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A Broader impact630

This work shows how to adapt Machine Learning (ML) optimization in the presence of a model631

Exponential Moving Average (EMA). There are a number of benefits to this:632

1. Scaling rules democratize the training of ML models: they give ML researchers the ability to633

replicate the optimization of large scale systems, even if those researchers do not have access634

to i) significant parallel computational resources or ii) the technical tooling to do so.635

2. Our EMA Scaling Rule lowers compute usage as it removes the necessity for a hyperparameter636

search over momenta; in the case where our scaling assumptions hold, if we know the value637

of the optimal momentum 𝜌𝐵 at some batch size 𝐵 (for example, the momentum that gives the638

best transfer performance), then the optimal value at another batch size �̂� is exactly the one639

given by the EMA Scaling Rule 𝜌 = 𝜌𝜅
𝐵

, for scaling 𝜅 = �̂�/𝐵.640

3. Our EMA Scaling Rule enables researchers to more quickly iterate through experimental ideas,641

and opens up access to large-scale training (for example, larger models and larger datasets) for642

Pseudo-Labeling and Self-Supervised Learning (SSL) techniques.643

These points have potential negative consequences:644

1. As our EMA Scaling Rule enables researchers to iterate the same experiments more quickly,645

and perform large-scale training with EMA-based methods, this may encourage a greater num-646

ber of experiments, or the training of larger models. Either of these possibilities leads to greater647

energy consumption.648

2. As the need to determine momentum hyperparameters has now been removed, researchers who649

were previously discouraged from attempting to scale these methods due to an extra hyperpa-650

rameter to tune may begin to perform such experiments, leading, once more, to greater energy651

consumption.652

The environmental impact of each of these two points may be significant.653

B Limitations654

The EMA Scaling Rule provides a recipe for producing training dynamics independent of the batch655

size used in stochastic optimization. The technology underpinning it will not always give the desired656

behavior, however.657

The first issue occurs with the wording present in the EMA Scaling Rule: [...] and scale other658

optimizers according to their own scaling rules (Definition 1.1):659

1. This statement requires that the given Stochastic Differential Equation (SDE) approximation660

we are using for the model optimizer is itself providing well-behaved scaling, that is, that in the661

absence of a model EMA, the model optimization trajectories at the batch sizes 𝐵 and 𝜅𝐵, with662

optimizer hyperparameters appropriately scaled, are close. In general we know this is not true.663

First, we know that the SDE approximation for Stochastic Gradient Descent (SGD) breaks at a664

given 𝜅 due to discretization error (Li et al., 2021). Second, we know that if the gradient noise665

is not sufficiently large, the SDE approximation for Adam does not exist (Malladi et al., 2022),666

i.e. an SDE motivated scaling rule has no meaning.667

2. This statement requires knowledge of how to scale the corresponding model optimizer. We668

have principled ways to achieve this for SGD (Li et al., 2021), and for the adaptive optimiza-669

tion methods RMSProp and Adam (Malladi et al., 2022). Empirically, a square-root scaling670

law for LAMB (You et al., 2020) has been observed, however, it has not been derived formally.671

Problematically, there is no known hyperparameter scaling law or SDE approximation known672

for LARS (You et al., 2017), which has been used in Bootstrap Your Own Latent (BYOL)673

(Grill et al., 2020) and many other large-scale training procedures for convolution-based archi-674

tectures. Despite this, we are able to demonstrate in Appendix H.6 that a combination of the675

EMA Scaling Rule and progressive scaling can match, or surpass baseline BYOL performance676

at a batch size of 32,768 using LARS, indicating that although the theoretical guarantees may677

not hold, there is still practical utility in the tools we provide in this work.678
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3. It may be the case that the optimal performance attainable by a given model setup exists at a679

level of discretization/gradient noise where no SDE exists. In this case, SDE-derived scaling680

rules can never be valid, and no scaling of this dynamics can be achieved with known tools.681

The second issue is related to the case when the optimizer scaling rule is valid. In this case, the error682

for the EMA Scaling Rule at finite learning rate 𝜂 at large 𝜅 can be considerable. In cases where the683

model EMA plays a role in the overall optimization, the error introduced by the EMA Scaling Rule684

can break the preservation of model dynamics.685

Put another way, an optimizer scaling rule and the EMA Scaling Rule each introduce their own dis-686

cretization errors. In the case where EMA plays a role in optimization, as soon as the discretization687

error of either the optimizer scaling rule or the EMA Scaling Rule is large, the error for the joint688

optimization procedure is large. This is at least as bad as cases that do not use a model EMA during689

the optimization process.690

C The scaling toolbox: practical methods for enabling systematic scaling691

There are many different components involved in preserving optimization dynamics at different692

batch sizes. In this appendix we collect into a single place the different concepts and values that we693

found useful in practice, in an attempt to make the practice of scaling as accessible as possible.694

C.1 The continuous time/SDE perspective695

Here we discuss the mindset difference required when trying to preserve training dynamics. In696

ML we typically use stochastic optimization, leading us to think of the optimization in terms of697

performing updates, or stepping the optimizer. This notion has become more common in the era of698

large datasets, where it may be the case that we only see a fraction of the dataset during optimization.699

For dynamics preservation under scaling, we suggest that it is simpler to consider the amount of data700

seen by the training process, or alternatively, the amount of continuous time in the discretization of701

SDEs view. The reason is the following. The SDE scaling rule results (Definition 1.1, Li et al.702

(2019, 2021); Malladi et al. (2022)) follow from showing that different discretizations of the SDE703

are close to that SDE, providing we appropriately scale hyperparameters (see Section 2.2). Each of704

these discretizations shares the total continuous time 𝑇 = 𝜂 × 𝑁iter
7 of the underlying SDE, but each705

discretization has a different number of iterations 𝑁iter = 𝑁iter/𝜅.706

This perspective is already adopted, perhaps by accident in some domains. For example, in Com-707

puter Vision (CV), it is typical to compare model performance after optimization on ImageNet1k708

after a number of epochs, whilst also specifing a learning rate warmup after a number of epochs.709

This transforms the schedule into the form wait until the process meets [condition], where here710

[condition] is when the process has seen sufficiently many samples.711

More generally, we can specify any condition that is not a property of the discretization procedure712

itself. Instead, the discretization procedure should be viewed as a numerical approximation method713

for the SDE we are evolving, and the properties of that discretization process (like number of steps)714

are not of specific interest in the world view where we do decouple optimization from the batch size.715

A specific example of this more general case is present in Section 3.3, where for scaling 𝜅 > 2 we716

wait until the pre-training Word Error Rate (WER) is sufficiently low.717

There may be cases where one is working with a setup that is explicitly defined in terms of quantities718

related to the discretization process. Indeed, the optimizer hyperparameters are examples of these,719

and need to be scaled accordingly with 𝜅. The other typical example of this is conditions based on720

the number of optimizer steps, rather than the number of epochs. In this case, these quantities should721

be scaled to achieve the desired condition in the same amount of time, i.e. as above 𝑁iter = 𝑁iter/𝜅,722

where 𝑁iter is the number of iterations specified at the base batch size 𝐵. Concretely, if training is723

specified in a number of steps, then doubling the batch size implies you should train for half the724

number of steps.725

7This is in the case of SGD, for RMSProp and Adam one should use 𝑇 = 𝜂2 × 𝑁iter (Malladi et al., 2022).
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C.2 Scaling rules for optimization726

For ease of reference, we collect all the scaling rules related to batch size modification we are aware727

of. We begin with the most well-known, the SGD Scaling Rule (Definitions 2.2 and C.1).728

Definition C.1 (SGD Scaling Rule). When running SGD (Definition 2.1) with batch size �̂� = 𝜅𝐵,729

use a learning rate 𝜂 = 𝜅𝜂 (Krizhevsky, 2014; Goyal et al., 2017).730

The SGD Scaling Rule is also known as the Linear Scaling Rule (LSR), although for clarity, this731

work adopts the naming convention [Algorithm Name] Scaling Rule, which means all parameters of732

those algorithms are appropriately scaled from batch size 𝐵 to 𝜅𝐵.733

Next, we give the two scaling rules known for the adapative optimizers RMSProp (Tieleman et al.,734

2012) and Adam (Kingma & Ba, 2015) in Definition C.2 and Definition C.3 respectively.735

Definition C.2 (RMSProp Scaling Rule). When running RMSProp (Tieleman et al., 2012) with736

batch size �̂� = 𝜅𝐵, use a learning rate 𝜂 =
√
𝜅𝜂, beta coefficient 𝛽 = 1 − 𝜅 × (1 − 𝛽), and adaptivity737

parameter 𝜖 = 𝜖√
𝜅

(Malladi et al., 2022).738

Definition C.3 (Adam Scaling Rule). When running Adam (Kingma & Ba, 2015) with batch size739

�̂� = 𝜅𝐵, use a learning rate 𝜂 =
√
𝜅𝜂, beta coefficients 𝛽1 = 1 − 𝜅 × (1 − 𝛽1), 𝛽2 = 1 − 𝜅 × (1 − 𝛽2),740

and adaptivity parameter 𝜖 = 𝜖√
𝜅

(Malladi et al., 2022).741

Next, we present a contribution of this work, the EMA Scaling Rule (Definitions 1.1 and C.4), which742

extends the above scaling rules to allow the presence of a model EMA which is able to contribute to743

the overall optimization (see Appendices D and E.1 for derivations).744

Definition C.4 (EMA Scaling Rule). When computing the EMA update (Definition 2.3) of a model745

undergoing stochastic optimization with batch size �̂� = 𝜅𝐵, use a momentum 𝜌 = 𝜌𝜅 and scale other746

optimizers according to their own scaling rules.747

Concretely, if we are using SGD in the presence of a model EMA, Definitions C.1 and C.4 state that748

we should take 𝜂 = 𝜅𝜂 and 𝜌 = 𝜌𝜅 when scaling by 𝜅 = �̂�/𝐵.749

The final scaling rule is for weight decay, and follows from the scaling logic discussed in Ap-750

pendix C.1 and Krizhevsky (2014). If we take the weight decay regularization penalty 𝜆 defined at751

batch size 𝐵, what should the weight decay 𝜆 be for batch size �̂� = 𝜅𝐵? For simplicity, consider 𝜅752

updates of optimization of parameters 𝛉𝑡 in the presence of weight decay only753

𝛉𝑡+𝜅 = 𝛉𝑡+𝜅−1 − 𝜂 𝜆 𝛉𝑡+𝜅−1 = (1 − 𝜂 𝜆) 𝛉𝑡+𝜅−1 = (1 − 𝜂 𝜆)𝜅 𝛉𝑡 . (11)

Therefore, to match the effect of weight decay with a single iteration step, we need to match754

1 − 𝜂 𝜆 = (1 − 𝜂 𝜆)𝜅 . (12)

Solving for 𝜆 and expanding around 𝜂 ≈ 0 gives755

𝜆 =
1 − (1 − 𝜂 𝜆)𝜅

𝜂
≈ 𝜂

𝜂
× 𝜅 𝜆 + O(𝜂). (13)

This leads to the Weight Decay Scaling Rule (Definition C.5).756

Definition C.5 (Weight Decay Scaling Rule). When using weight decay with batch size �̂� = 𝜅𝐵, use757

a penalty term 𝜆 = (𝜅𝜂/𝜂) 𝜆, where 𝜂 and 𝜂 represent the scaled and unscaled learning rates of the758

corresponding optimizer (Krizhevsky, 2014; Li et al., 2018; Loshchilov & Hutter, 2019).759

The Weight Decay Scaling Rule implies that using linear scaling for the learning rate 𝜂 then the760

weight decay penalty is automatically scaled, and when using square-root scaling for the learning761

rate 𝜂 (e.g. in the case of the Adam Scaling Rule (Definition C.3)) then the weight decay penalty762

should also be scaled with a square-root as is proposed in Loshchilov & Hutter (2019).763

Finally, we see that if the implementation of weight decay does not have an update scaled by the764

learning rate, i.e. the update is 𝛉𝑡+1 = (1 − 𝜆) 𝛉𝑡 , then the scaling rule is optimizer-independent, and765

becomes linear for small weight decay, i.e. 𝜆 = 𝜅𝜆, and for arbitrary 𝜆 takes the form 𝜆 = 1−(1−𝜆)𝜅 .766
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Table 2: Scaled learning rates 𝜂 at different batch sizes �̂� = 𝜅𝐵 given reference learning rates 𝜂 defined at batch
size 𝐵. The reference values of each column are boldened. Note that this is only valid when there is a notion of
single sample. In the sequence learning setup (for example, in Section 3.3), the notion of batch size should be
appropriately replaced with the dynamic batch size, i.e. total sequence length.

