of ft T (ag + 02, fﬁlxj‘l(\lo?) )

o conditional strong convexity parameter of ft % (ag + 02 = r\‘lﬁ\lc; ) )

Bz smoothness parameter of lft 168, RLR2, H"

B smoothness parameter of F; 648.RLR2, H*

Ly Lipschitz parameter of F} 4L, \/ R}% + RZRpaRaVH™*
Ly Lipschitz parameter of F} 8L, \/ R}% + RZRnaRaVH™*

We start with proving /5 bounds on the observations and controls.

Lemma E.12 (Control, signal, and observation norm bounds for unknown systems). Under Assump-
tion E.3 on the obtained estimator G for the Markov operator and suppose the bandit controller

outlzned in Algorithm 2 is run with G. Denote Rmt = supy ||y
o, where (y:,uy) are the observation-control pair resulted by executing the bandit

Ry = sup, ||u;
controller, then the following bounds hold deterministically:

Rnat < 2Rnat7 R§,~ < 2Rnat + 4RG maX{Ru,tSa RRnat}a
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Rﬁ S 2 maX{Ru,g, RRnat}a




Proof. By Assumption E.3, [|G|¢, .op < 2R¢ and ¥,

+

Ry.s, max ]T/f [i] ynat

maxHugH2<maX Sy
0

2

{Rug,Rmax max |y“at||2}
<t o<i<HT

< max
s<t o<i<HF

Rus, ( nat +max max [|ye% — y;‘*‘fllrz)}

< max

Rys, R Rnat—l—max max g uS i
s<t o<i<HT ||“24
2

< maX{ u,d R (Rnat + e mta’x ||u5||2>}

ma. u
< max{Rus, RRyat} + w7

where the last inequality follows from e < . in Assumption E.3. The above

1
2max{RRq,Ry,
inequality implies Ry < 2 max{Ry s, RRyat }. Immediately, V¢,

t
[97% 2 < Ruat + 1372 = y2*[l2 = Ruat + Z (G = Gyuy_;|| < Ryar + 6 Ra < 2Rnat,

2

Anat + Z G[l] Ui—; < 2Rpat +2RgRa < 2Rya + 4Ra maX{Ru,év Rerat}~

2

lyill2 =

Lemma E.13 (Diameter bounds). Consider the following sets

Ht
ST MU M e M(HY, RY), ¢ € RY |Gl < Rua p
j=0

u

T-—1
j) d:ef {C + Z G[l]gz : C S Rdy7 ||C||2 S Rnatagi S Z/Al} 5
=1

and B :=sup sup ¢/(y,u). Let D := sup ||M — M’||F. Then,
t yey,ued M,M'e M(H+,RY)
B < 4L.((R2,, + 3Rg max{ Ry s, RRuat })?) < 2\/dy NdyR*.

Proof. First, we calculate the bound on D. VM, M’ € M(H*,R*),

H+ H+
M = M'|[p <> MU — MUY p < \Jdy Ndy Y | MU= M0 < 24/dy AdyRY.
j=0 j=0

To see the bound on B, note that Vt,Vy € 377 uel, by the quadratic and Lipschitz condition on ¢,
eo(y,w) < Le(llyl3 + ull3) < 4Lc((R2y, + 3Ro max{Ru s, RRuat}))-

O

Lemma E.14 (Regularity conditions for Ft, ft and Ft, ft) F‘t, ft and Ft, ft follow the following

<—L1 /%
regularity conditions under the assumption that e < AR VET
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» Fyis Ly-Lipschitz with Ly = Loy /R2 + R2(4Ryat RaVHY); Fy

Lﬁ, = Lc \/m(SRnatRG\/F)'

o F, is BF—smooth with Bp = 168 RE R, HT
648 RE R H
. ft, ft are o, Jf—conditionally strongly convex with Op=05= (:Tf.

