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This supplementary material consists of five sections. We pro-
vide more implementation details in Sec. 1. We then highlight our
training-free instance-level control in Sec. 2, followed by human
analysis and extension to objects can be found in Sec.3 and Sec. 4
respectively. Finally, we kindly ask the readers to check more qual-
itative results in Sec. 5.

1 IMPLEMENTATION DETAILS

1.1 Data preparation

Instead of using all frames in NuScenes [1], which can be highly re-
dundant due to temporal consistency between consecutive frames,
we propose to perform sampling on frames according to the ge-
ographic locations of ego car. Specifically, starting from the very
first frame of a scene, we keep only the frames as long as their pair-
wise distances are greater than d meters. We then build a subset
of NuScenes based on these remaining frames. In practice, d is set
to 10 and we will have frames from 7288 and 1634 time stamps for
training and validation. To further boost the efficiency, we then
randomly sample 6000 and 1200 frames from them to train our
model and report our overall performance respectively.

1.2 Baselines

In this section, we will provide more details about the baselines.
Please note that we make some revisions to them so that they are
fitted to our task. For instance, since neither of our baselines is
capable of handling large changes in viewpoints, we assume that
they are utilized at the second stage of our method, meaning that
both of them take the perspective semantic and text prompts as
input and aim to output multi-view perspective images. Otherwise
notified, we launch all our experiments with one NVIDIA A40 GPU
with PyTorch [5]. T is set to 50.

SD-+Controlnet ! We utilize publicly available code and pre-trained
model in Diffusers [8] to re-implement Stable Diffusion(SD) [6]
and Controlnet [9] model. Specifically, version 1.5 architecture
and weights are used for the former, and version 1.1 architecture
and semantic-conditioned pre-trained weights are used for the
latter. To adapt these models to our task, we first fine-tune the SD
on NuScenes for 8 epochs and then incorporate the Controlnet
such that the control signal can be effectively leveraged. Given
the control signal coming from {S, }ﬁ\n'I:l, we introduce a binary
mask in each layer of Controlnet so that only the regions where
signals are provided will be updated during training. Afterward, we
fine-tune the SD+Controlnet for 2 more epochs, with parameters in
Controlnet fixed. In practice, We find that our design gives better
performance compared to jointly fine-tuning SD and Controlnet.

'In our main paper, we use SD+Controlnet and Controlnet interchangeably.

During the fine-tuning process of SD, we set its batch size and
learning rate to 6 and 1le-6 respectively. And Adam[4] is used as
our optimizer. During inference, we set the guidance scale to 5.0.
MVDiffusion We re-implement MVDiffusion [7] based on its offi-
cial code 2. To allow semantic conditions, we include a pre-trained
Controlnet to its pipeline, followed by fine-tuning its original SD on
NuScenes. Finally, we re-train the entire model of MVDiffusion with
parameters of SD and Controlnet frozen. All hyper-parameters and
training configurations, such as the number of epochs and learning
rate, are chosen according to the official code of MVDiffusion.

1.3 More details about MVPbev

In this section, we provide more details about the second stage of our
MVPbev. In practice, we follow the SD+Controlnet as our initial
step. Then we implement our multi-view attention module and
include it in the SD+Controlnet baseline. The multi-view module is
further trained on NuScenes for 4 epochs. In practice, We set the
learning rate and batch size to le-5 and 6. Again, Adam is used
as the optimizer. As described in our main paper, we introduce
novel initialization and denoising processes to explicitly enforce
local consistency at overlapping FOVs. We observe that our design
would improve the visual results if applied to up to % = 30
denoising steps.

