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Abstract

Video grounding is a fundamental problem in multimodal content
understanding, aiming to localize specific natural language queries
in an untrimmed video. However, current video grounding datasets
merely focus on simple events and are either limited to shorter
videos or brief sentences, which hinders the model from evolving
toward stronger multimodal understanding capabilities. To address
these limitations, we present a large-scale video grounding dataset
named SynopGround, in which more than 2800 hours of videos are
sourced from popular TV dramas and are paired with accurately
localized human-written synopses. Each paragraph in the synopsis
serves as a language query and is manually annotated with precise
temporal boundaries in the long video. These paragraph queries
are tightly correlated to each other and contain a wealth of abstract
expressions summarizing video storylines and specific descriptions
portraying event details, which enables the model to learn multi-
modal perception on more intricate concepts over longer context
dependencies. Based on the dataset, we further introduce a more
complex setting of video grounding dubbed Multi-Paragraph Video
Grounding (MPVG), which takes as input multiple paragraphs and
a long video for grounding each paragraph query to its temporal
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interval. In addition, we propose a novel Local-Global Multimodal
Reasoner (LGMR) to explicitly model the local-global structures of
long-term multimodal inputs for MPVG. Our method provides an
effective baseline solution to the multi-paragraph video grounding
problem. Extensive experiments verify the proposed model’s ef-
fectiveness as well as its superiority in long-term multi-paragraph
video grounding over prior state-of-the-arts. Dataset and code are
publicly available. Project page: https://synopground.github.io/.
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1 Introduction

As a crucial problem in multimodal understanding, video ground-
ing aims at linking semantically relevant temporal intervals in an
untrimmed video with specific natural language queries. Recently,
video grounding has received increasing attention since a wide
range of downstream applications can be promoted by it, such as im-
proving the searching granularity of video retrieval [4, 13, 16, 22, 77],
enabling language-aware scenarios of video editing [6, 20, 21, 36],
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Figure 1: Comparison of video grounding datasets. Our Syn-
opGround is the first dataset to introduce the challenges of
both long videos and long queries into video grounding.

and making video question answering [32, 39, 41, 44, 45, 78, 83]
more evidence-based. Up to now, a large number of datasets and
methods have been established to advance this line of research.

However, considerable drawbacks still exist in previous video
grounding datasets [2, 23, 24, 37, 60, 66]. First of all, as presented
in Figure 1, most of commonly-used datasets are constructed upon
short videos and brief sentence queries. This setup limits the model
in developing stronger abilities that can model and bridge the long-
form videos [27, 57] and long-text queries [23, 81]. Besides, shorter
queries that describe detailed events (as shown in Table 1), are
more prone to causing the risk of semantic ambiguity in referring
expressions [52, 56], i.e., the occurrence of one-to-many correspon-
dence between queries and moments, which will adversely affect
the model learning. In particular, this ambiguity issue is more promi-
nent for the recently proposed MAD [66] dataset which features
long input videos but short general descriptions. For example, it is
highly likely to find cases where multiple moments are semantically
corresponding to the same short description like “She steps closer”
(shown in Table 1), especially when searching content in a long
video. Furthermore, as listed in Table 1, existing benchmarks are
tailored for language queries referring to low-level visible activities,
while all of them overlook the importance of more complex events
and abstract concepts. Such drawbacks actually limit the applica-
tions of video grounding in scenarios where complex descriptions
with abstract concepts should be associated with long-term videos.
For example, accelerating the movie post-production by automati-
cally integrating raw footage into a coherent story based on the plot
scripts is a practical need, but it cannot be satisfied by the current
video grounding techniques developed from existing datasets.

In this work, we curate and present a large-scale dataset called
SynopGround to address the current limitations of video grounding
datasets. We collect and manually annotate episodes from popular
TV dramas of various genres, yielding a large-scale video ground-
ing dataset consisting of over 2800 hours of fully-annotated videos.
Specifically, for each video, we crawl its human-written synopsis
consisting of multiple paragraphs from the Internet, and further
annotate the precise temporal boundaries for each paragraph in the
given synopsis. As demonstrated in Figure 1, our dataset has both
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Table 1: Comparison of queries in different datasets. The
red-bold text is a detailed description, while the blue-italic
text is an abstract and concise expression.

Dataset Query
Charades [23] A person runs to the window then looks out.