𝜂 = 𝜅𝜂 [SGD] 𝜂 =
√
𝜅𝜂 [RMSProp, Adam]

𝐵 = 256 𝐵 = 512 𝐵 = 256 𝐵 = 4096

Batch size �̂� 𝜂 = 0.1 𝜂 = 0.3 𝜂 = 0.1 𝜂 = 10−3 𝜂 = 4.8 𝜂 = 10−3

32 0.0125 0.0375 0.00625 0.00035 0.42426 0.00009
64 0.025 0.075 0.0125 0.0005 0.6 0.00013
128 0.05 0.15 0.025 0.00071 0.84853 0.00018
256 0.1 0.3 0.05 0.001 1.2 0.00025
512 0.2 0.6 0.1 0.00141 1.69706 0.00035
1024 0.4 1.2 0.2 0.002 2.4 0.0005
2048 0.8 2.4 0.4 0.00283 3.39411 0.00071
4096 1.6 4.8 0.8 0.004 4.8 0.001
8192 3.2 9.6 1.6 0.00566 6.78823 0.00141
16384 6.4 19.2 3.2 0.008 9.6 0.002
32768 12.8 38.4 6.4 0.01131 13.57645 0.00283
65536 25.6 76.8 12.8 0.016 19.2 0.004

Table 3: Scaled EMA momenta 𝜌 = 𝜌𝜅 at different batch sizes �̂� = 𝜅𝐵 given reference momenta 𝜌 defined at
batch size 𝐵. The reference values of each column are boldened. Again in the sequence learning setup, batch
size should be appropriately replaced with a notion of sequence length.

𝐵 = 256 𝐵 = 4096

Batch size �̂� 𝜌 = 0.9999 𝜌 = 0.999 𝜌 = 0.99 𝜌 = 0.996 𝜌 = 0.992 𝜌 = 0.99 𝜌 = 0.97

32 0.99999 0.99987 0.99874 0.99997 0.99994 0.99992 0.99976
64 0.99997 0.99975 0.99749 0.99994 0.99987 0.99984 0.99952
128 0.99995 0.9995 0.99499 0.99987 0.99975 0.99969 0.99905
256 0.9999 0.999 0.99 0.99975 0.9995 0.99937 0.9981
512 0.9998 0.998 0.9801 0.9995 0.999 0.99874 0.9962
1024 0.9996 0.99601 0.9606 0.999 0.99799 0.99749 0.99241
2048 0.9992 0.99203 0.92274 0.998 0.99599 0.99499 0.98489
4096 0.9984 0.98412 0.85146 0.996 0.992 0.99 0.97
8192 0.9968 0.96849 0.72498 0.99202 0.98406 0.9801 0.9409
16384 0.99362 0.93798 0.5256 0.9841 0.96838 0.9606 0.88529
32768 0.98728 0.8798 0.27625 0.96844 0.93776 0.92274 0.78374
65536 0.97472 0.77405 0.07632 0.93788 0.8794 0.85146 0.61425

C.3 Commonly used values of hyperparameters at different batch sizes767

In the literature it is common to give a base learning rate 𝜂 defined at batch size 256, implicitly768

using the SGD Scaling Rule, even when using the Adam optimizer. Because the scaling of other769

optimization hyperparameters was not understood until recently, it is also common to just present770

these for the experiment, e.g. the Adam betas and epsilon, and the EMA momentum, implicitly771

defined at the scale of the experiment, for example at batch size 4096. One way to deal with this772

in practice is to define a single reference batch size 𝐵 at which all hyperparameters are defined, and773

then scale from there. In this case, it is easiest to compute using linear scaling the learning rate at774

the redefined base batch size 𝜂 = �̃� 𝜂orig, where �̃� = 𝐵/𝐵orig, and then scale this new reference 𝜂 as775

𝜂 = 𝜅𝜂, 𝜅 = �̂�/𝐵, along with e.g. the momentum defined at 𝐵.776

As this process can be slightly frustrating, we have provided tables of typical learning rates in Table 2777

and momenta in Table 3.778

C.4 Progressive scaling779

In Section 3.4 we introduced Progressive Scaling (Definition 3.2) to test our hypothesis that early780

in the BYOL training procedure, there are dynamics that are challenging to replicate at larger batch781
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Algorithm 1 Stochastic Gradient Descent with Progressive Scaling

Require: Base learning rate 𝜂, base momentum 𝜌 for base batch size 𝐵
Require: Initial target model parameters 𝛉 and model EMA parameters 𝛇
Require: Epochs 𝐸 and schedule of batch sizes B = 𝐵1, 𝐵2, . . . , 𝐵𝐸

Require: Loss function L
for 𝑒 in 1, 2 . . . , 𝐸 do

�̂� ← B[𝑒] ⊲ Get current batch size
𝜅 ← �̂�/𝐵 ⊲ Compute scaling factor
𝜂 ← 𝜅𝜂 ⊲ Get scaled learning rate
𝜌 ← 𝜌𝜅 ⊲ Get scaled momentum
for 𝑏 in 1, 2 . . . , floor(𝐸/�̂�) do

Sample a minibatch of �̂� samples X = {x(1) , . . . ,x(�̂�) }
𝛉← 𝛉 − (𝜂/�̂�)∑𝑥∈X ∇𝛉L(𝑥 ; 𝛉, 𝛇) ⊲ SGD Update
𝛇← 𝜌 𝛇 + (1 − 𝜌) 𝛉 ⊲ EMA Update

end for
end for

sizes. To remove ambiguity, in Algorithm 1 we provide pseudo-code for how to use Progressive782

Scaling.783

In Algorithm 1, the prefactor of the SGD update could also have been written 𝜂/𝐵, although an784

equivalent use of the base momentum is not possible.785

Finally, we outline how to extend Algorithm 1 to more complex setups, like those presented in786

Section 3.4:787

1. Optimizer scaling rules are used appropriately, for example the Adam scaling rule in case of788

using the Adam optimizer to update parameters 𝛉.789

2. Schedules for hyperparameters are computed using the base hyperparameters, and are then790

modified by application of the scaling law in epoch (outer) loop.791

3. Schedules for hyperparameters at the step rather than epoch level can be achieved in practice792

through recomputing the schedule and updating the notion of minibatch index appropriately793

throughout training.794

All of the above techniques are used in Section 3.4. In addition, scheduling batch sizes within epoch795

is possible, providing one maintains a notion of computation within some fixed continuous time796

𝑇fixed. We did not investigate this scenario.797

D EMA approximation theorems with SDEs798

D.1 SGD with model EMA799

We will now derive the EMA scaling rule when tracking model parameters and the model is trained800

using SGD. We employ a strategy similar to Malladi et al. (2022), where we associate to each801

iterative process a Stochastic Differential Equation (SDE). In order to control the distance between802

the SDE and the discrete process, we use the tools from Li et al. (2019).803

Definition D.1 (Polynomial growth, Definition 1 in (Li et al., 2019)). The set 𝐺 is the set of con-804

tinuous functions R𝑑 → R with at most polynomial growth, i.e., for 𝑔 ∈ 𝐺 there exists two scalars805

𝜅1, 𝜅2 > 0 such that for all x ∈ R𝑑 , we have |𝑔(x) | ≤ 𝜅1 (1 + ∥x∥𝜅2 ).806

For an integer 𝛼 > 0, 𝐺𝛼 is the set of functions R𝑑 → R that are 𝛼-times continuously differentiable807

and such that all their derivatives up to order 𝛼 are in 𝐺 .808

Similarly to Malladi et al. (2022), we use Noisy Gradient Oracle with Scale Parameter (NGOS) to809

define the update rules on the parameters.810

Definition D.2 (Noisy Gradient Oracle with Scale Parameter (NGOS), adaptation of (Malladi et al.,811

2022)). A NGOS is a tuple G𝜎 = (𝑓 ,Σ,Z𝜎 ). Given a noise scale parameter 𝜎 > 0, the NGOS G𝜎812
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takes as input the parameters θ and outputs a random vector g = ∇𝑓 (θ, ζ) + 𝜎𝛜 where ∇𝑓 (θ, ζ) is813

the gradient of 𝑓 with respect to θ at (θ, ζ), and 𝛜 is a random vector drawn from the distribution814

Z𝜎 (θ, ζ) with zero mean and covariance Σ (θ, ζ).815

Note that in the above definition, the probability distributionZ𝜎 (θ, ζ) is allowed to change with the816

scale 𝜎 , but its first two moments — its mean and its covariance — are fixed with 𝜎 . We have the817

following theorem for model EMA under optimization with SGD:818

Theorem D.1 (SDE for SGD + EMA). Consider the couple x𝑘 = (𝛉𝑘 , 𝛇𝑘 ) where 𝛉𝑘 are the iterates819

of SGD with a NGOS (Definition D.2) and 𝛇𝑘 is an EMA of 𝛉𝑘 , defined, starting from x0 = x0, by820

𝛉𝑘+1 = 𝛉𝑘 − 𝜂g𝑘 , with g𝑘 = ∇𝑓 (𝛉𝑘 , 𝛇𝑘 ) + 𝜎𝛜𝑘 , and 𝛜𝑘 ∼ Z𝜎 (𝛉𝑘 , 𝛇𝑘 ), (14)
𝛇𝑘+1 = 𝜌𝛇𝑘 + (1 − 𝜌)𝛉𝑘 . (15)

Define 𝛽0 = (1 − 𝜌)/𝜂, 𝜎0 = 𝜎
√
𝜂, and define the SDE for 𝑋𝑡 = (Θ𝑡 , 𝑍𝑡 ), starting from 𝑋0 = x0, by821

𝑑Θ𝑡 = −∇𝑓 (Θ𝑡 , 𝑍𝑡 )𝑑𝑡 + 𝜎0Σ (Θ𝑡 , 𝑍𝑡 )
1
2𝑑𝑊𝑡 , with 𝑊𝑡 a Wiener process (16)

𝑑𝑍𝑡 = 𝛽0 (Θ𝑡 − 𝑍𝑡 )𝑑𝑡 . (17)

Assume that 𝑓 is continuously differentiable, with 𝑓 ∈ 𝐺3 and Σ
1
2 ∈ 𝐺2 (Definition D.1). Then, for822

any time horizon 𝑇 > 0 and test function 𝑔 ∈ 𝐺2 , there exists a constant 𝑐 > 0 such that823

max
𝑘=0,...,⌊𝑇 /𝜂 ⌋

|E[𝑔(𝑋𝜂𝑘 )] − E[𝑔(x𝑘 )] | ≤ 𝑐 × 𝜂 . (18)

Proof. The proof uses the same tools as in Li et al. (2019). Define Δ(θ, ζ) = 𝜂 (−∇𝑓 (θ, ζ) +824

𝜎𝛜, 𝛽0 (θ − ζ)) with 𝛜 ∼ Z𝜎 (θ, ζ) the one-step update for the SGD + EMA update, such that825

x𝑘+1 = x𝑘 + Δ(x𝑘 ). We have the first two moments:826

E[Δ(θ, ζ)] = 𝜂 (−∇𝑓 (θ, ζ), 𝛽0 (θ − ζ)) (19)

V[Δ(θ, ζ)] = 𝜂𝜎2
0

[
Σ (θ, ζ) 0

0 0

]
(20)

and the higher-order moments are 𝑂 (𝜂2). Similarly, let Δ̃(θ, ζ) be the solution at time 𝜂 of the SDE827

defined by Equation (6) starting from 𝑋0 = (θ, ζ). From Ito’s formula, we also obtain828

E[Δ̃(θ, ζ)] = 𝜂 (−∇𝑓 (θ), 𝛽0 (θ − ζ)) (21)

