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Appendix

A.1.1. Supplementary Information for the Image-Type Probabilistic Models

A.1.1.1. VISUALIZING THE PROBABILISTIC MODEL STRUCTURE
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Figure A.1: This figure, which is not a DAG, is a stylized schematic depiction of the probabilistic
treatment heterogeneity model for images. The gray circles denote observed random variables; the
white circles denote latent variables. The square node denotes deterministic transformations. Zi

denotes the image type generating a distribution over treatment effects. Arrows denote statistical
dependency in the probabilistic model, not causal dependencies.

A.1.1.2. DERIVING THE CONDITIONAL DISTRIBUTION, {⌧i = Yi(1)� Yi(0)|Zi = z}

Using the model outlined in §3.1, conditioning on ⌧i, and exploiting Normality,
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A.1.2. Simulation Details

Neighborhood with high similarity 
to heterogeneity-generating pattern

No neighborhood of similarity to 
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Figure A.2: Simulation design illustration. Center: The image pattern used in generating the het-
erogeneity response in the simulation design of §4. Left: An image having no regions of strong
similarity to the heterogeneity-generating pattern (leading to a low treatment effect). Right: An
image with many regions of strong similarity to the heterogeneity-generating pattern (leading to a
high treatment effect).
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Figure A.3: Illustration of the non-linear transformation used in the simulation in generating H
+
i

from Hi.
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A.1.3. Supplementary Analyses for the Application

A.1.3.1. ADDITIONAL DATA DESCRIPTION

We obtain satellite data for the neighborhood around each experimental unit in the following way.
First, the place of residence for each unit was geo-referenced using OpenStreetMap. When geo-
referencing failed, we use the geometric center for the layer associated with the geographic unit as
our focal point for the given unit. Satellite information was then obtained for a cube around focal
points with side lengths of 5000 meters. For the skilled work outcome, we take the scaled sum of
the log hours worked by experimental units in the last 7 days in skilled or highly skilled trades.

A.1.3.2. ADDITIONAL ANALYSES

Table A.1: Correlation of estimated image cluster 1 probabilities with key tabular covariates.

Correlation

Urban 0.18
Longitude -0.01
Latitude 0.27

Female indicator 0.04
Human capital score -0.11

a

Long: 34.13, Lat: 3.52

b

Long: 34.14, Lat: 3.57

c

Long: 34.12, Lat: 3.54

d

Long: 31.45, Lat: 2.41

e

Long: 34.11, Lat: 3.01

Figure A.4: Images with most uncertainty in cluster probabilities from the main empirical analysis.

A.1.4. Empirical Analysis with Orthogonalized Potential Outcomes

We orthogonalize outcomes by, in line with the original experimental analysis, fitting a regression
model predicting the outcome using main treatment effects and interactions between treatment and
gender, treatment and baseline human capital, and treatment and baseline business capital (as well
as the main effect terms for the associated interaction). We find a 0.85 correlation between the
cluster probabilities using the orthogonalized and raw outcomes.

A.1.5. Model Implementation Details

In the implementation of our models using Bayesian CNN arms, we leave the number of hidden
layers, filter size, and so forth as parameters that can be set by investigators.

The unconstrained components of the uncertainties are drawn from Gaussians with mean and
variance scaled indexed to z; the non-negativity of the variance is enforced through the softplus
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Figure A.5: Left. Correlation between estimated treatment effects using a causal forest with
individual-level tabular covariates and the posterior mean cluster 2 probabilities from the image
heterogeneity model. Individual-level covariates include gender, education, parental education, and
indicators for whether a unit’s mother and father were alive at the start of the experiment. Right.
Correlation between estimated treatment effects using a causal forest with individual-level tabu-
lar covariates along with district-level indicators and the posterior mean cluster 2 probabilities.
Unsurprisingly, the correlation increases, but there is still considerable information present in the
estimated clusters not reducible to district indicators alone.

transformation (where softplus(x) = log(1 + exp(x))). Neural network parameters receive priors
using the Empirical Bayes’ approach described in Krishnan et al. (2020).

In our application, we use four convolutional layers (filter dimension 5⇥5), separated by max-
pooling layers (2⇥2). Each convolutional layer applies 32 filters. Bottleneck projection layers are
used after each convolutional layer, projecting the 32 dimensions down to 3 to keep the number of
parameters reasonably low. Batch normalization layers are used across the feature dimension after
each non-linearity (batch normalization momentum across each update step is = 0.90). The swish
activation is used. We apply the Gumbel-Softmax to approximate the random categorical sampling
with the inverse temperature parameter set to 0.5. With this model structure, each batch sample of
20 units takes about one second on a single Apple M1 GPU using Metal-optimized tensorflow 2.10.
The full simulation suite takes about 12 hours on local hardware.