DiDeMo [2] The little girl jumps back up after falling.
TACoS [60] He flips the eggs, making an omelet.
ActivityNet[37] A woman walks to the piano and briefly talks to the

elder man.
Ego4d-NLQ [24] What did I pick from the fridge?
MAD [66] She steps closer.
SynopGround (Ours) | ...Stefan and Elena decided to go to the cabin left by
Elena’s parents, where they spent a happy time. ...

significantly longer average video length and average query length
than most existing ones. It is the first video grounding dataset that
can support the research on long-term contextual video grounding
with complex queries. Moreover, compared to the short sentence
queries in the existing datasets, our long paragraph queries can
unambiguously indicate one-to-one correspondence between lan-
guage queries and target moments, which is crucial for learning
accurate cross-modal alignment. Furthermore, as shown in Table 1,
there are very concrete descriptions for visible activity concepts like
“go to the cabin”, as well as extremely concise and abstract expres-
sions like “spent a happy time” in the query from our dataset. This
enables to learn and evaluate the comprehensive understanding of
semantic concepts at diverse abstraction levels.

Based on our dataset, we pioneer to introduce and explore a more
challenging and complex setting of video grounding called Multi-
Paragraph Video Grounding (MPVG). The MPVG task receives a
multi-paragraph synopsis and a long narrative video as inputs to
localize the temporal interval of each synopsis paragraph from the
video. To promote and inspire future research, we further propose
a novel Local-Global Multimodal Reasoner (LGMR) to explicitly
model the local-global structures of long-term multimodal inputs
and conduct iterative cross-modal reasoning within and across the
two levels of structures for effectively tackling the multi-paragraph
video grounding problem. Extensive experiments demonstrate the
effectiveness of our baseline in the proposed research direction.

The main contributions of this work are summarized as follows:

e We present SynopGround, a large-scale video grounding
dataset consisting of over 2800 hours of TV drama videos
with manual temporally-annotated professional synopses.

o Based on the dataset, we first introduce a challenging Multi-
Paragraph Video Grounding (MPVG) task and propose a
novel Local-Global Multimodal Reasoner (LGMR) baseline.

o We are the first to incorporate long-form videos and long ab-
stract paragraphs into video grounding. Comparison results
show the unique advantages of our dataset and the efficacy
of our baseline in multi-paragraph video grounding.

2 Related Work

In this section, we aim to review and discuss the existing works in
the video grounding and narrative video understanding areas.

2.1 Video Grounding

Datasets. In video grounding, Charades-STA [23], DiDeMo [2],
ActivityNet-Captions [37] and TACoS [60] are the four most com-
monly used datasets for model training and evaluation. However, a
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Q3 timestamp: [00:14:21, 00:21:05]

At this time, there was a crisis in an industrial building, the glass
of the building suddenly shattered, and it turned out to be Hartley.
When Barry arrived ... Hartley had warned him of the risks of
memory accelerators and that he had failed to listen to advice for
so-called value, leading to the current consequences. Sure
enough, Catelyn and Sisco believed Harrison's story.

Q; timestamp: [00:09:02, 00:11:14]

According to Xue Linggiao‘s plan, Li Yanzhi persuaded the
director to hold a press conference to explain the investigation of
the villa homicide. ... have something to do with an old photo. He
also falsely claimed that the deceased's sister had found a copy of
the old photo, which had now been sent by airmail, and they did
so in order to make the murderer panic and reveal clues.

Q4 timestamp: [00:21:36, 00:23:30]

When Iris went to work in his new place, he unfortunately found
that the reason why he was hired was that the boss thought he
had something to do with the Flash. She was very upset. She told
Barry about it, and Barry comforted her.

Q4 timestamp: [00:12:50, 00:19:12]

Tian Jingzhi and Xue Linggiao went back to Tian father and
mother's house for dinner. ... mistakenly thought he was asleep,
so he joked with Xue Linggiao to tempt him. Tian Jingzhi did not

expect that Xue Lingqiao did not fall asleep at all. Instead, )

stimulated by Tian Jingzhi's behavior, the two kissed and hugged
each other and spent the night together.
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Qg timestamp: [00:26:35, 00:41:47]

In order to express his determination to apologize to Hartley ...
Harrison advised Barry to leave at once, but it was too late.
Hartley caused Barry a lot of pain through resonance. Harrison
used satellite broadcasting technology to make Hartley's weapon
disappear and let him hear the last sound he wanted to hear. The
Flash won in the end. And Harrison's secret surfaced step by step.