Proof. Consider the following quantities:

d

H+ H+
df ymat | Z alil Z
i=1 =0

~nat

N[J] gt i

SN H+—i

Z

~nat
Ht—idt—i—j3>

HY  HY
def . na i A -
Sn, . Zyret 3G N Cwy,, =Cn
=1 7=0

Consider the linear operator v, 0
(SNy;s 2 CNyi ) 0(Nig+) = (Sn
vJVI:H‘*',]\[{;H+ € M(H+7R+)H+

CNH .). Similar to the anal

1:HT?

Fy is Bg-smooth with Bg

. MHT,R)TT = R% x R%™ given by &(Ny.p+)

is L -Lipschitz with

Anat
H+ t—jo

Ht®

ysis in Section D.2,

HT " HT
10Ny gr+) — 6Nl = (|| SIS (vEL = NPL ogeet ST (vEL - Ny nat
i=1 j=0 j=0 9
ies HY
< Z el Z (NEL_ = NPl gpas ST - Nphgees
=t 2 (1970 2
HT HT HF
<SG o | STVEL = Nyt 4 SOV - Nhyee
i=1 =0 9 7=0 2
HY _ HT _
< Ro max_||S (NP N[hgpat | 4 S (VL — N
1<i<H* |57 =0
2 2
S 4RGRnat 1;?2?[* ||N1 - NZ'/Hfl,op
S 4RGRnat 14 I{—i_H]\fle+ - ]\/v{:HJrHF7

which bounds |DU(Ny.g+)|l2 < 4RgRuacVHT. Similarly, we can bound |Do(Ny.g+)|2 <
8RGRuat VHT, YNy . g+ € M(H*, RT)H"_ The gradient bounds L., L are thus given by

IVEU(N1, o, N2 = [[(Ve) 0Ny )2l DNz )2 < Ley/ RE + RE(4Rnar RaVHY),
IVE (N1, o Nige)ll2 = [[(Ver) (@(Nyar)) 2| DNy )2 < Ley/ RE + RA(8 Ruat RoVHT).

The smoothness parameters 3., 3 is given by

IV ee(0(N v+ ) llop = DNy, -+ ) (Ve

IVt (0(N1. ) llop = [DO(N1.r+ ) (VPee) (0( Ny g+ ))DO(Ny g+ )
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Tlop < 648,

RLR2 HT,

nat

RLR% HT.
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To bound the conditional strong convexity parameters o ; 10 it suffices to show an analogue to
Lemma D.7 that VM € M(H*,R"),

o o (o]
E[I1(8ar, Car) = (977,00, )[13 | Fimrt UGe-it| = L|n2,
(1)
Q ~ nat 2 Uf 2
E [|I(Sar, Car) = (v8™, 06, )13 | Feorr UGe—nr| = L0}

(2

As (a —b)?2 > 2a? — b2, Va,b € R,

1
2
H H HY 2
=8 ||| Do gzt Sty )| |
i= j=0 =0 9

2

H+

DGy MUt =y ) Yy MY - v ||| | Fen U Gin

2

Y
I
=

2

_
E ([ S mblypas j,zM Jypat \mugm

1
2

> (5 - meyman ) arl
o

O'f 2
M
40_C|| HFa

Y

and similarly (2) > ( — 4R%e2 R3H+) > ZTQ”M“%' -

E.5 Unknown system regret analysis

Before the decomposition of regret, we introduce a result from Simchowitz et al. [2020]. Define ¢ :
M(H, R) — R>*duxH" guch that (M) = (M, 04y xdy> - - - > 0dy xd, ). Note that o(M(H, R)) C
M(HT,RT).