A.1.5.1. ENCOURAGING ATE MODEL EQUIVALENCE VIA CAUSAL REGULARIZATION

The modeling process just described involves selecting several parameters, such as the number
of clusters and even the kind of images used. Given the numerous possibilities involved, we can
consider the addition of a causal regularization term to encourage all models to be equivalent in their
implied marginal effect (for discussion of causal regularization in a different context, see (Oberst
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et al., 2021)). By the Law of Total Expectation, the ATE ⌧ satisfies

⌧ = E[Yi(1)� Yi(0)] =
KX

z=1

E
⇥
Yi(1)� Yi(0) | Zi = z

⇤
Pr(Zi = z) =

KX

z=1

⌧(z) Pr(Zi = z),

a fact that gives rise to a natural estimator using the sample analogs of the theoretical quantities:
b⌧Model =

PK
z=1 b⌧(z)cPr(Zi = z), where the b⌧(z)’s are taken from the mixture components and the

cPr(Zi = z) term is estimated from the marginal cluster probabilities.
However, the ATE can also be estimated using the non-parametric difference-in-means estimator

b⌧Non-parametric = n
�1
1

nX

i=1

Yi · Ti � n
�1
0

nX

i=1

Yi · (1� Ti),

where nt denotes the number of units in treatment group, t 2 {0, 1}. This non-parametric esti-
mator is under minimal assumptions, consistent (Imbens and Rubin, 2015). Thus, if the proposed
heterogeneity model is consistent as well,

{b⌧Model
n!1! ⌧}, {b⌧Non-parametric

n!1! ⌧} ) (b⌧Model � b⌧Non-parametric)
2 n!1! 0 (4)

If the implied ATE from the model diverges too far from the non-parametric estimator, the credi-
bility of the proposed model would be thereby reduced (see Figure A.6 for an illustration). Under
additional modeling assumptions, we can in fact re-parameterize the parametric model exactly so
that b⌧Model = b⌧Non-parametric exactly (see §A.1.6). However, the exact re-parameterization forcing
b⌧Model = b⌧Non-parametric involves similar problems as found in the compositional statistics literature
(e.g., ordering of clusters can affect the results (Greenacre, 2021)), we instead incorporate a soft
penalty that is invariant to the ordering of clusters:

Model ATE Equivalence Regularization Term: �

 
KX

z=1

b⌧(z)cPr(Zi = z)� b⌧Non-parametric

!2

We can add this to the variational objective to encourage marginal effects to be equivalent regardless
of the parameterization of the model, using a non-parametric estimator for the ATE as a baseline.

A.1.6. Causal Regularization Details

In a simplified model where the distribution of each potential outcome, Yi(0) and Yi(1), is charac-
terized by a Gaussian mixture with means µt,z for z 2 {1, 2, ...,K}, Equation 4 can be made to
hold exactly through parameterization. In particular, we would like to solve:

PK
z=1 b⌧(z)cPr(Z(M) = z)� b⌧ = 0

Under this simplified model, b⌧(z) = bµ1,z � bµ0,z , so

PK
z=1(bµ1,z � bµ0,z)cPr(Z(M) = z)� b⌧ = 0

(bµ1,z=1 � bµ0,z=1)cPr(Z(M) = 1) +
PK

z=2(bµ1,z � bµ0,z)cPr(Z(M) = z)� b⌧ = 0
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Figure A.6: Visualizing the plausible region for treatment effect heterogeneity models. The most
plausible models are those where the implied ATE is close to the non-parametric estimate.

which implies

bµ0,z=1 = bµ1,z=1 �
 
b⌧ �

KX

z=2

(bµ1,z � bµ0,z)cPr(Z(M) = z)

!
cPr(Z(M) = 1)�1

.

Thus, in some modeling contexts, the exact non-parametric ATE can be recovered in the clustering
model by parameterization.

6


	Introduction
	Background and Related Work
	Modeling Causal Effect Heterogeneity in Images
	Probabilistic Effect Clustering Based on Image Type
	Determination of Salience Regions in Posterior Mean Probabilities
	Policy Action Using the Image-based Heterogeneity Model
	Image and Tabular Conditional Information
	Analyzing both Image and Tabular Heterogeneity
	Distinguishing Image from Tabular Heterogeneity


	Treatment Effect Cluster Recovery in Simulation
	Application to an Anti-Poverty Experiment in Uganda
	Discussion and Conclusion
	Supplementary Information for the Image-Type Probabilistic Models
	Visualizing the Probabilistic Model Structure
	Deriving the Conditional Distribution, {i = Yi(1)-Yi(0)|Zi=z}

	Simulation Details
	Supplementary Analyses for the Application
	Additional Data Description
	Additional Analyses

	Empirical Analysis with Orthogonalized Potential Outcomes
	Model Implementation Details
	Encouraging ATE Model Equivalence via Causal Regularization

	Causal Regularization Details