Q- timestamp: [00:28:21, 00:30:39]

Xue Lingqiao and Tian Jingzhi watched a movie together.
Suddenly, Xue Lingqiao received a phone call from his mother. It
turned out that his father owed a huge amount ... the loan shark
knew the address of Xiao Lingqiao's house and refused to leave.
Little mother had no choice but to turn to Xue Linggiao for help.
Tian Jingzhi was determined to go with Xue Lingqiao.

Video

Target
Segments

Figure 2: Illustration of the proposed Multi-Paragraph Video Grounding (MPVG) problem and two representative samples in
our SynopGround. Given a video and a synopsis Q that contains N paragraphs {Q1, Qa, ..., On }, the model should predict the
corresponding temporal interval for each paragraph Q; in the form of starting and ending time.

majority of these datasets [23, 37, 60] are adapted from pre-existing
video datasets tailored for closed-set recognition or localization
tasks [7, 62, 64], which makes them severely limited to a pre-defined
set of visual and linguistic concepts. DiDeMo [2] is a customized
video grounding dataset. However, it overly simplifies the annota-
tion and only supports the model to select from 5 evenly-divided seg-
ments of the video. In addition, shortcut learning issues caused by
distribution biases in previous datasets have been reported [38, 56],
which could adversely affect the benchmark reliability. Moreover,
the above datasets [2, 23, 37, 60] are all constructed on a relatively
small-scale collection of short videos and simple sentence descrip-
tions, which cannot support the need of large-scale model training
for long-term contextual video-language understanding that incor-
porates complex language queries. Recently, the Ego4d-NLQ [24]
and MAD [66] datasets are introduced. Nevertheless, both of them
still focus on the simple visible activities and short-term temporal
events. Specifically, Ego4d-NLQ contains egocentric videos and
adopts brief interrogative queries asking about simple visible fact
grounded on a short video interval. The MAD dataset is semi-
automatically constructed on movies with audio descriptions and
its average video length is significantly longer compared to the
other existing datasets. However, the language queries of MAD are
still brief sentences that individually describe short-term events in
the long video. Different from all of the prior works, our proposed
SynopGround is the first video grounding dataset that considers
both long-form videos and long-text queries. Additionally, we adopt
narrative videos conveying storylines and tightly correlated syn-
opsis paragraphs as inputs, which poses more challenges for the

video grounding model to understand high-level story plots and
invisible abstract concepts over a longer context.

Tasks and settings. Early research of video grounding has largely
focused on grounding single sentences in videos, i.e., the Video Sen-
tence Grounding (VSG) task introduced by Gao et al. [23] and Hen-
dricks et al. [2]. Afterwards, a series of extended tasks [5, 18, 40, 42]
have been proposed. Escorcia et al. [18] first introduced the task
of Video Moment Corpus Retrieval (VCMR) for combining video
retrieval and moment localization, and Lei et al. [42] curated the
TVR dataset to incorporate multi-modal information into VCMR.
Lei et al. [40] proposed QVHighlights dataset along with a new
direction combining highlight detection and moment retrieval. To
reduce ambiguity by exploring inter-query context, some recent
works [1, 5, 12, 34, 63, 71] have shifted to a multi-query version
of video sentence grounding, where the model is required to un-
derstand several temporally ordered sentences and localize each
sentence in a richer context. Specifically, Bao et al. [5] first studied
multi-sentence video grounding in a fully-supervised setting, and
the semi-supervised setting [34] as well as weakly-supervised set-
ting [69] have also been investigated after that. These prior works
have shown the great potential of contextually understanding mul-
timodal content in untrimmed videos and language descriptions. In
this work, we take a step further to introduce a more challenging
setting of contextual video grounding called Multi-Paragraph Video
Grounding (MPVG). It requires to understand both short-term intra-
paragraph semantics and long-term inter-paragraph dependencies,
which connects the complex temporal structures of long videos
with the complicated semantics of long paragraphs.
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Figure 3: Data distribution in our dataset. (a): Genre distribution of TV dramas. (b): Normalized duration of target video segments.
(c): Number of queries per video. (d): Normalized start timestamp distribution. (¢): Normalized end timestamp distribution.

Methods. A lot of approaches [11, 14, 28, 31, 43, 47-49, 51, 53, 55,
68,70, 74-76, 79, 82, 84-87, 89, 90] have been developed for video
grounding over recent years. As summarized in [88], these methods
can be roughly categorized into proposal-based and proposal-free
methods. Proposal-based methods typically involve a two-stage pro-
cess of generating moment proposals for relevance score ranking,
which often leads to issues like inefficiency and limited adaptability.
In contrast, proposal-free methods tend to have better efficiency and
they directly predict the temporal boundaries based on cross-modal
interactions, which is more suitable for various real-world scenarios.
Considering the long-term characteristics in our dataset, we choose
to design our Local-Global Multimodal Reasoner (LGMR) in the
more efficient proposal-free fashion. Different from the previous
approaches that only consider modeling the cross-modal correspon-
dence between a single paragraph and the video, our method is
constructed by reasoning through the local and global structures
of multiple paragraphs and the video.