V[Δ̃(θ, ζ)] = 𝜂𝜎2
0

[
Σ (θ, ζ) 0

0 0

]
(22)

and the higher-order moments are 𝑂 (𝜂2). Hence, the moments of the discrete iteration and of the829

SDE match up to second order. Following the same proof technique as in Li et al. (2019) then leads830

to the advertized theorem. □831

This theorem is a simple adaptation of the results of Li et al. (2019). Intuitively, it is expected that832

𝑋𝑡 and x𝑘 are close since x𝑘 is the Euler-Maruyama discretization of 𝑋𝑡 with learning rate 𝜂. We833

then have the corollary.834

Corollary D.1.1 (Validity of the EMA Scaling Rule). Assume that 𝑓 is continuously differentiable,835

with 𝑓 ∈ 𝐺3 and Σ
1
2 ∈ 𝐺2. Let 𝛉𝐵𝑘 , 𝛇

𝐵
𝑘 the iterates of the Equation (5) with batch size 𝐵 and836

hyperparameters 𝜂, 𝜌 . Let 𝛉𝜅𝐵𝑘 , 𝛇𝜅𝐵𝑘 be iterates with batch size 𝜅𝐵, learning rate 𝜂 determined by837

the SGD Scaling Rule (Definition 2.2) and momentum determined by the EMA Scaling Rule, linear838

version (Definition 1.1). Then, for any time horizon 𝑇 > 0 and function 𝑔 ∈ 𝐺2, there exists a839

constant 𝑑 > 0 such that840

max
𝑘=0,...,⌊𝑇 /𝜂 ⌋

|E[𝑔(𝛉𝜅𝐵⌊𝑘/𝜅 ⌋, 𝛇
𝜅𝐵
⌊𝑘/𝜅 ⌋)] − E[𝑔(𝛉𝑘 , 𝛇𝑘 )] | ≤ 𝑑 × 𝜂 . (23)

Proof. The proof is similar to Malladi et al. (2022). Under the scaling rule, both x𝑘 = (𝛉𝑘 , 𝛇𝑘 ) and841

x̂⌊𝑘/𝜅 ⌋ = (𝛉𝜅𝐵⌊𝑘/𝜅 ⌋, 𝛇
𝜅𝐵
⌊𝑘/𝜅 ⌋) have the same limiting SDE. Hence we have from the previous theorem842

that for all test function 𝑔, we can find 𝑐, 𝑐′ such that843

max
𝑘=0,...,⌊𝑇 /𝜂 ⌋

|E[𝑔(𝑋𝜂𝑘 )] −E[𝑔(x𝑘 )] | ≤ 𝑐×𝜂 and max
𝑘=0,...,⌊𝑇 /𝜂 ⌋

|E[𝑔(𝑋𝜂𝑘 )] −E[𝑔(x̂⌊𝑘/𝜅 ⌋)] | ≤ 𝑐′×𝜂. (24)
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The triangle inequality then gives844

max
𝑘=0,...,⌊𝑇 /𝜂 ⌋

|E[𝑔(x̂⌊𝑘/𝜅 ⌋)] − E[𝑔(x𝑘 )] | ≤ (𝑐 + 𝑐′) × 𝜂. (25)

Hence, taking 𝑑 = 𝑐 + 𝑐′ gives the expected result. □845

D.2 Adaptive gradient methods with model EMA846

We now turn to the case where one uses an adaptive gradient method rather than SGD to train the847

model. We follow derivations similar to those of Malladi et al. (2022), with an added EMA. Like848

above, we consider that the loss function 𝑓 also depends on the EMA tracking parameter 𝛇𝑘 . We849

begin with RMSProp with EMA, which iterates:850

v𝑘+1 = 𝛾v𝑘 + (1 − 𝛾)g2
𝑘
, with g𝑘 = ∇𝑓 (𝛉𝑘 , 𝛇𝑘 ) + 𝜎𝛜𝑘 , and 𝛜𝑘 ∼ Z𝜎 (𝛉𝑘 , 𝛇𝑘 ), (26)

𝛉𝑘+1 = 𝛉𝑘 − 𝜂 (
√
v𝑘 + 𝜀)−1 × g𝑘 (27)

𝛇𝑘+1 = 𝜌𝛇𝑘 + (1 − 𝜌)𝛉𝑘 . (28)

Like in Malladi et al. (2022), we place ourselves in the high noise regime, in which the term g2
𝑘

in851

Equation (26) is approximated by g2
𝑘
≃ 𝜎2diag(Σ(𝛉𝑘 , 𝛇𝑘 )). We use the same scaling rules, with an852

additional one for 𝜌:853

𝛾0 = (1 − 𝛾)/𝜂2, 𝜎0 = 𝜎𝜂, 𝜀0 = 𝜀𝜂, and 𝛽0 = (1 − 𝜌)/𝜂2, (29)

and we let u𝑘 = v𝑘/𝜎2. The equations for RMSProp with EMA then become, using only these new854

variables and 𝜂:855

u𝑘+1 − u𝑘 = 𝜂2𝛾0 (diag(Σ(𝛉𝑘 , 𝛇𝑘 )) − u𝑘 ), (30)

𝛉𝑘+1 − 𝛉𝑘 = −(√u𝑘 + 𝜀0)−1 (𝜂2∇𝑓 (𝛉𝑘 , 𝛇𝑘 ) + 𝜂𝛜𝑘
)

(31)

𝛇𝑘+1 − 𝛇𝑘 = 𝜂2𝛽0 (𝛉𝑘 − 𝛇𝑘 ). (32)

This formulation makes it clear that these iterations can be seen as the discretization of the SDE856

𝑑𝑈𝑡 = 𝛾0 (diag(Σ(Θ𝑡 , 𝑍𝑡 )) −𝑈𝑡 )𝑑𝑡, (33)

𝑑Θ𝑡 = −(𝜎0
√︁
𝑈𝑡 + 𝜀0)−1 (∇𝑓 (Θ𝑡 , 𝑍𝑡 )𝑑𝑡 + 𝜎0Σ(Θ𝑡 , 𝑍𝑡 )1/2𝑑𝑊𝑡) (34)

𝑑𝑍𝑡 = 𝛽0 (Θ𝑡 − 𝑍𝑡 )𝑑𝑡, (35)

with step size 𝜂2. Of course, we recover the SDE of Malladi et al. (2022) in the case where 𝛽0 = 0.
A formal proof of closeness between the iterates and the SDE trajectory is out of the scope of the
present paper since it would imply redoing much of the theoretical work developed in Malladi et al.
(2022). Still, the previous informal analysis hints that for RMSProp, the scaling rule in Equation (29)
should be used. In other words, given a certain set of hyperparameters 𝛾, 𝜂 and 𝜌 , if the batch size
goes from 𝐵 to �̂� = 𝜅 × 𝐵, the noise level becomes �̂� = 𝜎/

√
𝜅, and keeping the quantities in

Equation (29) constant means that we should use as new hyperparameters

𝛾 = 1 − (1 − 𝛾) × 𝜅, 𝜂 = 𝜂 ×
√
𝜅, and 𝜌 = 1 − (1 − 𝜌) × 𝜅 .

The linear rule 𝜌 = 1 − (1 − 𝜌) × 𝜅 is at the first order equivalent to the exponential scaling rule857

𝜌 = 𝜌𝜅 . Hence, even though the limiting SDE differs greatly from that of SGD, and even though the858

scaling rule regarding the learning rate differs, we recover for the momentum term 𝜌 the exact same859

scaling rule as for SGD.860

We finish the discussion with the case of Adam, which leads once again to the same rule as for SGD.861

Adam with EMA tracking of the network parameters iterates862

m𝑘+1 = 𝛽1m𝑘 + (1 − 𝛽1)g𝑘 , with g𝑘 = ∇𝑓 (𝛉𝑘 , 𝛇𝑘 ) + 𝜎𝛜𝑘 , and 𝛜𝑘 ∼ Z𝜎 (𝛉𝑘 , 𝛇𝑘 ), (36)

v𝑘+1 = 𝛽2v𝑘 + (1 − 𝛽2)g2
𝑘

(37)

m̃𝑘+1 = m𝑘+1/(1 − 𝛽𝑘+11 ) (38)

ṽ𝑘+1 = v𝑘+1/(1 − 𝛽𝑘+12 ) (39)

𝛉𝑘+1 = 𝛉𝑘 − 𝜂 (
√︁
ṽ𝑘 + 𝜀)−1 × m̃𝑘+1 (40)

𝛇𝑘+1 = 𝜌𝛇𝑘 + (1 − 𝜌)𝛉𝑘 . (41)
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Here, we use the same minor modification of the iterations as in Malladi et al. (2022), where we use863

v𝑘 instead of v𝑘+1 in the denominator of the 𝛉𝑘 update.864

We consider the following scaling for the hyperparameters865

𝑐1 = (1 − 𝛽1)/𝜂2, 𝑐2 = (1 − 𝛽2)/𝜂2, 𝜎0 = 𝜎𝜂, 𝜀0 = 𝜀𝜂, and 𝛽0 = (1 − 𝜌)/𝜂2, (42)
and 𝛾1 (𝑡) = 1 − exp(−𝑐1𝑡), 𝛾2 (𝑡) = 1 − exp(−𝑐2𝑡), and u𝑘 = v𝑘/𝜎2. The SDE for Adam + EMA is866

given by867

𝑑𝑀𝑡 = 𝑐1

(
(∇𝑓 (Θ𝑡 , 𝑍𝑡 ) −𝑀𝑡 )𝑑𝑡 + 𝜎0Σ(Θ𝑡 , 𝑍𝑡 )1/2𝑑𝑊𝑡

)
(43)

𝑑𝑈𝑡 = 𝑐2 (diag(Σ(Θ𝑡 , 𝑍𝑡 )) −𝑈𝑡 )𝑑𝑡 (44)

𝑑Θ𝑡 = −
√︁
𝛾2 (𝑡)
𝛾1 (𝑡)

(𝜎0
√︁
𝑈𝑡 + 𝜀0

√︁
𝛾2 (𝑡))−1 ×𝑀𝑡𝑑𝑡 (45)

𝑑𝑍𝑡 = 𝛽0 (Θ𝑡 − 𝑍𝑡 )𝑑𝑡 . (46)

This is once again the same SDE as in Malladi et al. (2022) with the added EMA term. Like
previously, this SDE hints at the fact that the scaling rule in eq. (42) should be used. In other words,
given a set of hyperparameters 𝛽1, 𝛽2, 𝜂, and 𝜌 , if the batch size goes from 𝐵 to 𝜅 × 𝐵, then the noise
level becomes �̂� = 𝜎/

√
𝜅 and keeping quantities in eq. (42) constant means that we should use as

new hyperparameters

𝛽1 = 1 − (1 − 𝛽1) × 𝜅, 𝛽2 = 1 − (1 − 𝛽2) × 𝜅, 𝜂 = 𝜂 ×
√
𝜅, and 𝜌 = 1 − (1 − 𝜌) × 𝜅.