Proposition E.15 (Proposition F.8 in Simchowitz et al. [2020]). IMy € M(H, R) such that VT > 0,

T T
S Ay mE S A Gy)
t=N+2Ht+1 t=N+2H++1
L2 £l
< 36(H" )R RA (RYMHT + T<) (L v)+T S M- (M)
t=N+2H++1

where f(- | G,y?a*) : M(H,R) — R is given by
H

H H
LM |Gyt Do, [ ypat + 3G S MUlypat | N~ pylilynat

7=0
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Let My € M(H, R) satisfy the inequality in Proposition E.15, and consider the decomposition of
regret into four parts, which we will proceed to bound each separately.

N+2H T
Regret, = Z a(ye,u) | + Z ct(ye,ug) — Ft(Mt FF0)
t=1 t=N-+2H++1
(burn-in loss) (algorithm estimation loss)
T ) — o
+ > B(M,_5=,) — fi(e(Mo))
t=N+2HT+1

(f¢-BCO-M-regret)

T T
Flo(M)) —  inf M M
+ > file(Mo) - > alihu)
t=N+2H t=N+2H++1

(comparator estimation loss)

The choice of My and Proposition E.15 directly allows us to bound the comparator estimation loss.
In particular, note that

T T
inf M| G, nat inf M M
- 2; fM |Gy = | it Z cr(yM, ul)
t=N+2H++1 t=N +2 +1
T
< sup o AM |Gy ey u))
MEM(H,R) =
t=N+2H+t+1
T

< sup Z Ct nat Z al ZM[]] naL i Z Ml y?a; _

MeM(H,R —
eM( )t N+2H++1

c nat + ZG[Z] ZM[]] nal ]aZM y?a;:

< Ley/(1+ RgR)? + R?R}, Ripg (H)T < O(1).

Therefore, combining terms and taking H = poly(logT), we have that for some constants
Cgaram C’éaram depending on the natural parameters and universal constants C, V7 > 0,

T
(comparator estimation loss) — 7 Y [|M; — M| < O(1 )7 +0(1)
t=N+2HT+1

O(VT) +0(1),

\1“—‘

where the last inequality comes from taking N = (ﬁ} 0 = ﬁ as in Assumption E.3, and

co = ﬁHﬂRnat (dy V dy) +log § +log(1 + Rnat) as in Proposition E.15.

Then, we proceed to bound the burn-in loss and the algorithm estimation loss. The burn-in loss can
be crudely bounded by the diameter bound on ¢; established in Section E.4. Take N = [/T'],

(burn-in loss) < (N +2H+)B < O(VT) + O(1).
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The algorithm estimation loss can be bounded as follows:

(algorithm estimation loss) < L./ RS + RY ZT: Z lelt Z MU gpat ;
t=N+2HT+1 ||[i=H 9
< Ley/RE + R Ratya(H)T
< O(1).
It is left to bound the ft-BCO-M regret term, which is given by the following lemma:

Proposition E.16. The BCO-M regret against the estimated with-history unary functions ft has the
following bound in expectation:

T

E[(/i-BCO-Moregret)] < OWVT) + —-O(VT) = = | 3 My~ (M)
f t=N+2H++1

Proof. First, we decompose the regret with respect to F} into two parts:

T T T
Yo BM_g) — flM) | + Yoo L) - Y file(Mo))
t=N+2H++1 t=N+2H++1 t=N+2H++1
(estimation + movement cost) (bandit RFTL-D regret with erroneous gradient)

The movement cost is bounded similarly as in the analysis of Algorithm 1. In particular,
T —
E Z Fy(My_g.e) — Fe(My_g4)
t=N+2HF+1

T t

B
< Z EIE <VFt( i) AT T 7F Z 1Aseslls | Foorrs UGen
t=N+2HT+1 s=t—HT
Br d B; _ BpHlogT _ = (B,
S D O Sl T S S SR P )
t=N+2H++1s=t—H+ t=N+2HT+1 s=t— H+ 7f c
and
T ) T
E Yo BM,_g5) - (M) <Lp > M, =, — (M, My)||e
t=N+2HT+1 t=N+2HT+1

_ 16\/ndyduL s B(H*)?