2.2 Narrative Video Understanding

Understanding visual content presented in narrative videos is an
important area with many works [3, 15, 25, 26, 29, 30, 33, 54, 59, 65—
67, 72, 80] proposed accordingly. Most of these prior works ne-
glect to model and understand the content of narrative videos
based on their high-level storylines while focusing on specific
downstream applications, such as movie genre classification [65],
character identification [26, 29, 54], action localization [25], scene
segmentation [15, 30], and shot classification [59]. In addition to
that, some works have started pursuing story-level understand-
ing in many different ways. For instance, Tapaswi et al. [72] pro-
posed MovieQA dataset to comprehend movie stories by question-
answering. MSA [80], CMD [3], and SyMoN [67] datasets utilized
synopses as language queries and formulated movie understanding

as text-to-video retrieval. This line of research is closely related to
ours. However, we focus on a more challenging video grounding
task with long contexts and complex queries, in which the model
should understand the long-range cross-modal dependencies so as
to reason about the video grounding results at story level.

3 SynopGround Dataset

In this section, our goal is to give a formal definition of our intro-
duced multi-paragraph video grounding problem and illustrate the
details of the data collection, annotation, statistics, and processing.

3.1 Problem Formulation

Considering video paragraph grounding [5] is limited to a multi-
query version of short single sentence grounding, we introduce a
more challenging setting to incorporate long abstract paragraphs as
queries called Multi-Paragraph Video Grounding (MPVG). Specifi-
cally, given an untrimmed video V and N consecutive paragraph
queries Q = {Q1, 0z, ..., ON} as input, the output should be N tem-
poral intervals {71, 72, ..., 7N} corresponding to each of the para-
graph queries, where 7; = (ts(i), te(i)) indicates the starting times-
tamp ts(i) and ending timestamp te(i) for the i-th paragraph query
in the target video. In our dataset, the video V is an episode from
a TV drama, and Q is the corresponding human-written synopsis
that contains N paragraphs, with Q; indicating the i-th paragraph
in the synopsis Q. lllustration of our MPVG is in Figure 2.

3.2 Data Collection and Annotation

We collect all the TV drama episodes from a leading online platform
Tencent Video with official acknowledgement and permission. The
plot synopsis for each episode of the TV dramas is scraped from
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Table 2: Detailed comparison with existing video grounding datasets. Our SynopGround is at a larger scale in terms of the total
duration of videos and it contains precise temporal annotations generated by human annotators. It is also the first large-scale
dataset that considers both long-form videos and long-text queries for multi-paragraph video grounding,.

Dataset Charades-STA[23] | ANet-Captions[37] | DiDeMo[2] | TACoS[60] | Ego4d-NLQ[24] MAD[66] SynopGround
Domain Indoor Open Open Cooking Open Open Open
Annotation Mode Semi-Automatic Manual Manual Manual Manual Semi-Automatic Manual
Paragraph Query No No No No No No Yes
# Videos 6,672 14,926 10,464 127 1659 650 3,987
# Queries 16,124 71,953 40,543 18,818 19,170 384,600 36,002
# Words / Query 7.2 14.4 8.0 12.7 7.5 12.4 97.0
Duration / Video 30.6s 117.6s 30.0s 286.6s 495s 6,646.0s 2,608.4s
Duration / Moment 8.1s 37.1s 6.5s 6.1s 3.9s 4.1s 239.5s
Total Duration 57.1h 487.6h 88.7h 10.1h 228.1h 1,200.0h 2,884.9h

Table 3: Statistics of dataset division.

Data Split | # Dramas | # Videos | # Queries
Training 470 3,187 28,677
Validation 190 400 3,791
Testing 192 400 3,534

a specialized TV review website! that contains lots of synopses
of the most popular TV drama episodes written by professionals.
Synopses that are too long or too short are discarded to ensure an
adequate number of paragraphs in each synopsis. A total of 520
licensed and high-viewership TV dramas with textual synopses are
finally selected to constitute our dataset, and we randomly sample
several episodes from each selected TV drama to further annotate.
Specifically, annotators are asked to read and understand the syn-
opsis in advance. They then thoroughly watch the corresponding
TV drama episode to determine the starting and ending time of the
video content depicted by each synopsis paragraph.