2 TRAINING-FREE OBJECTS CONTROL

As described in our paper, MVPbev can be extended with instance-
level controllability at test-time without extra training cost. To
achieve this, we propose a special mechanism that manipulates the
responses of cross-attention layers in multi-view LDM to accurately
guide instance-level synthesis. In practice, the users will click on
the target instance, or its 3D bounding box, and then choose the
target color<COLOR>, e.g., "red" or "deep blue". Then we generate
one text description from the target color with format "A car colored
<COLOR>.". Rather than working on its 3D bounding box, we turn
to the 2D mask of this instance in perspective view. This instance-
level mask can be obtained with either existing methods [2] or
simple retrieval. For instance, one can retrieve 3D bounding boxes
in training data and use the 2D mask of the one with the closest
6D distance. Let’s denote the binary mask for the n-th instance
as Y, and n € {1,...,N}. We further refer A € R"*XWX¢ a5 to the
response (i.e. output) from the cross-attention layer. Denoting the
original text-prompt as oo and the descriptions of other instances
as {0, }n, we can obtain their corresponding attention map as Ay
and {Ap }, by parsing them to pre-trained MVPbev model, together
with BEV semantic {S, } ». We then effectively combine them with

2Please find their official release here https://github.com/Tangshitao/MVDiffusion
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Figure 1: Our method to achieve test-time controlability by
combining multiple attention responses from paired instance
masks and text description, in a training-free manner.

the following equation:
A=AO®(1_ZYH)+Z(AH®Yn) (1)
n n

where ® is the layer-wise multiplication. Our design ensures that
each text prompts o, acts on instance region only, leading to more
spatial-consistent performance. By manipulating cross-attention
layers only, we are able to achieve the training-free goal, with-
out introducing post-processings. Please see Fig.1 for its detailed
structure.

3 HUMAN ANALYSIS

Human analysis provides a more reliable and intuitive tool for
image quality measurement. Therefore, we conduct comprehensive
human analyses of our tasks, which encompass human perception
of multi-view consistency, view-point generalizability, and instance
color controllability.

3.1 Cross-view consistency

We first focus on cross-view consistency where humans are asked
to make decisions that which set of generated images reflects cross-
view consistency in a better manner. Specifically, we provide two
sets of generated images, which are generated from two different
methods with the same input signal, to humans. Then we ask hu-
mans to decide which set of images is perceptually more realistic,

Anonymous Authors

considering the image quality and visual consistency. We also allow
humans to label them as 'undecided’ but this option is not encour-
aged. In addition, GT and perspective semantics are also visualized
for annotators’ reference. We would like to note that all methods
are compared anonymously. In practice, we invite 20 people with
different backgrounds to perform quality comparisons. Each per-
son is in charge of results on 30 exclusive frames. We report the
percentage of win, loss, and undecided cases in a pair-wise form.
For instance, .71 in the top-right of Tab. 1.(b) in our main paper
means that 71% of MVPbev outperforms baseline MVD from the
perspective of humans.

3.2 View-point generalizability

We conduct another human analysis to showcase whether pre-
trained models can be adapted to unseen camera mountings. Rather
than applying random camera mountings, we start from the cam-
era setup from the original NuScenes, and rotate cameras w.r.t.
pre-defined angle. We argue that this assumption is valid as com-
pared to following the absolute angle from NuScenes, amounting to
cameras w.r.t. their relative poses is much easier. Moreover, rotat-
ing all cameras by a fixed angle ensures that correspondences can
be found across different views. Meanwhile, ground truth images
can be used as good references for consistency in overlapping re-
gions. Specifically, we revise the camera rotation w.r.t the direction
of car head (i.e. yaw rotation) by{-25°, —15°, —5°,5°,15°,25°}, re-
spectively, which is equivalent to changing the {R, }]r‘n/[:l. For each
rotation angle, we randomly select 200 sets of images and obtain
results from MagicDrive [3] and ours with the same input signal.
Subsequently, results from both methods, GT images, and projected
road semantics are presented to humans. Humans will judge which
method reflects the changes in camera pose better. For situations
that are difficult to judge, we also have an "undecided" option. This
option is discouraged. Finally, we report our results in the form of
win, lose, and undecided rate. Please see Tab. 1.(b) in our main paper
for the final results.