We once again recover a linear rule for 1 − 𝜌 which is equivalent to the exponential scaling rule868

𝜌 = 𝜌𝜅 in the limit 𝜌 → 0.869

E Additional proofs870

E.1 Iterations of SGD + EMA871

Here we derive a critical component of the EMA Scaling Rule, the matrix equation of Equation (4)872

from which the EMA Scaling Rule (Definition 1.1) follows.873

Theorem E.1 (Iterations of SGD + EMA). Assuming that gradients change slowly over iterations874

of SGD (Definition 2.1) and EMA (Definition 2.3): ∇
𝛉
L(𝑥 ; 𝛉𝑡+𝑗 , 𝛇𝑡+𝑗 ) ≈ ∇𝛉L(𝑥 ; 𝛉𝑡 , 𝛇𝑡 ) ≈ g, for875

𝑗 = 1, 2, . . . , 𝜅 and representative gradient g, iterating over 𝜅 independent minibatches produces876

model states877 [
𝛉𝑡+𝜅
𝛇𝑡+𝜅
g

]
=

[ 1 0 −𝜂
1 − 𝜌 𝜌 0

0 0 1

]𝜅
·
[
𝛉𝑡

𝛇𝑡

g

]
=

[
𝛉𝑡 − 𝜂 𝜅 g

𝜌𝜅 𝛇𝑡 + (1 − 𝜌𝜅) 𝛉𝑡 + O
(
𝜂 × 𝛽𝜌

)
g

]
. (47)

Proof. First note that for matrices of the form878

A =

[ 1 0 𝑎0,2
1 − 𝑎1,1 𝑎1,1 0

0 0 1

]
, (48)

their multiplication follows879

AB =

[ 1 0 𝑎0,2
1 − 𝑎1,1 𝑎1,1 0

0 0 1

] [ 1 0 𝑏0,2
1 − 𝑏1,1 𝑏1,1 0

0 0 1

]
=

[ 1 0 𝑎0,2 + 𝑏0,2
1 − 𝑎1,1 𝑏1,1 𝑎1,1 𝑏1,1 (1 − 𝑎1,1) 𝑏0,2

0 0 1

]
, (49)

and880

ABC =

[ 1 0 𝑎0,2 + 𝑏0,2
1 − 𝑎1,1 𝑏1,1 𝑎1,1 𝑏1,1 (1 − 𝑎1,1) 𝑏0,2

0 0 1

] [ 1 0 𝑐0,2
1 − 𝑐1,1 𝑐1,1 0

0 0 1

]
=

[ 1 0 𝑎0,2 + 𝑏0,2 + 𝑐0,2
1 − 𝑎1,1 𝑏1,1 𝑐1,1 𝑎1,1 𝑏1,1 𝑐1,1 (1 − 𝑎1,1) 𝑏0,2 + (1 − 𝑎1,1 𝑏1,1) 𝑐0,2

0 0 1

]
. (50)
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By induction881

A𝜅 =


1 0 𝜅 × 𝑎0,2

1 − 𝑎𝜅1,1 𝑎𝜅1,1 𝛿 (𝑎0,2, 𝑎1,1, 𝜅)
0 0 1

 , (51)

where882

𝛿 (𝑎0,2, 𝑎1,1, 𝜅) = 𝑎0,2

𝜅−1∑︁
𝑖=1

(
1 − 𝑎𝑖1,1

)
= 𝑎0,2

(
𝜅 −

1 − 𝑎𝜅1,1
1 − 𝑎1,1

)
, for𝑎1,1 ≠ 1. (52)

It follows that883 [ 1 0 −𝜂
1 − 𝜌 𝜌 0

0 0 1

]𝜅
=

[ 1 0 −𝜅 𝜂
1 − 𝜌𝜅 𝜌𝜅 𝛿 (𝜂, 𝜌, 𝜅)

0 0 1

]
(53)

where the EMA Scaling Rule error884

𝛿 (𝜂, 𝜌, 𝜅) = (−𝜂)
(
𝜅 − 1 − 𝜌𝜅

1 − 𝜌

)
≈ (−𝜂)

(
𝜅 − 𝜅 + O(𝛽𝜌 )

)
= 0 + O(𝜂 × 𝛽𝜌 ), (54)

where 𝛽𝜌 ≡ 1 − 𝜌 and the approximation is around 𝜌 = 1. □885

E.2 Limiting behavior of Polyak-Ruppert averaging886

Here we sketch the asymptotic behavior of a target model θ and its EMA ζ. Let us assume that θ887

converges to the stationary distribution lim𝑡→∞ θ𝑡 = θ∗, θ∗ ∼ 𝑝∞ (θ). We are interested in statistical888

properties of ζ∗ = lim𝑡→∞ ζ𝑡 , as this will formalize the notion of how the EMA depends on the a889

time-horizon defined by its momentum 𝜌 as discussed in Table 1.890

As a warm-up, for 𝑛 independent random variables x1, . . . , x2, we know that the sample mean 𝑥 =891
1
𝑛
(𝑥1, 𝑥2, . . . , 𝑥𝑛) has the statistical properties892

E[𝑥] = 𝜇, Var[𝑥] = 𝜎2

𝑛
, (55)

where 𝜇 and 𝜎 are the population mean and variance. This gives us an idea of what to expect. As we893

will now show, the expectation of ζ∗ should have no time-horizon dependence, whereas the variance894

of ζ∗ will depend on its time horizon (i.e. the number of samples it integrates over) which is defined895

by 𝜌 .896

In the case of a weighted sum897

𝑥 (𝑤 ) =
𝑛∑︁
𝑖=1

𝑤𝑖 𝑥𝑖 , (56)

then if the 𝑥𝑖 are Independent and Identically Distributed (i.i.d.), then898

E[𝑥 (𝑤 ) ] =
𝑛∑︁
𝑖=1

𝑤𝑖 E[𝑥𝑖 ] = 𝑛 �̄� 𝜇, �̄� =
1
𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 , (57)

and for the variance (Kish, 1965)899

Var[𝑥 (𝑤 ) ] = 𝑛 ·𝑤2 · 𝜎2 𝑤2 =
1
𝑛

𝑛∑︁
𝑖=1

𝑤2
𝑖 , 𝜎2 = Var[𝑥𝑖 ] . (58)

We can verify that we reproduce the well-known result in Equation (55) in the case where all weights900

are equal to 1
𝑛

as follows901

∀𝑖 : 𝑤𝑖 =
1
𝑛

=⇒ 𝑤2 =
1
𝑛
·

𝑛∑︁
𝑖=1

(
1
𝑛

)2
=

1
𝑛2 =⇒ Var[𝑥 (𝑤 ) ] = 𝑛 · 1

𝑛2 · 𝜎
2 =

𝜎2

𝑛
. (59)
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In the case of an exponential moving average we have902

ζ𝑡+1 = 𝜌 ζ𝑡 + (1 − 𝜌) θ𝑡 = 𝜌𝑡 ζ1 + (1 − 𝜌)
𝑡−1∑︁
𝑖=0

𝜌𝑖θ𝑡−𝑖 . (60)

Let’s consider the specific case where we are at iteration 𝑘 which is sufficiently large that ζ and θ903

have converged to their stationary distributions. From 𝑘 , the iterations unfold as904

ζ𝑡+1 = 𝜌𝑡+1−𝑘 ζ𝑘 + (1 − 𝜌)
𝑡−𝑘∑︁
𝑖=0

𝜌𝑖θ𝑡−𝑖 . (61)

We rearrange for terms in ζ905

ζ𝑡+1 − 𝜌𝑡+1−𝑘 ζ𝑘 = (1 − 𝜌)
𝑡−𝑘∑︁
𝑖=0

𝜌𝑖 θ𝑡−𝑖 , (62)

and before proceeding to the final result, using 𝑛 = 𝑡 + 1 − 𝑘 , we compute the convenient quantities906

𝜌 =
1
𝑛

𝑛−1∑︁
𝑖=0

𝜌𝑖 =
1
𝑛
× 1 − 𝜌𝑛

1 − 𝜌 (63)

𝜌2 =
1
𝑛

𝑛−1∑︁
𝑖=0

𝜌2𝑖 =
1
𝑛
× 1 − 𝜌2𝑛

1 − 𝜌2 . (64)

Taking expectation of Equation (62) and setting statistics to their stationary values, we have907

(1 − 𝜌𝑛) E[ζ∗] = (1 − 𝜌) 𝑛 𝜌 E[θ∗] = (1 − 𝜌𝑛) E[θ∗], (65)

where we have used the result in Equation (57). It follows that for 𝜌 ≠ 1 we have908

E[ζ∗] = E[θ∗], (66)

independent of 𝜌 . Finally, we can take the variance of Equation (62). First the left hand side909

Var [ζ𝑡+1 − 𝜌𝑛 ζ𝑘 ] = Var [ζ𝑡+1] + 𝜌2𝑛 Var [ζ𝑘 ] =
(
1 + 𝜌2𝑛 ) Var [ζ∗] . (67)

Next the right hand side910

Var

[
(1 − 𝜌)

𝑛−1∑︁
𝑖=0

𝜌𝑖 θ𝑡−𝑖

]
= (1 − 𝜌)2 Var

[
𝑛−1∑︁
𝑖=0

𝜌𝑖 θ𝑡−𝑖

]
= (1 − 𝜌)2 ·

(
1 − 𝜌2𝑛

1 − 𝜌2

)
· Var[θ∗] . (68)

Finally, equating left and right hand sizes and rearranging for Var[ζ∗] gives911

Var [ζ∗] = 1 − 𝜌2𝑛

1 + 𝜌2𝑛 ·
1 − 𝜌
1 + 𝜌 · Var [θ∗] (69)

In the limit 𝑡 →∞, the momentum-dependent prefactor becomes912

lim
𝑡→∞

(
1 − 𝜌2𝑛

1 + 𝜌2𝑛 ·
1 − 𝜌
1 + 𝜌

)
=

1 − 𝜌
1 + 𝜌 =⇒ lim

𝑡→∞
Var [ζ∗] = 1 − 𝜌

1 + 𝜌 · Var [θ∗] . (70)

Equations (69) and (70) validate our intuition. When 𝜌 → 0, then ζ behaves like θ independent of913

𝑇 , with their variance and expectation matching. When 𝜌 > 0, the momentum-dependent prefactor914

serves as an aggregator over the history when 𝑡 is sufficiently large compared to 𝑘 , reducing the915

variance Var[𝜁 ∗] but preserving its expectation. This formalizes the notion of time horizon discussed916

in Table 1.917

F Additional details and results for Polyak-Ruppert averaging918

Additional background Polyak-Ruppert averaging (Definition 3.1) is a simplification of Stochas-919

tic Weight Averaging (SWA) (Izmailov et al., 2018) which uses a more complex multi-cycle sched-920

ule based weighting of the model parameters. Both Definition 3.1 and SWA present similar favor-921

able properties like wider minima and better generalization (Izmailov et al., 2018). For example,922

He et al. (2022) observed that a supervised ViT-H/14 overfits on ImageNet1k (Russakovsky et al.,923

2014) without a model EMA, achieving an accuracy of 80.9%. Equipping a Polyak-Ruppert average924

(𝜌 = 0.9999) alleviated overfitting and gave a 83.1% accuracy.925
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Organization In this appendix, we look at additional momenta for one-dimensional noisy926

parabola, as well as extensions to 𝐷-dimensions (Appendix F.1), provide a more detailed view927

of the results of Section 3.2 (Appendix F.2), and investigate the scenario where the EMA Scal-928

ing Rule (Definition 1.1) is applied to batch normalization (Ioffe & Szegedy, 2015) coefficients929

(Appendix F.3).930

F.1 Noisy parabola931

Additional one-dimensional examples First we consider additional one-dimensional examples,932

investigating the effect of modifying the base momentum 𝜌𝐵 . We present 𝜌𝐵 = 0.99 in Figure 7, and933

𝜌𝐵 = 0.999 in Figure 8. The results for 𝜌𝐵 = 0.9999 are presented in main text in Figure 1.934
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Figure 7: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (𝜅 = 1, black
dashed) to 𝜅 = 8 (left) and 𝜅 = 256 (right), with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA Scaling Rule.

(b, left) The momentum according for different scaling rules and the empirically optimal 𝜌∗ (Equation (10)). (b,
right) The approximation error (Equation (10)) of trajectories in (b, left) and the target model (orange). Error
for 𝜌∗ is computed using a hold-out to mitigate overfitting.
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(a) Trajectory of the model EMA 𝛇 under different
scalings 𝜅, with 𝜌𝐵 = 0.999, 𝜂𝐵 = 10−4.
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Figure 8: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (𝜅 = 1, black
dashed) to 𝜅 = 8 (left) and 𝜅 = 256 (right), with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA Scaling Rule.

(b, left) The momentum according for different scaling rules and the empirically optimal 𝜌∗ (Equation (10)). (b,
right) The approximation error (Equation (10)) of trajectories in (b, left) and the target model (orange). Error
for 𝜌∗ is computed using a hold-out to mitigate overfitting.