Our data annotation pipeline is organized into multiple rounds
to ensure the annotation quality. Specifically, all collected videos
are first divided into numerous disjoint subsets of videos. In each
annotation round, synopsis paragraphs for videos in one subset
will be annotated with timestamps and each annotator is told to
provide a score to indicate level of confidence in the annotated
results. Afterwards, we first discard samples with low confidence as
an initial cleanup, and then some of the remaining samples are se-
lected to be manually checked in terms of quality. If the annotation
quality is thought of as satisfactory, the annotation process will
move on to another unlabeled subset of video data. Otherwise, the
current batch of data would be re-annotated. The above procedures
are repeated by tens of annotators until we finish the annotation
of all candidate samples. For post-annotation assessment, we ran-
domly select a proportion of the annotated data to be re-annotated
by other annotators. Concretely, we calculate the temporal IoU
(Intersection over Union) between the two results from different
annotators, which reaches a value of about 85%. This assessment
result is much better than those of other datasets, such as the Activ-
ityNet [37], where different annotators only achieve an agreement
degree around 70%. The higher degree of agreement across different

'URL: https://www.tvmao.com. All texts are translated into English using Tencent
Cloud Translation with full permission and compliance.

annotators in our dataset verifies the effectiveness of our designed
pipeline for data annotation and quality control.

3.3 Data Statistics

Data distribution. We first illustrate some statistical distributions
of our dataset in Figure 3. As shown in Figure 3 (a), the TV dra-
mas used in our dataset cover a wide spectrum of genres, which
demonstrates the diversity of the collected data. In Figure 3 (b),
we show the normalized duration of the target video segments.
Most of the target video segments cover less than 20% of the full
episode, which can be challenging for the model to correctly local-
ize. In Figure 3 (c), we visualize the distribution of the number of
queries/paragraphs in each synopsis, and most synopses are com-
posed of 5-13 paragraphs. Exploring the contextual information
among these paragraphs is important for achieving promising per-
formance in our multi-paragraph video grounding task. In Figure 3
(d) and (e), we visualize the temporal distributions of the starting
timestamps and ending timestamps of the target video segments.
Both of them approximately present a uniform distribution, which
ensures the model cannot benefit much from the distribution bias.
Detailed comparison with other datasets. In Table 2, we com-
pare our dataset with other existing datasets in detail. As suggested,
our videos are much longer in duration than those of Charades-
STA [23], ActivityNet-Captions [37], DiDeMo [2], TACoS [60]
and Ego4d-NLQ [24]. Although the average video duration in our
dataset is shorter than that of MAD, our total duration of videos is
more than twice that of MAD, showing that our dataset is at a larger
scale. Furthermore, the duration of target segments in our dataset is
significantly longer while the normalized target span is still short,
making our target moments challenging to be localized. Note that
some datasets like MAD have shorter normalized target span than
ours, but their short and general queries bring the harmful and
undesirable semantic ambiguity issue as mentioned before. In addi-
tion, our dataset is the first to incorporate paragraph queries, and
the average number of words in each query is significantly larger
than those of other datasets, which greatly reduces the semantic
ambiguity of the queries. Moreover, our synopsis queries involve
both abstract expressions and concrete descriptions, enabling the
model to learn semantic concepts at more diverse abstraction levels.
Data splits. As shown by the statistics in Table 3, we carefully
divide the entire data into three non-overlapping splits for training,
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Figure 4: Our proposed Local-Global Multimodal Reasoner (LGMR). It consists of a local-global temporal encoder for structural
long-term temporal modeling and a local-global iterative decoder to adaptively reason through local and global semantics.

validation, and testing. Our training, validation, and testing sets
consist of 3,187, 400, and 400 videos, respectively. It is worth noting
that each video is an episode from a TV drama. Additionally, we
manually guarantee half of the videos for validation/testing are
sourced from TV dramas that are not selected for the training set.

3.4 Data Pre-processing

To promote data utilization, we provide pre-extracted features for
public release. Specifically, pre-trained CLIP [58] ViT-L/14 model
is adopted to extract frame features for videos using a sampling
rate of 3 FPS. Additionally, we extract segment features for videos
with SlowFast [19] network, which is pre-trained on Kinectics-
600 [9, 10] and AVA [25] datasets. To capture the character and
dialogue information related to the storylines, we extract embedded
subtitles using OCR models DBNet [46] and SVTR [17]. Then, we
encode each extracted subtitle to a feature representation using a
pre-trained RoBERTa [50] model. The pre-extracted CLIP, SlowFast,
and OCR features describe the video from different aspects. They
provide complementary information of the video and are beneficial
for aligning synopsis with the video. Due to copyright restrictions,
we cannot release the raw video frames but we will provide URL
links where researchers can access and view the original videos.