3.3 Instance-level controllability

The last human analysis we conduct is about instance-level control-
lability. In particular, we choose the photo-metric appearance as
our control for the following two reasons. First of all, compared to
other control signals such as shape, appearance, especially colors,
are easiest to provide from an interaction perspective. Secondly, ap-
pearance is more user-friendly from an evaluation point of view. In
practice, we first select 151 sets of images from NuScenes validation
set, including 195 objects. Then we generate text descriptions for
these with format "A car colored <COLOR>.". In particular, <COLOR>
is a color randomly chosen from our palette, and each text descrip-
tion is associated with an instance-level mask. They are regarded
as our new signals for instance-level control. Humans are asked to
give their judgment on whether the generated instance color can
be regarded as <COLOR>. As long as more than one person votes
for "Yes", we believe the instance-level color control is fulfilled. In
our experiment, 93.5% of objects are correctly generated.

4 EXTENSION TO OBJECTS
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Figure 2: We provide three sets of experiments in this figure. Specifically, the first two sets showcase the multi-view consistency
ability of our MVPbey, especially on objects that have been highlighted with orange bounding boxes. The last set of examples
demonstrates that MVPbev can be easily applied to multi-object setting.

Though not shown in the main paper, our MVPbev can be ex-
tended to foreground road participants as well. To this end, we
assume the 3D object information as well as their visibility are
available, together with the original B. At the projection stage, ob-
jects are mapped to 2D perspective view if they are visible. Rather
than utilizing the projected 2D bounding boxes in perspective view,
we propose to introduce their masks. Specifically, for each object on
the validation set of NuScenes, we can find its nearest neighbor in
the training set such that their overall distance, which is measured
by the averaged relative distances and poses w.r.t. ego car in Ly
space, is minimized. We then perform instance-level segmentation
on this nearest-neighbor object and obtain its binary mask on M
views. These masks are further pasted to {Sy, }%=1> leading to an
additional semantic class in cp. To effectively leverage the updated
{Sm}m at the second stage, we further fine-tune our multi-view
LDM with additional control signals.

We provide examples of our extended MVPbev model in Fig. 2.
As can be found in this figure, our MVPbev is able to handle various
objects in a cross-view consistent manner.

5 MORE QUALITATIVE RESULTS

Qualitative results of MVPbev We provide more regular results
generated from NuScenes validation set in Fig. 3. As can be found
in this figure, MVPbev can generate photo-realistic, multi-view
consistent, and diverse images from complex road layouts in BEV

and text prompts. In addition, we further provide visual examples to
demonstrate our controllability over diverse prompts in Fig.4. Again,
we observe that with the same input BEV semantics while various
text prompts as the control signal, our method can generalize to
unseen text prompts beyond our training settings in both prompt
format and textual semantics.

View-point generalizability Similar to Fig.9 in our main paper,
more visual exmaples are provided in Fig.5 to show how our method
generalizes well to different camera setups, which is beyond SOTA
MagicDrive [3] that requires far more training samples.
Instance-level controllability Please see Fig.6 for more generated
instances with its paired text prompts.
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BEV Semiantic

It is a daytime in the
countryside. There are
some wooden houses.

It is a road along the
beach. Most of sky is
visible.

It is a snowy day in the
city. Snow Is covering
the ground.

It is pouring rain !

Figure 4: We provide four generated examples with fixed BEV while text prompt changes. Our MVPbev can generalize to various
prompts, yielding diverse results with consistency in both semantic and textual aspect. Notably, our method can even generate
results with unseen weather (e.g. "snowy day") that SOTA MagicDrive[3] can’t achieve (see Conclusion section in their paper).

Figure 5: We provide three examples that show how our MVPbev generalize to different camera poses. The projected BEV
semantics are overlaid in generated results.
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Generated

Generated

Figure 6: We provide more results in instance color control. Our training-free method can handle multiple instance control,
ensuring controlled instances are aligned with their control signals (i.e. multiple instance-level prompts and paired masks),
and generate natural instances, integrating well with backgrounds.
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