1
S 2 Viam

t=N+2H++1
_ 16y/nTdydy Lz B(HT)?
< -

Combining, we have a bound on the estimation and movement cost:

(estimation + movement cost) < O <Bcdydu\/f ) .
To bound the second term, we first bound the gradient error IV fy(My) — V(M) | ., which measures
the gradient error in using ft to approximate ft in the algorithm.

Lemma E.17 (Gradient error in estimating pseudo-losses). Let ft and ft be given as in Definition E.5
and E.6. Let My € M(H™, R") played by Algorithm 2. Then, Vt,

|V - whom) | < 00
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Proof. Consider the function o(- | G) : M(H* R+) - R Rd *+du parametrized by G given by ¥ (

G) = (SN,G, CN), where SMG “at—l—zl 1 Gl Z N[le“at cand Cy = Zlﬁ N
Then the gradient difference can be decomposed as

Vii(M;) = V(M) = Di(M; | G) - (Ver)(Syy, ¢ Car,) — Do(M; | G) - (Ver)(Sus,.c- Con,))
=Di(M, | G) - (Ver)(Syy, ¢ Cn,)) — (Ver) (Sm,.c, Cn,))
(1)
+ (Do(M; | G) = Do(M; | G)) - (Ver)(Sar, .05 Ca, ),
@)

where

t

(1) < [Da(M, | G)ll26. || > (G ' ZM V|| < IDa(M, | G)|2ecRa,
i=H

(2) < [Do(M; | G) — Do(M, | G)|l2Ley/R2 + B2,

where Ry, Ry are established in Lemma E.12. We may further bound |[Do(M | G)|ls <

ARG RuatVH™ and |DO(M | G- G)l|l2 < 4egRnatV HT by identical analysis as in Lemma E.14.
Combining, we have established the bound on the gradient difference between the true and pseudo-loss
functions:

2

|VFim) = Vhom) | < 00

O

With Lemma E.17, we are ready to establish the following corollary to Lemma E.11 that gives the
regret inequality with respect to f;:

Corollary E.18 (Pseudo-loss regret inequality). Let L, = supy ||g¢[|7 ;1, where gq is the gradient
estimator used in the bandit controller outlined in Algorithm 2. Then the following regret inequality
holds:

T T
D 0 L
El X R~ fileO) | SLE| 3 || Mg =M, | +3H"B
t=N+2H++1 t=N+2H++1
T—-H+
vlog(T o
y )i | s - M
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Proof. By Proposition C.2, the gradient estimator g; constructed in Algorithm 2 satisfies the following
bias guarantee V¢ > N +2H+ + 1,
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In the setting of Section E.3, take §; = Vft(Mt) — Vft(Mt). The gradient estimator g; used

in Algorithm 2 obeys ||E[g; | Fi—g U Gi—u] — E[Vfi(M,) | Fieg U Gi—mlllr < B(t) with
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as given by E.1. Take || - [|¢) = [ - [lf,441 and [[ - )« = [ .01,
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B=B H=H", 0= 0, LemmaE.11 and Lemma E.17 imply
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We proceed to establish a local norm bound for H-steps-apart iterates. Let ® : M(H T, RT)H TR

be given by &, (M) & ( S nam (9, M) + ZEIM MS_H+||%> + R(M). Recall that
R(M) < R(M) + 5L 5!\ o [IM — M,_57||%. By definition of Algorithm 2, the optimality
condition, and linearity of ®; — R;, we have
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which implies
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Lemma C.6 established that V¢ — H+ < s < t, |lg, 7+llf141 < SdudyBH+4 and ||g¢|[} 41 <
4dudyBH +* hold deterministically. Plugging L, = 4dudyBH +* and the iterate bounds into the

bound obtained in Corollary E.18 and take step size ) = O(W>’ we have
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Combining the bounds on burn-in loss, algorithm estimation loss, ft-BCO-M regret, and comparator
estimation loss and taking 7 = ik
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