4 Method

In this section, we illustrate the details of our proposed baseline
method to tackle the multi-paragraph video grounding problem.

4.1 Overview

As shown in Figure 4, our proposed Local-Global Multimodal Rea-
soner (LGMR) consists of a local-global temporal encoder for en-
coding the long input videos and a local-global iterative decoder

for decoding the long paragraph queries. The video encoder decom-
poses the temporal correlations of long videos into intra-window
and inter-window parts for efficient long-term temporal model-
ing. The query decoder first extracts subparagraph representations
with a set of learnable queries guided by the global semantics of
paragraphs, and then repeatedly conducts cross-modal reasoning
within and across the local and global queries. We elaborate on
more architectural details in the following.

4.2 Local-Global Temporal Encoder

Given the long-form video inputs, we design a local-global attentive
encoder to capture the evolving temporal dynamics of long-term
video content, which exploits more structural temporal information
than straightforward full attention. Specifically, we first project the
video features of length T into a hidden dimension of D, then for
each video encoder layer, we split the input video feature sequence
into non-overlapping temporal windows of length M, resulting in
the intra-window video representations F* € RKXMXD where K
is the total number of the temporal windows. For the video features
in the i-th window, i.e., Fl.W € RMXD e first encode the detailed
local information by performing temporal self-attention within the
scope of that window as follows:

£ .
F; = Self-Attention (F}”, F}”, F}*) 1)

where Ff € RMXD is the encoded video features with rich local
contexts. Based on the local video features, we further apply a
global-level self-attention on the global window features to connect
different local contexts. Instead of using a simple pooling layer to
aggregate the local window features, we exploit an attention-based
method similar to the attention pooling in CLIP [58] to dynamically
gather important local contexts for global interaction as:
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Fig = Cross-Attention (AVg (Fll) F Fl) @

[ A/

where F9 € RKXD represents the global window features across the

entire video, and Avg (+) is an average operation across temporal
dimension for the local window features. Then the global window
features are interacted with each other by a self-attention as:

F9 « Self-Attention (Fg, F9, Fg) 3)

Next, we merge the information from the local and global contexts
of the intra-window and inter-window features as:

FV = FPN (LN (Flatten (F* +Rep (F9) ))) @)

where Rep () and Flatten (-) respectively indicate repeating the
global window features by M times in its corresponding window
and unfolding the window-level representations into a feature se-
quence. LN (-) and FFN (-) denote the layer normalization operation
and feed-forward network, respectively. F¥ € RT*P denotes the
output features of a video encoder layer, and the output of each
former layer will be further fed to the next layer for encoding.

4.3 Local-Global Iterative Decoder

Existing methods developed for single-paragraph video ground-
ing [5, 63, 71] either encode the language query into a single global
embedding [63] causing too much information loss, or employ self-
attention on the complete multimodal sequence of all text features
and video features [71], which incurs prohibitive resource cost thus
is unsuitable in the multi-paragraph scenario. In this work, we ex-
plore a novel way to model the local-global query structures and
cross-modal correspondences by iteratively reasoning about the
local subparagraph features and global paragraph features.

To begin with, we first utilize a pre-trained RoBERTa [50] model
to obtain the token-level language features from the i-th input para-
graph, i.e., FI.L e RNi D , where NiL is the total number of language
tokens in the i-th input paragraph. Afterwards, we jointly utilize
a paragraph encoder and a subparagraph extractor to efficiently
model the intrinsic local and global structures of the long text inputs,
as shown in Figure 4. Concretely, we first embed all the token-level
features within a paragraph into a global query feature Q? € RP by
an average-pooling operation. Then, we exploit E learnable vectors
05 € REXD tg extract the important subparagraph representations
under the semantic guidance of ng as follows:

Q! = Cross-Attention (LN ((Q?WI +08 Wg)) FL F.L) )