As described by the scaling error term in Equation (54), the approximation error at a given 𝜅 is935

higher for lower momenta 𝜌 . For a large range of scalings 𝜅, the EMA Scaling Rule and the optimal936

momenta 𝜌∗ are consistent. In summary, we see the synthetic experiments validate the results of937

Section 3.1 for a range of momenta 𝜌 .938

Examples in higher dimensions Our final use of the synthetic noisy parabola will consider an939

extension to 𝐷 dimensions. Consider the optimization of 𝛉 ∈ R𝐷 in a noisy parabola at the origin:940

L(𝛉) = 𝑎

2
𝛉
⊺
𝛉, 𝛉𝑘+1 = 𝛉𝑘 − 𝜂 g𝑘 , g𝑘 = 𝑎 𝛉𝑘 + 𝛜𝑘 , 𝛜𝑘 ∼ N

(
0,

𝑏 g2
𝑘
+𝑐

𝜅

)
, (71)

for curvature 𝑎 > 0, scaled additive 𝑏 > 0, and additive 𝑐 > 0 noise coefficients. The scaling factor941

𝜅 in the covariance denominator implements the reduction in gradient noise as the scaling (i.e., the942

batch size) increases (Jastrzebski et al., 2017). Let 𝛉 ∈ R𝐷 be optimized with SGD (Definition 2.1)943

27



and let there be a Polyak-Ruppert average (Definition 3.1) 𝛇 ∈ R𝐷 with momentum 𝜌 = 1 − 𝛽 for 𝛉.944

We consider dimensionalities 𝐷 = 2 (Figure 9), 𝐷 = 16 (Figure 10), and 𝐷 = 100 (Figure 11). We945

observe no significant differences in the EMA scaling behavior as we vary dimensions.946
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Figure 9: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (𝜅 = 1, black
dashed) to 𝜅 = 8 (left) and 𝜅 = 256 (right), with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA Scaling Rule.

(b, left) The momentum according for different scaling rules and the empirically optimal 𝜌∗ (Equation (10)). (b,
right) The approximation error (Equation (10)) of trajectories in (b, left) and the target model (orange). Error
for 𝜌∗ is computed using a hold-out to mitigate overfitting.
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scalings 𝜅, with 𝜌𝐵 = 0.9999, 𝜂𝐵 = 10−4, 𝐷 = 16.

1 4 16 64 256 1024
Scaling Factor κ

0.90

0.95

1.00

M
om

en
tu

m
ρ

EMA, ρ = ρB
EMA, ρ = ρ∗
EMA, ρ = ρκ

B
Model

1 4 16 64 256 1024
Scaling Factor κ

10−2

100

A
pp

ro
xi

m
at

io
n

E
rr

or
(b) Choices for momentum (left) with corresponding ap-
proximation errors (Equation (10)) (right).

Figure 10: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (𝜅 = 1,
black dashed) to 𝜅 = 8 (left) and 𝜅 = 256 (right), with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA

Scaling Rule. (b, left) The momentum according for different scaling rules and the empirically optimal 𝜌∗
(Equation (10)). (b, right) The approximation error (Equation (10)) of trajectories in (b, left) and the target
model (orange). Error for 𝜌∗ is computed using a hold-out to mitigate overfitting.
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Figure 11: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (𝜅 = 1,
black dashed) to 𝜅 = 8 (left) and 𝜅 = 256 (right), with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA

Scaling Rule. (b, left) The momentum according for different scaling rules and the empirically optimal 𝜌∗
(Equation (10)). (b, right) The approximation error (Equation (10)) of trajectories in (b, left) and the target
model (orange). Error for 𝜌∗ is computed using a hold-out to mitigate overfitting.
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Table 4: Supervised ResNet-v2 50 hyperparameters used in Polyak-Ruppert Averaging experiments.

Supervised ResNet-v2 50

ImageNet1k Test Top-1 76.27 ± 0.10%
ImageNet1k EMA Test Top-1 76.55 ± 0.07%

Weight initialization kaiming_normal(relu)
Backbone normalization BatchNorm
Synchronized BatchNorm over replicas No
Learning rate schedule Multi step: ×0.1 at [30, 60, 80] epochs
Learning rate warmup (epochs) 5
Learning rate minimum value 1 × 10−6

Training duration (epochs) 90
Optimizer SGD + Momentum
SGD momentum 0.9
Optimizer scaling rule Linear
Base learning rate 0.4
Base batch size 1024
Base Polyak momentum 0.9999
Weight decay 1 × 10−4

Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision bf16
Augmentation stack ImageNet
Label smoothing rate 0.1

F.2 Image Classification947

Hyperparameters We present the base hyperparameters for our image experiments in Table 4.948

Data For large scale vision evaluation, we use the ImageNet1k dataset (Russakovsky et al., 2014),949

a widely used dataset containing approximately 1.2 million labeled images, distributed almost uni-950

formly across 1000 different object classes, like animals, plants, and vehicles.951

The images in ImageNet1k are are not consistent in resolution. To handle this, they are resized and952

cropped to a standard size (in our case, 224 × 224), before further processing. This is part of the953

standard ImageNet augmentation stack for convolutional networks mentioned in Table 4.954

Compute [This section has been redacted to preserve anonymity during the peer-review process.955

If this work is accepted, the full details compute used for these experiments, including: the experi-956

ments presented, hyperparameter optimization, and the development process, will be provided.]957

Additional results In Figure 12 we present a more detailed view of the results in Section 3.2. First,958

we see that for all train metrics, model trajectories match, and that a learning rate step schedule after959

warmup is present. As discussed in Figure 12, a gap in EMA Test Top-1 trajectories begins at scaling960

𝜅 = 4, with a more pronounced effect visible at 𝜅 = 8. From Figure 12 it is clear that the (non-EMA)961

Test Top-1 performance trajectory is no longer matching at these scalings, demonstrating that the962

problem is not due to a breakdown of the EMA Scaling Rule, but rather, that the model is overfitting963

at larger batch sizes due to batch normalization (Ioffe & Szegedy, 2015).964
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Figure 12: ResNetv2-50 Polyak-Ruppert averaging on ImageNet1k for different scalings 𝜅. The baseline model
(𝜅 = 1, black dashed) uses batch size 1024 and momentum 𝜌𝐵 = 0.9999, is scaled down to a batch size of 512
(left), and up to a batch size of 4096 (right) with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA Scaling

Rule (Definition 1.1). Bands indicate the mean and standard deviation across three runs.

F.3 Applying the EMA Scaling Rule to Batch Normalization965

In Section 3.2 and Appendix F.2, we investigated a range of scalings 𝜅, with and without applying966

the EMA Scaling Rule to the Polyak momentum. In those experiments, we maintained batch nor-967

malization (Ioffe & Szegedy, 2015) coefficients of 𝜌BN = 0.9 throughout8, i.e. the EMA Scaling968

Rule is not applied. Yet, the running statistics of Batch Normalization are an EMA with values969

determined by 𝜌BN and so it is reasonable to suspect we should apply the EMA Scaling Rule to 𝜌BN970

also.971

In Figure 13 we investigate the effect of applying the EMA Scaling Rule to Batch Normalization972

coefficients, using 𝜌BN = 𝜌𝜅BN. We observe that the Test Top-1 trajectories with the EMA Scaling973

Rule applied are slightly closer to the reference trajectories for scalings 𝜅 ≥ 2 than those trajectories974

without the EMA Scaling Rule. As the effect is not particularly large, at least in this setup, we do975

pursue further ablating applications of the EMA Scaling Rule to batch normalization coefficients,976

and always use 𝜌BN = 0.1 for Batch Normalization, independent of 𝜅.977

8In many ML frameworks, this value is defined using 𝛽𝜌 = 1 − 𝜌 , i.e. the default is 0.1 and corresponds to
𝛽BN rather than 0.9 corresponding to 𝜌BN. We use 𝜌BN to maintain consistency across this work.
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Figure 13: ResNetv2-50 Polyak-Ruppert averaging on ImageNet1k for different scalings 𝜅. The baseline model
(𝜅 = 1, black dashed) uses batch size 1024 and momentum 𝜌𝐵 = 0.9999, is scaled down to a batch size of
512 (left), and up to a batch size of 4096 (right) with the EMA Scaling Rule applied to only model parameters
(blue, 𝜌 = 𝜌𝜅

𝐵
), and model parameters and buffers (orange, 𝜌 = 𝜌𝜅

𝐵
(†)). Bands indicate the mean and standard

deviation across three runs.

G Additional details and results for Automatic Speech Recognition (ASR)978

In this section we provide additional details for the speech recognition experiments in both the979

supervised and semi-supervised case.980

Data We use the LibriSpeech dataset (Panayotov et al., 2015) which is a dataset of audio-981

transcription pairs. For supervised Polyak-Ruppert averaging experiments, we use train-clean-100982

as training data, and for semi-supervised pseudo-labeling experiments, we use train-clean-100 as983

the labeled and train-clean-360 and train-other-500 as the unlabeled data. The standard LibriSpeech984

validation sets (dev-clean and dev-other) are used to tune all hyperparameters, as well as to select985

the best models. Test sets (test-clean and test-other) are only used for reporting final model per-986

formance, measured in WER without an external language model. We maintain the original 16kHz987

sampling rate, and compute log-mel filterbanks with 80 coefficients for a 25ms sliding window,988

strided by 10ms, later normalized to zero mean and unit variance for each input sequence.989

Acoustic model We employ a vanilla encoder-based only transformer model trained with the Con-990

nectionist Temporal Classification (CTC) loss (Graves et al., 2006). We use the training configura-991

tion from Likhomanenko et al. (2021a), which has three stages: i) 1D convolutions to perform strid-992

ing (kernel of 7 with stride of 3); ii) a Transformer encoder with 36 layers, post-LayerNorm, four993

attention heads, an embedding dimension of 768, an MLP dimension of 3072, a dropout frequency994

of 0.3, and a layer drop frequency of 0.3; and iii) a linear layer to map to the target vocabulary9. To995

reduce model training time by a factor of approximately 2 − 3×, and to reduce memory footprint,996

9The token set of this vocabulary consists of the 26 English alphabet letters augmented with the apostrophe
and a word boundary token.
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Table 5: Hyperparameters summary for speech recognition task for supervised (left) and semi-supervised
pseudo-labeling (right) training with a vanilla transformer. The 0.3 → 0.1 in the dropout and layer drop rates
indicates that a rate of 0.3 is used during pre-training, and a rate of 0.1 is used during pseudo-labeling.

Supervised Pseudo-Labeling

Librispeech test-clean / test-other WER 7.8/19.1 4.8/11.5

Optimizer Adam Adam
Optimizer scaling rule Adam Adam
Base (𝛽1, 𝛽2) (0.995, 0.999) (0.995, 0.999)
Base learning rate 0.0001 0.0001
Base learning rate warmup (steps) 64k 64k
Learning rate schedule Fixed (no decay) Fixed (no decay)
Learning rate minimum value 0 0
Base training duration (steps) 400k 500k
Base batch size (dynamic) 8 × 290𝑠 8 × 290𝑠
Base teacher momentum 0.99995 0.9999
Weight decay None None
Numerical precision bf16 bf16
Augmentation stack SpecAug SpecAug
Dropout 0.3 0.3→ 0.1
Layer drop 0.3 0.3→ 0.1
Gradient clipping 1 1
Labeled:unlabeled data ratio N/A 1:3
Base pre-training steps N/A 20k
Base start of EMA accumulation (steps) N/A 19k

we use CAPE positional embeddings (Likhomanenko et al., 2021b) instead of relative positional997

embeddings (Shaw et al., 2018): both models perform similarly.998

Training Here we discuss our training procedure for base batch size 𝐵 = 8×290𝑠, which is adapted999

from Likhomanenko et al. (2021a), and is summarized in Table 5. We use SpecAugment (Park et al.,1000

2019) activated after 5k steps of training: two frequency masks with frequency mask parameter1001

𝐹 = 30, ten time masks with maximum time-mask ratio 𝑝 = 0.1 and time mask parameter𝑇 = 50 are1002

used; time warping is not used.1003

One difference in setup is we use the Adam optimizer, whereas Likhomanenko et al. (2021a) used1004

Adagrad (Duchi et al., 2010). Even though Adagrad can be viewed as a particular limit (𝛽1 = 0 and1005

𝛽2 → 1) of Adam (Kingma & Ba, 2015), we were unable to produce reasonable optimization in1006

practice when applying the Adam Scaling Rule of Malladi et al. (2022) in this limit. As a conse-1007

quence, we chose to work with the Adam optimizer, where its scaling rule has been shown to work1008