L A )

where Wi € RPXD and Wy € RP*P are learnable projection matri-
ces and LN (+) is the layer normalization operation. Qf € REXD jg
the extracted subparagraph features that can be adaptively learned
to represent meaningful local semantics specific to each paragraph
for enhancing the cross-modal reasoning abilities within the para-
graphs. Note that the number of extracted subparagraph features
is typically small and the computation process will be efficient.
After obtaining the local subparagraph features and global para-
graph features, we construct an iterative local-global reasoning
process where each iteration involves intra-level reasoning, cross-
modal reasoning and cross-level reasoning. Firstly, we conduct
intra-level reasoning by employing two self-attention layers re-
spectively within each window of local queries Qf and within all
global queries Q9. Afterwards, we achieve cross-modal reasoning

by extracting relevant information from FV to Qf and Q9 by cross-
attention layers. Then, we conduct cross-level reasoning also by
two cross-attention layers, i.e., one is for extracting information
from Q9 to Q° and the other one is for extracting information from
a window of local queries Qf to the corresponding global query ng .
The cross-interacted features will serve as the output features of
each decoder layer and are fed to the next layer for iterative decod-
ing. Finally, the local and global output features, i.e., Qf and Q? of
the last decoder layer are concatenated and fed to an MLP predictor
to obtain the central timestamp #% and duration Af’ of the target
interval for the i-th paragraph query. Then the temporal boundaries
9; = (81, 1) can be calculated as f! = fI — ATtl, =14 ATV.

4.4 Model Training

We train our model with a localization loss £, and an attention
loss L4+ which are formulated as follows:

N
1 1 A A
Lige = Zl [Z&l('n, T+ Lo (LT, (©)
1 N T
Lar == Z log Z mij - aij ()
i=1 j=1

where £;; and Lgj,u are L1 and GloU [61] losses, respectively. I;
is the predicted time span for the i-th query and 7; is the ground-
truth. L4 is an attention loss on the global query features. The
term a;; indicates the attention weights between the i-th global
query feature and the j-th video feature, while m;; is an indicator
that takes 1 if the j-th video feature is inside the ground-truth
interval of the i-th query, and 0 otherwise. This loss explicitly
encourages the model to learn higher attention weights between
text queries and visual elements that are correlated. In total, the
training loss is defined as the weighted sum of the above two losses
as L = A1 Ljoc +A2Lars, where A1 and A, are the hyper-parameters
to balance these two different kinds of losses.

5 Experiments

In this section, we illustrate our experimental setup and results for
verifying and analyzing the effectiveness of our proposed method.

5.1 Experimental Setup

Evaluation metrics. For each query in the synopsis, we calculate
the temporal Intersection over Union (IoU) between the predicted
time span [fs, fe] and the ground-truth time span [#;, t.]. Following
previous video grounding methods [2, 23], we adopt two kinds of
metrics to evaluate the performance: 1) mean IoU (mIoU) metric:
average temporal IoU score calculated over all queries in the dataset;
2) IoU@6 metric: the proportion of queries with a temporal IoU
score higher than 6, here we use 6 € {0.3,0.5,0.7}.

Implementation details. Our proposed method is implemented
by PyTorch. The pre-extracted SlowFast, CLIP, and OCR features are
aligned at sequence dimension and concatenated at channel dimen-
sion as the video feature input. We use a pre-trained RoBERTa [50]
model to extract OCR features at each timestamp. The loss weights
are set as Ay = 1,13 = 0.2. For data augmentation, we choose to
randomly shuffle the order of paragraphs in the same synopsis by
a probability of p during training and p = max(0,1 — %), where
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Table 4: Comparison results with state-of-the-art methods
on multi-paragraph video grounding in SynopGround.

Method mloU | IoU@0.3 | IoU@0.5 | IToU@0.7
Human 85.1 97.3 92.5 85.0
Random 7.3 8.3 3.2 0.8
DepNet [5] 30.7 47.2 28.7 12.8
PRVG [63] 34.7 52.7 293 10.5
LGMR (Ours) | 444 | 67.9 46.7 21.8

Table 5: Evaluation on the effect of different features.

SlowFast CLIP OCR ‘ mloU IoU@0.3 IoU@0.5 IoU@0.7

v X X 39.1 60.5 39.3 17.1
X v X 39.8 61.7 40.0 16.5
X X v 41.7 64.3 43.4 17.7
v v X 41.0 62.8 41.7 18.1
v X v 43.0 67.4 43.8 19.4
X v v 43.8 67.1 46.0 21.3
v v v 44.4 67.9 46.7 21.8

T; is the index of the current training epoch and T4y is set to 20.
We adopt a local window length M of 25 for our video encoder. The
number of layers for video encoder and query decoder are set as 2
and 3, respectively. Our model is trained on 4 NVIDIA Tesla V100
GPUs by Adam [35] optimizer using a learning rate of 0.0001 and
batch size of 16 for a total of 50 epochs within one day.

5.2 Experimental Results

Performance Comparison. As shown in Table 4, we evaluate
the performance of our proposed LGMR on the challenging multi-
paragraph video grounding task and compare it with the existing
state-of-the-art methods DepNet [5] and PRVG [63]. DepNet is the
baseline method proposed for multi-sentence video grounding, and
PRVG is a concise and effective method based on DETR-like archi-
tectures [8]. For a fair comparison, all reported methods employ the
same features as ours. The comparison results in Table 4 demon-
strate that our proposed model achieves the best performance and
outperforms others by a significant margin, which validates the
effectiveness of the proposed LGMR method for addressing MPVG.
Impact of different features. To investigate the effect of different
features, we conduct experiments with various combinations of
SlowFast, CLIP, and OCR features. As shown in Table 5, we observe
that using a single kind of features already yields satisfactory per-
formance. Specifically, using the SlowFast, CLIP, or OCR features
alone is able to produce an mloU of 39.1%, 39.8%, and 41.7%, respec-
tively. We notice that the CLIP features and OCR features are more
helpful than the SlowFast features, which might be because 1) CLIP
is pre-trained on large-scale image-text pairs, which makes it gener-
alize better to the downstream task of video-language grounding. 2)
The OCR features encode rich character-related and dialogue infor-
mation, which is important for understanding the story plots in the
narrative video. Additionally, we can see that the model using all
three features together achieves the best performance on all metrics,
showing that different kinds of features convey complementary
information of the video content for language grounding.

Chaolei Tan and Zihang Lin et al.

Table 6: Effect of the local-level modeling, global-level model-
ing, and cross-level reasoning in the iterative query decoder.

Local Global Cross | mloU IoU@0.3 IoU@0.5 IoU@0.7

v X X 34.5 53.1 32.4 13.5
v v X 42.8 66.6 44.2 19.0
v v v 44.4 67.9 46.7 21.8

Table 7: Ablation studies on the proposed model designs. The
GFLOPs measures computation complexity of the encoder.

Encoder mloU | GFLOPs | IoU@0.5 | IoU@0.7
Vanilla Full 42.5 12.6 45.1 20.5
Local-Global | 44.4 9.6 46.7 21.8

Loss mloU | IoU@0.3 | IoU@0.5 | IoU@0.7
Lioe 26.7 40.2 16.6 438
Lipcand Lgp | 44.4 67.9 46.7 21.8

Effect of the local-global query modeling. As shown in Table 6,
we conduct detailed experiments to verify our proposed idea to
model and reason the local-global structures of long queries. First,
the model using only local queries for the cross-modal decoding
process achieves a significantly lower performance compared to
our final model. The reason is that only considering intra-query
semantics neglects the rich contextual relationships among multi-
ple correlated queries, while understanding the contexts is crucial
for the multi-paragraph video grounding problem. Secondly, we
observe significant gains in performance when jointly modeling the
local and global structures of the long text inputs during decoding,
showing the importance of our local-global query modeling.
Ablation studies on design choices. To further validate the ra-
tionality of our proposed model, we conduct ablation experiments
on the designs of local-global temporal attention and cross-modal
attention loss, as shown in Table 7. Firstly, we compare our model
performance with that of a variant model where the local-global
encoder is replaced by a vanilla full attention encoder [73]. The
result suggests that our local-global encoder performs better in
both accuracy and efficiency for long video inputs. Besides, we re-
move Lg;; and observe severe degradation in model performance.
This highlights the importance of explicitly guiding the model to
associate and align correlated visual and textual features.

6 Conclusion

In this work, we present a large-scale dataset for video-language
grounding called SynopGround, which consists of over 2800 hours
of long narrative videos with human-written synopses and manu-
ally annotated timestamps. It is the first video grounding dataset
considering both long-form videos and long-text queries, and con-
tains query descriptions conveying both low-level events as well
as high-level plots for learning more complex and abstract con-
cepts. We further introduce a challenging Multi-Paragraph Video
Grounding (MPVG) task which incorporates long paragraph queries
into multi-query video grounding. In addition, we propose a novel
Local-Global Multimodal Reasoner (LGMR) to explicitly model the
local-global structures of long-term inputs and conduct iterative
reasoning within and across the two levels of structures, which can
serve as a good starting point to inspire future research.
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