(Malladi et al., 2022), and we take 𝛽1 = 0.995, 𝛽2 = 0.999, and 𝜖 = 10−8. We obtained similar results1009

for 𝛽1 = 0.99. Finally, we use a linear learning rate warmup (64k steps) after which the learning rate1010

is kept constant until convergence. This performance can be improved further by using a step decay1011

schedule as shown in prior work. We also apply gradient clipping of 1, and do not use weight decay.1012

Pseudo-Labeling The pseudo-labeling process comprises of two stages: i) The pre-training phase,1013

where we train model on labeled data for 20k steps with model EMA accumulation starting after1014

19k steps; and ii) the pseudo-labeling phase, where we involve unlabeled data by generating pseudo-1015

labels from the model EMA (teacher) and provide them to the model (student) as if they were1016

ground-truth labels. Pseudo-labels are generated without any dropout applied to the teacher, and1017

no data augmentation is applied for the corresponding inputs. To produce the pseudo-label, we use1018

hard transcription (Definition G.1)1019

Definition G.1 (Hard Transcription). For a sequence of frames, select the most probable token1020

per frame, removing repetitions and the CTC blank token. For example, “h##eelll##ll###oo” is1021

transformed into “hello”, where “#” is the CTC blank token.1022

These hard transcriptions are then used as transcription for student optimization. We use a 1:31023

proportion of labeled to unlabeled data as this was found to be optimal in Likhomanenko et al.1024

(2021a), and we decrease model dropout and layer drop rates to 0.1 after pre-training phase. As1025

we have access to the ground-truth labels on the data being treated as unlabeled, we can track1026
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Figure 14: Transformer Polyak-Ruppert averaging on LibriSpeech (trained on train-clean-100) with different
scalings 𝜅. The baseline (𝜅 = 1, black dashed) is trained with Adam and momentum 𝜌𝐵 = 0.99995 at a dynamic
batch size 𝐵 = 8 × 290𝑠, which corresponds to a single train step on the 𝑥-axis. We investigate dynamic batch
sizes down to 𝐵 = 2× 290𝑠 (left) and up to 𝐵 = 32× 290𝑠 (right), with (blue, 𝜌 = 𝜌𝜅

𝐵
), and without (red, 𝜌 = 𝜌𝐵)

the EMA Scaling Rule (model non-EMA is marked by orange). The Adam Scaling Rule (Malladi et al. (2022),
Definition C.3) is used throughout. For momentum 𝜌𝐵 = 0.9999 we observe similar trajectories behaviour for
all models.

pseudo-label quality by computing pseudo-labels on this data, and compute the WER against their1027

ground-truth. Pseudo-label quality is the primary metric to evaluate progress on unlabeled data, as1028

loss on pseudo-labeled data is unreliable when a teacher model and pseudo-labels are evolving with1029

each time step.1030

Scaling of batch size Sequential data is typically processed using dynamic batching as it is more1031

computationally efficient than using a fixed number of sequences (Ott et al., 2019). In our work, we1032

use dynamic batching of ∼290s audio per GPU. Moreover, for CTC we do not apply any additional1033

sequence normalization. We experimented with fixed batching, but did not observe any significant1034

differences in conclusions compared with the dynamic batching.1035

We note that dynamic batching is a more challenging setting for achieving systematic scaling, as the1036

number of independent sequences in any given batch may change, and the i.i.d. assumption does1037

not hold at the frame level. Despite these violations of the assumptions of Section 2.2, our results1038

demonstrate that the Adam Scaling Rule (Definition C.3, Malladi et al. (2022)) holds in the case of1039

dynamic batches, as does our EMA Scaling Rule (Definition 1.1).1040

The base batch size is set to 𝐵 = 8 × 290𝑠, and in our experiments we scale down to batch size of1041

𝐵 = 2 × 290𝑠 and up to batch size of 𝐵 = 128 × 290𝑠. The number of warmup and pre-training1042

steps, steps before SpecAugment is turn on and model EMA is accumulated are scaled according to1043

Appendix C.1.1044

Compute [This section has been redacted to preserve anonymity during the peer-review process.1045

If this work is accepted, the full details compute used for these experiments, including: the experi-1046

ments presented, hyperparameter optimization, and the development process, will be provided.]1047
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Figure 15: Transformer Polyak-Ruppert averaging on LibriSpeech (trained on train-clean-100) with different
scalings 𝜅. The baseline (𝜅 = 1, black dashed) is trained with Adam and momentum 𝜌𝐵 = 0.999 at a dynamic
batch size 𝐵 = 8 × 290𝑠, which corresponds to a single train step on the 𝑥-axis. We investigate dynamic batch
sizes down to 𝐵 = 2× 290𝑠 (left) and up to 𝐵 = 32× 290𝑠 (right), with (blue, 𝜌 = 𝜌𝜅

𝐵
), and without (red, 𝜌 = 𝜌𝐵)

the EMA Scaling Rule (model non-EMA is marked by orange). The Adam Scaling Rule (Malladi et al. (2022),
Definition C.3) is used throughout. If momentum 𝜌𝐵 is small and accumulation history is short we observe no
any significant difference between models which all are matching the reference trajectory despite scaling 𝜅.

G.1 Detailed results1048

We present detailed comparison between models trained with and without EMA Scaling Rule in Fig-1049

ures 14 and 15 for supervised training and in Figures 16 and 17 for semi-supervised training.1050

First, we observe that if the Adam Scaling Rule does not hold perfectly10 (there is a mismatch1051

between trajectories for the model before pseudo-labels are involved) the EMA Scaling Rule also1052

gives discrepancies with the reference trajectory, however they are negligible compared to models1053

trained without EMA Scaling Rule. For the semi-supervised training, to alleviate the difficulties with1054

a breakdown of the Adam Scaling Rule for large 𝜅 we postpone the pseudo-labeling process until1055

the model reaches similar WER as the baseline. This allows us to align the initial model conditions1056

for pseudo-labeling. In this scenario we are able to match the reference trajectory up to 𝜅 = 8.1057

We note that this result reveals that errors for the Adam Scaling Rule and the EMA Scaling Rule1058

are contributing, although the way in which they contribute is different, and one can dominate the1059

other. We observe in Figure 16 that if the initial conditions of the models are similar (attained by1060

using the same WER as a condition to begin pseudo-labeling) then the error from the EMA Scaling1061

Rule dominates over that of the Adam Scaling Rule, causing a divergence in training dynamics.1062

Second, we observe in practice that the EMA Scaling Rule holds for both fixed batching (a sequence1063

length in the batch can vary significantly) and for dynamic batching (when total number of frames1064

in the batch is fixed, though padding still is accounted to the this amount). This shows that EMA1065

Scaling Rule is applicable to sequential data too.1066

Third, we observe in Figures 15 and 17 that for smaller values of 𝜌𝐵 , scaling with or without1067

EMA Scaling Rule behave similarly, and reference trajectories match in the supervised and semi-1068

supervised cases. However, if the momentum is too large, the teacher moves slowly and is uninfor-1069

mative, whereas if the momentum is too low, the teacher and the student are effectively be the same1070

model, implying: i) the student will self-predict with high confidence, removing any benefits of dis-1071

10See Malladi et al. (2022) for a discussion on scenarios that lead to a breakdown of the Adam Scaling Rule.
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tillation11; and ii) training instability or model divergence will happen in the low-resource settings1072

(Likhomanenko et al., 2021a; Higuchi et al., 2022).1073

200

400

600
Su

pe
rv

is
ed

Tr
ai

n
L

os
s

Scaling κ = 1/4

B = 8×290s,ρ = ρB

B = 2×290s,ρ = ρB

B = 2×290s,ρ = ρκ
B

Scaling κ = 1/2

B = 8×290s,ρ = ρB

B = 4×290s,ρ = ρB

B = 4×290s,ρ = ρκ
B

Scaling κ = 2

B = 8×290s,ρ = ρB

B = 16×290s,ρ = ρB

B = 16×290s,ρ = ρκ
B

Scaling κ = 4

B = 8×290s,ρ = ρB

B = 32×290s,ρ = ρB

B = 32×290s,ρ = ρκ
B

Scaling κ = 8

B = 8×290s,ρ = ρB

B = 64×290s,ρ = ρB

B = 64×290s,ρ = ρκ
B

0

20

40

60

80

100

PL
W

E
R

0 2 4
Train Steps ×105

0

25

50

75

100

te
st

-o
th

er
W

E
R

0 2 4
Train Steps ×105

0 2 4
Train Steps ×105

0 2 4
Train Steps ×105

0 2 4
Train Steps ×105

Figure 16: Transformer pseudo-labeling on LibriSpeech (trained on train-clean-100 as labeled and the rest
of LibriSpeech as unlabeled) with different scalings 𝜅. The baseline (𝜅 = 1, black dashed) is trained with
Adam at a dynamic batch size of 8 × 290 seconds, which corresponds to a single train step on the 𝑥-axis. The
model EMA (teacher) is updated with momentum 𝜌𝐵 = 0.9999. We investigate dynamic batch sizes down to
𝐵 = 2 × 290𝑠 (left) and up to 𝐵 = 64 × 290𝑠 (right), with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA

Scaling Rule. The Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used throughout. For 𝜅 ≤ 2, we
start pseudo-labeling after 20k/𝜅 training steps; while for 𝜅 > 2, we start when pre-training WER matches the
baseline WER (24k/𝜅 for 𝜅 = 4 and 29k/𝜅 for 𝜅 = 8). For 𝜅 = 4 we experimented with both variants: we start
pseudo-labeling after 20k/𝜅 (dashed) and when pre-training WER matches the baseline WER (solid, 24k/𝜅).

11He et al. (2020) alleviated the problem with the proper amount of noise during student model training,
whilst Xu et al. (2020) used beam-search decoding with a language model.
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Figure 17: Transformer pseudo-labeling on LibriSpeech (trained on train-clean-100 as labeled and the rest of
LibriSpeech as unlabeled) with different scalings 𝜅. The baseline (𝜅 = 1, black dashed) is trained with Adam at
a dynamic batch size of 8×290 seconds, which corresponds to a single train step on the 𝑥-axis. The model EMA
(teacher) is updated with momentum 𝜌𝐵 = 0.999. We investigate dynamic batch sizes down to 𝐵 = 2 × 290𝑠
(left) and up to 𝐵 = 16×290𝑠 (right), with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA Scaling Rule. The

Adam Scaling Rule is used throughout. In case of short history accumulation for the momentum (compared
to Figure 14) we observe similar to supervised training (Figure 15) no significant different between all models
trajectories throughout the training while matching the reference one.

G.2 Scaling to 𝜅 = 16 with Progressive Scaling1074

Finally, we aim to scale semi-supervised pseudo-labeling further to 𝜅 = 16. In this case we observe1075

that Adam Scaling Rule does not hold in the pre-training phase and there is no model convergence.1076

To overcome this, we apply Progressive Scaling (Definition 3.2). We pre-train models on supervised1077

data with 𝜅 = 8 for 29k of reference steps (model EMA accumulation starts at 28k steps). We then1078

scale to 𝜅 = 16 and begin pseudo-labeling. We see in Figure 18 that Progressive Scaling enables us1079

to scale pseudo-labeling to 𝜅 = 16 with (middle) and without (left) the EMA Scaling Rule. Second,1080

models with the EMA Scaling Rule track the baseline much closer than models without the EMA1081

Scaling Rule, although a small gap is present. We further experimented with Progressive Scaling,1082

postponed the transition condition to the 𝜅 = 16 until 75k reference steps. In Figure 18 (right), we1083

see this scaled model tracks the reference trajectory, and so using a combination of the EMA Scaling1084

Rule and Progressive Scaling, we are able to scale pseudo-labeling to 𝜅 = 16, corresponding to a1085

dynamic batch size of 128 × 290𝑠.1086
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Figure 18: Transformer pseudo-labeling on LibriSpeech (trained on train-clean-100 as labeled and the rest of
LibriSpeech as unlabeled) with different Progressive Scaling from 𝜅 = 8 to 𝜅 = 16 (𝜅 = 8→ 16). The baseline
(𝜅 = 1, black dashed) is trained with Adam at a dynamic batch size of 8 × 290 seconds, which corresponds
to a single train step on the 𝑥-axis. The model EMA (teacher) is updated with momentum 𝜌𝐵 = 0.9999. The
scaling with 𝜅 = 8 is shown with lighter color for reference from Figure 16. We investigate dynamic batch
sizes progressively from 𝐵 = 64 × 290𝑠 to 𝐵 = 128 × 290𝑠, with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵)

the EMA Scaling Rule. For reference (top) we show the learning rate schedule with Progressive Scaling. The
Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used throughout. Left and middle correspon to
Progressive Scaling with scale from 𝜅 = 8 to 𝜅 = 16 at 29k steps, while right corresponds to 75k steps.

H Additional details and results for self-supervised image representation1087

learning1088

Organization This appendix is structured into three sections. We first give an overview of our1089

chosen SSL method BYOL (Appendix H.1), our recipe for training BYOL using Vision Transform-1090

ers (ViTs) (Appendix H.2), ablations of normalization approaches that lead to the development of1091

this recipe (Appendix H.3), and additional results corresponding to longer training duration (Ap-1092

pendix H.4) and further understanding the impact of Progressive Scaling (Appendix H.5).1093

Second, we demonstrate that the EMA Scaling Rule combined with Progressive Scaling can scale1094

a ResNet-50 BYOL model trained with LARS to batch size 32,768 without performance drop,1095

demonstrating the empirical utility of the tools we provide outside of their theoretical validity (Ap-1096

pendix H.6).1097

Finally, we show that it is possible to systematically scale DINO (Caron et al., 2021) using a com-1098

bination of Progressive Scaling and the EMA Scaling Rule, providing a solution for researchers and1099

practitioners wanting to train DINO at scale.1100

H.1 Components of self-supervised learning1101

First, a key component of many SSL methods is the stop-gradient or StopGrad (Definition H.1).1102

Definition H.1 (Stop Gradient/StopGrad( · )). The stop-gradient operator StopGrad( · ) prevents the1103

flow of gradient information1104

𝑑 𝑓 (StopGrad(ℎ(𝑥 ;𝛚)); 𝛉)
𝑑𝛚

≡ 0 (72)

for all parameteric functions ℎ and 𝑓 and for all parameters 𝛉 and 𝛚.1105

Applying a stop-gradient is sometimes called detaching in the literature. Now, we introduce the1106

update rule of our representative SSL method BYOL in Definition H.2.1107
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Definition H.2 (BYOL Update). BYOL learns unsupervised features by minimizing the cosine dis-1108

tance between the predictions of a student backbone 𝑓 ( · ; 𝛉) (typically a ResNet or Vision Trans-1109

former), projected through ℎ( · ;𝛚) (typically a Multi-Layer Perceptron (MLP)), and the predictions1110

of an EMA teacher 𝑓 ( · ; 𝛇) (Grill et al., 2020). The update for the parameters of BYOL is then1111

(𝛉𝑡+1,𝛚𝑡+1) = (𝛉𝑡 ,𝛚𝑡 ) − 𝜂 ×
1
𝐵

∑︁
𝑥∈B
∇(𝛉,𝛚)L(𝑥 ; 𝛉𝑡 ,𝛚𝑡 , 𝛇𝑡 ) (73)

𝛇𝑡+1 = 𝜌 𝛇𝑡 + (1 − 𝜌) 𝛉𝑡+1 (74)

with L(𝑥 ; 𝛉𝑡 ,𝛚𝑡 , 𝛇𝑡 ) =
1
2

cos
[
ℎ(𝑓 (𝑥1; 𝛉𝑡 );𝛚𝑡 ), StopGrad(𝑓 (𝑥2; 𝛇𝑡 ))

]
+ (𝑥1 ↔ 𝑥2), (75)

where cos(a, b) ≡ 1−a ·b/(| |a| | | |b| |) is the cosine distance, and 𝑥1 and 𝑥2 are two views of a single1112

variate 𝑥 , often produced by augmentations, and 𝑥1 ↔ 𝑥2 denotes symmetrization over 𝑥1 and 𝑥2.1113

As noted in Section 3.4,the BYOL EMA update (Equation (74)) uses 𝛉𝑡+1 instead of our analyzed1114

𝛉𝑡 (Equation (4)). The effect upon the overall EMA update is O(𝜂 × 𝛽𝜌 ) and so is captured by the1115

EMA Scaling Rule (Definition 1.1).1116

One more piece of technology typically employed in SSL is a tracking probe (Definition H.3) which1117

we will use to evaluate the performance of BYOL on downstream tasks of interest, for example,1118

image classification.1119

Definition H.3 (Tracking Probe/Linear Probe). When optimizing model parameters 𝛚𝑡 of an SSL1120

method, simultaneously optimize the parameters 𝛏 of a probe model 𝑟 ( · ; 𝛏) under a downstream1121

objective L (𝑑 ) . For example, in classification, with data 𝑥 and samples 𝑦1122

L (𝑑 ) (𝑥,𝑦, 𝛉𝑡 , 𝛏𝑡 ) = − log 𝑃 (𝑦 |𝑟 (StopGrad(ℎ(𝑥 ;𝛚𝑡 )); 𝛏)) (76)

L (total) (𝑥,𝑦; 𝛉𝑡 ,𝛚𝑡 , 𝛇𝑡 , 𝛏𝑡 ) = L(𝑥 ; 𝛉𝑡 ,𝛚𝑡 , 𝛇𝑡 ) + L (𝑑 ) (𝑥,𝑦,𝛚𝑡 , 𝛏𝑡 ), (77)

The is a probe for the teacher, which is typically the better choice due to Polyak-Ruppert averaging1123

effects (see Section 3.2). When the 𝑟 is a linear model, the tracking probe is called a linear probe.1124

It is also typical to use a Batch Normalization layer without trainable affine terms before this linear1125

layer as in He et al. (2022) to stabilize probe training. In this case, the running statistics can be1126

absorbed into a definition of the linear layer weights and biases, and so this is still a linear probe,1127

although we will call this a pre-bn linear probe to remove ambiguity.1128

H.2 A Vision Transformer recipe for BYOL1129

Hyperparameters We present the base hyperparameters for training BYOL with a ViT-B/16 back-1130

bone in Table 6. This recipe was developed by starting from a well-known supervised ViT-B/161131

recipe (He et al., 2022) and performing a search over weight decay and learning rate hyperparame-1132

ter choices. We find that BYOL performs well with heavy weight decay (𝜆 = 0.3) and a low learning1133

rate (𝜂 = 10−3) at a base batch size 𝐵 = 4096. The AdamW optimizer is used, and so for scaling to1134

other batch sizes �̂� = 𝜅𝐵 we use the Adam Scaling Rule (Definition C.3)12 We use a pre-bn linear1135

probe as discussed in Appendix H.1. Finally, the performance of BYOL can be further improved1136

by employing multicrop (Caron et al., 2020) by ≈ +2% in absolute test top-1 performance on Im-1137

ageNet1k compared to without multicrop, however, as this is not our focus, we omit this from the1138

presented recipe.1139

Compute [This section has been redacted to preserve anonymity during the peer-review process.1140

If this work is accepted, the full details compute used for these experiments, including: the experi-1141

ments presented, hyperparameter optimization, and the development process, will be provided.]1142

Additional background Achieving large scale SSL training with ViTs to large scale SSL train-1143

ing has been a long standing goal in the community. MoCo-v3 (Chen et al., 2021) enables the1144

use of ViTs with contrastive learning, but achieves this through modificatinos of the ViT training1145

12We note that Adam (Kingma & Ba, 2015) and AdamW (Loshchilov & Hutter, 2019) are equivalent in the
limit of zero weight decay, and that the Adam Scaling Rule (Definition C.3) was derived with zero weight decay
(Malladi et al., 2022).
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Table 6: BYOL ViT-B/16 hyperparameters.

BYOL ViT-B/16

ImageNet1k Linear Probe Test Top-1 74.47% (Figure 19)

Weight initialization trunc_normal(.02)
Backbone normalization LayerNorm
Head normalization BatchNorm
Synchronized BatchNorm over replicas No
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 40
Learning rate minimum value 1 × 10−6

Training duration (epochs) 480
Optimizer AdamW
Optimizer scaling rule Adam
Base (𝛽1, 𝛽2) (0.9, 0.95)
Base learning rate 1 × 10−3

Base batch size 4096
Base teacher momentum 0.99
Weight decay 0.3
Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision bf16
Augmentation stack BYOL
Stochastic depth 0.1

procedures, including gradient freezing on the image patching layer, and re-introducing Batch Nor-1146

malization to post-attention MLP layers. Despite these modifications, MoCo-v3 was only trained up1147

to a batch size of 6144, where model performance begins to suffer (Chen et al., 2021). In Figure 61148

we demonstrate that combining dynamic batch scaling (Appendix C.4) with the EMA Scaling Rule1149

(Definition 1.1) enables BYOL to be trained using ViTs to batch sizes of 24,576 without any drop1150

in performance compared to the reference batch size of 4096. We emphasize that the piecewise1151

transitions in the schedules are important for preserving training dynamics.1152

H.3 The role of Batch Normalization and Layer Normalization in BYOL with ViTs1153
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Figure 19: BYOL ViT-B/16 on ImageNet1k for different scalings 𝜅. We present runs comparing LayerNorm
(blue) to BatchNorm (red) in the projection and prediction heads of BYOL ViT models for batch size 3072
(dashed) and 24,576 (solid) without the EMA Scaling Rule. 𝜅 = 1 corresponds to 𝐵 = 4096. In all scenarios
the transformer backbone only uses LayerNorm. We truncate the training of the large batch size LayerNorm
variant to preserve compute (indicated by ×).

Here we compare the roles of Batch Normalization (BatchNorm, Ioffe & Szegedy (2015)) and Layer1154

Normalization (LayerNorm, Ba et al. (2016)) in the projection and prediction heads of BYOL (Grill1155

et al., 2020) using ViTs.1156
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It has been observed that BatchNorm plays a critical role in BYOL predictor and projector dynam-1157

ics (Fetterman & Albrecht, 2020), and using either LayerNorm or no normalization significantly1158

decrease in model performance. Subsequently, it was demonstrated (Richemond et al., 2020) that1159

competitive BYOL performance could be achieved through a combination of Group Normaliza-1160

tion (GroupNorm, Wu & He (2018)) and Weight Standardization (Qiao et al., 2019). Additionally,1161

Richemond et al. (2020) showed that if BatchNorm is used in the backbone, one can use LayerNorm1162

or no normalization in the predictor and projector without any performance drop.1163

In this work, we we show it is possible to train BYOL ViT using only LayerNorm across the back-1164

bone, projector and predictor (see Figure 19), decoupling BYOL’s reliance on batch statistics, a1165

desirable trait for a representation learning algorithm (Brock et al., 2021). At batch size 3072, using1166

LayerNorm in the predictor and projector achieves competitive performance (74.10%), performing1167

slightly worse than using BatchNorm (74.47%). At the larger batch size of 24,576, runs perform1168

significantly worse as the EMA Scaling Rule was not applied.1169

H.4 Longer training duration with incremental Progressive Scaling1170
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Figure 20: BYOL ViT-B/16 on ImageNet1k for different scalings 𝜅. The baseline model (𝜅 = 0.75, black dashed)
uses batch size 3072 and teacher momentum 𝜌𝐵 = 0.99. We increment the batch size by 3072 every 60 epochs
to a final batch size of 24,576 using Progressive Scaling (Definition 3.2).

Here we use the same base hyperparameters as Table 6, except that we train for 480 instead of 3001171

epochs. To mitigate the student impulse phenomena discussed in Section 3.4, in Figure 20 we in-1172

vestigate increasing the batch size every 60 epochs using Progressive Scaling (Definition 3.2). We1173

observe that this more gradual procedure enables closer tracking of the baseline train loss trajec-1174

tory. Additionally, this procedure results in a scaled linear probe performance that outperforms the1175

baseline (75.64% compared to the baseline performance of 74.47%). The same procedure can be ap-1176

plied to the LayerNorm variant discussed in Appendix H.3, which produces a similar result (75.09%1177

compared to the baseline performance of 74.10%).1178

H.5 Building intuition around Progressive Scaling and momentum sensitivity1179

Our final BYOL ViT results are to help build intuition around Progressive Scaling (Definition 3.2),1180

as well as when the EMA Scaling Rule is most important. In Figure 21 we explore transition-1181

ing from the baseline batch size 4096 model to batch size 24,576 in a single transition after1182

60 epochs. After this transition, we continue training for 240 epochs for a range of momenta:1183

𝜌 ∈ {0.8, 0.9, 0.95, 0.97, 0.9867, 0.994, 0.999} without the EMA Scaling Rule.1184

We observe that after the transition, any 0.9 ≤ 𝜌 ≤ 0.994 produces a linear probe performance that1185

matches or outperforms the baseline at the end of training. This indicates that after the initial training1186

period, BYOL becomes less sensitive to the choice of teacher momentum. Note that without the1187

initial 60 epochs of training with batch size 4096, all models, including those employing the EMA1188

Scaling Rule diverge (see 𝐵 = 24, 576 in Figure 6).1189

We present an illustration for why this might happen in Figure 22. First, we see that using the EMA1190

Scaling Rule always keeps the model within the acceptable momentum region. We also wee that1191
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Figure 21: BYOL ViT-B/16 on ImageNet1k for different momenta 𝜌 . The baseline model (𝜌 = 0.99, black
dashed) uses batch size 4096. At the 60th epoch we apply Progressive Scaling (Definition 3.2) and transition
to batch size 24576. We train for a further 240 epochs without EMA scaling for a range of momenta: 𝜌 ∈
{0.9, 0.95, 0.97, 0.9867, 0.994}.

not using the EMA Scaling Rule can keep the model within the acceptable momentum region for a1192

range of batch sizes, depending on how large wide in momenta the acceptable region is at the base1193

batch size. Finally, we see that the momentum value matters much more at low values of momenta1194

(the acceptable momentum region shrinks), whereas at large momenta, this region of acceptability1195

widens.1196
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Figure 22: A hypothetical scenario where there is an upper and lower limit for momenta qualitatively leading
to the same result.. We assume at base batch size 𝐵 = 1024 there is an upper (𝜌max, black dashdot) and lower
(𝜌min, black dashed) limit for valid momenta. We show what happens if we start with 𝜌𝐵 = 0.95 at a batch size
of 4096, and scale with (𝜌 = 𝜌𝜅

𝐵
, blue) and without (𝜌 = 𝜌𝐵 , red) the EMA Scaling Rule.

H.6 Scaling a ResNet-50 BYOL using LARS and Progressive Scaling1197

Here we investigate whether Progressive Scaling and the EMA Scaling Rule can be used in practice1198

where there is no known optimizer SDE approximation. We use the default 300 epoch configuration1199

for BYOL (Grill et al., 2020) in Figure 23. We see that although trajectories during training do not1200

match, we are able to match or surpass the linear probe performance of the BYOL baseline at the1201

larger batch size if 32,768. This indicates that the contributions of our work have practical utility1202

beyond the theoretical constraints.1203

Compute [This section has been redacted to preserve anonymity during the peer-review process.1204

If this work is accepted, the full details compute used for these experiments, including: the experi-1205

ments presented, hyperparameter optimization, and the development process, will be provided.]1206
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Figure 23: ResNet50 BYOL on ImageNet1k using LARS for different configurations of progressive scaling. The
baseline (black dashed) uses batch size 4096 and momentum 𝜌𝐵 = 0.99. We consider progressive scaling (blue)
smoothly from epoch 60 for 60 epochs (left) and 120 epochs (right) up until batch size 32,768, scaling the
learning rate linearly, and applying the EMA Scaling Rule.

H.7 Preventing collapse phenomena in DINO at scale1207

Until now, our representatives SSL method has been BYOL for reasons discussed in Section 3.4.1208

Here, we will turn our attention to DIstillation with NO labels (DINO) (Caron et al., 2021), which1209

has the update rule presented in Definition H.4.1210

Definition H.4 (DINO Update). DINO learns unsupervised features by matching predictions over1211

emergent pseudo-labels of a student backbone and head 𝑓 ( · ; 𝛉) to those of an EMA teacher 𝑓 ( · ; 𝛇)1212

through a cross-entropy guided distillation procedure. DINO has a additional centering procedure,1213

which is a form of batch normalization with momentum 𝜌𝑐 = 0.9 which we do not scale using the1214
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Table 7: DINO ViT-B/16 Training hyperparameters.

DINO ViT-B/16

CIFAR10 Linear Probe Top-1 (𝜌𝐵 = 0.996) 85.38%
CIFAR10 Linear Probe Top-1 (𝜌𝐵 = 0.992) 86.96%

Weight initialization trunc_normal(.02)
Normalization Layer Norm
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 50
Learning rate minimum value 1 × 10−6

Training duration (epochs) 280
Optimizer AdamW
Optimizer scaling rule Adam
Base (𝛽1, 𝛽2) (0.9, 0.95)
Base learning rate 3 × 10−4

Base batch size (𝐵) 1024
Base teacher momentum (𝜌𝐵) 0.992 or 0.996
Base weight decay 0.04
Weight decay scaling rule Linear
Weight decay skip bias Yes
Center Momentum 0.9
Center Momentum Scaling Rule None
Precision bf16
Augmentation stack DINO Multi-crop

EMA Scaling Rule. The update for the parameters of DINO is1215

𝛉𝑡+1 = 𝛉𝑡 − 𝜂 ×
1
𝐵

∑︁
𝑥∈B
∇
𝛉
L(𝑥 ; 𝛉𝑡 , 𝛇𝑡 , c𝑡 ) (78)

𝛇𝑡+1 = 𝜌 𝛇𝑡 + (1 − 𝜌) 𝛉𝑡+1 (79)
c𝑡+1 = 𝜌𝑐 c𝑡 + (1 − 𝜌𝑐 ) E𝑥 ′𝛇(𝑥 ′) (80)

with L(𝑥 ; 𝛉𝑡 , 𝛇𝑡 , c𝑡 ) = 𝐻
(
𝑓 (𝑥1, 𝛉𝑡 ), 𝑓 (𝑥2, 𝛇𝑡 ) − c𝑡

)
+ (𝑥1 ↔ 𝑥2), (81)

where 𝐻 (a, b) ≡ −∑𝑀
𝑚=1 𝑝𝑚 (a) log𝑝𝑚 (b) is the cross-entropy between categorical distributions1216

over 𝑀 (emergent pseudo-)classes given logits a, b ∈ R𝑀 , 𝑥1 and 𝑥2 are two views of a single1217

variate 𝑥 , often produced by augmentations, and 𝑥1 ↔ 𝑥2 denotes symmetrization over 𝑥1 and 𝑥2.1218

In practice, DINO employs multi-crop (Caron et al., 2021). We omit this detail for clarity of presen-1219

tation, although we do use multi-crop in the experiments that follow.1220

Our interest DINO is due to the difficulty in its optimization13, and in particular, preventing collapse1221

phenomena in DINO at batch sizes above 1024, which is an open research problem. In this section,1222

we will show that a combination of the EMA Scaling Rule (Definition 1.1) and Progressive Scaling1223

(Definition 3.2) enable training of DINO beyond batch size 1024 without sacrificing performance.1224

Hyperparameters Base hyperparameters are presented in Table 7.1225

Compute [This section has been redacted to preserve anonymity during the peer-review process.1226

If this work is accepted, the full details compute used for these experiments, including: the experi-1227

ments presented, hyperparameter optimization, and the development process, will be provided.]1228

Results In Figures 24 and 25 we show the results obtained training DINO on CIFAR-10 with1229

𝜌𝐵 = 0.996 and 𝜌𝐵 = 0.992 respectively at the reference batch size of 1024. We employ smooth1230

Progressive Scaling (Definition 3.2) between epochs 120 and 180.1231

At batch size 2048, the training loss matches the reference only when the EMA Scaling Rule is1232

applied, whereas the run without the scaling rule diverges from the reference. The impact of this1233

13For an example, see https://github.com/facebookresearch/dino/issues/43#
issuecomment-881453515.
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divergence is emphasized as we consider the larger batch size of 4096. Here. there is also a gap with1234

the EMA Scaling Rule, however is approximately three times smaller than the gap without the EMA1235

Scaling Rule.1236

Additionally, we observe that using 𝜌𝐵 = 0.992 yields higher Top-1 accuracy over 𝜌𝐵 = 0.996, and1237

in our experiments, using the EMA Scaling Rule always performs better in terms of linear probe1238

performance than not using the scaling rule.1239
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Figure 24: DINO ViT-B/16 on CIFAR-10 for different scalings 𝜅 and base teacher momentum 𝜌𝐵 = 0.996. The
baseline model (𝜅 = 1, black dashed) uses batch size 1024 and center momentum 𝜌𝑐 = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA Scaling

Rule. Between epochs 100 and 180 we scale the batch size using progressive scaling (Definition 3.2).
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Figure 25: DINO ViT-B/16 on CIFAR-10 for different scalings 𝜅 and base teacher momentum 𝜌𝐵 = 0.992. The
baseline model (𝜅 = 1, black dashed) uses batch size 1024 and center momentum 𝜌𝑐 = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA Scaling

Rule. Between epochs 100 and 180 we scale the batch size using progressive scaling (Definition 3.2).

In Figure 26 we show how the hyperparameters 𝜌 , 𝐵 and learning rate change with the progressive1240

scaling in Definition 3.2.1241
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Figure 26: DINO ViT-B/16 on CIFAR-10 for different scalings 𝜅 and base teacher momentum 𝜌𝐵 = 0.992. We
show how the hyperparameters 𝜌 , 𝐵 and learning rate change with the Progressive Scaling in Definition 3.2.
These hyperparameters correspond to the training runs in Figure 25. Those for Figure 24 are identical, with the
exception of 𝜌 that starts at 0.996 instead of 0.992.

We also attempted to use a sharp batch size transition (Figures 27 and 28), which leads to the1242

collapse pheonomena observed in prior work. This collapse happens with and without the EMA1243

Scaling Rule. We suspect this is due to dynamics specific to DINO’s early phase that are even more1244

challenging to replicate under discretization than those of BYOL.1245
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Figure 27: DINO ViT-B/16 on CIFAR-10 for different scalings 𝜅 and base teacher momentum 𝜌𝐵 = 0.992. The
baseline model (𝜅 = 1, black dashed) uses batch size 1024 and center momentum 𝜌𝑐 = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, 𝜌 = 𝜌𝜅

𝐵
) and without (red, 𝜌 = 𝜌𝐵) the EMA Scaling

Rule. Progressive Scaling is employed with a sharp transition at epoch 100, leading to a collapse phenomenon.

0 50 100 150 200 250
Train Epochs

0.980

0.985

0.990

0.995

1.000

Te
ac

he
rM

om
en

tu
m

(ρ
)

B = 1024,ρ = ρB

B = 2048,ρ = ρB

B = 2048,ρ = ρκ
B

B = 3072,ρ = ρB

B = 3072,ρ = ρκ
B

B = 4096,ρ = ρB

B = 4096,ρ = ρκ
B

0 50 100 150 200 250
Train Epochs

1000

1500

2000

2500

3000

3500

4000

B
at

ch
Si

ze
(B

)

B = 1024,ρ = ρB

B = 2048,ρ = ρB

B = 2048,ρ = ρκ
B

B = 3072,ρ = ρB

B = 3072,ρ = ρκ
B

B = 4096,ρ = ρB

B = 4096,ρ = ρκ
B

0 50 100 150 200 250
Train Epochs

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

L
ea

rn
in

g
R

at
e

B = 1024,ρ = ρB

B = 2048,ρ = ρB

B = 2048,ρ = ρκ
B

B = 3072,ρ = ρB

B = 3072,ρ = ρκ
B

B = 4096,ρ = ρB

B = 4096,ρ = ρκ
B

Figure 28: DINO ViT-B/16 on CIFAR-10 with 𝜌𝐵 = 0.992 and a sharp transition in batch size at epoch 100.
We show how the hyperparameters 𝜌 , 𝐵 and learning rate change with sudden scaling. These hyperparameters
correspond to the training runs in Figure 27.

Our results in this section show it is possible to scale DINO to large batch sizes without sacrificing1246

performance by using both the EMA Scaling Rule and Progressive Scaling, providing the batch size1247

schedule of Progressive Scaling is not sudden. This resolves an open problem in SSL research.1248
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