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1 Supplementary Material
In this supplementary material, we provide more information in-
cluding additional experimental results, more implementation de-
tails and qualitative analysis based on visualization.

1.1 Additional Experimental Results
In this part, we present some additional comparison and ablation
results, to further investigate and validate the effectiveness of our
proposed designs for the baseline model LGMR.
Comparison on MAD dataset. In Table S1, we show the compari-
son results with other state-of-the-art methods on the 3-min version
of MAD dataset, following the setting in [S7], to verify the supe-
riority of our proposed LGMR method over existing baselines. As
can be seen, our method consistently outperforms state-of-the-art
multi-query methods in all metrics by a large margin.

Table S1: Performance comparison on the MAD dataset.
Method Query Input R@ 0.1 R@0.3 R@0.5 mIoU

DepNet [S1] Multiple 21.5 15.0 8.3 9.6
PRVG [S6] Multiple 37.9 15.0 5.7 12.3

LGMR (Ours) Multiple 51.7 31.4 14.6 20.9

Ablation Study on Loss Weights. As shown in Table S2, we
actually determined the two loss weights by a grid search. It can
be observed that setting L1 to be relatively larger than L2 gives a
decently good model performance, and the best choice is L1 = 1.0
and L2 = 0.2.

Table S2: Hyper-parameter search in terms of L1 and L2
L1 L2 R@ 0.3 R@0.5 R@0.7 mIoU
1.0 1.0 64.4 42.4 17.0 41.0
1.0 0.5 64.4 44.4 19.0 41.9
1.0 0.2 67.9 46.7 21.8 44.4
0.5 0.2 67.5 46.7 20.5 43.7

Comparison with Single-Sentence Methods. For a more com-
prehensive comparison, we show the comparative results of our
LGMR with three single-query state-of-the-arts, i.e., CONE [S4],
2D-TAN [S10] and VSLNet [S9]. As shown in Table S3, our LGMR
surpasses all single-query methods by a large margin. Note that
CONE performs the worse since it is a method directly built on
top of pre-trained vision-text models while the vision and text fea-
tures in our dataset are not pre-aligned. VSLNet is the best-behaved
single-query method since it generally models long-term video
inputs by a well-designed split-and-concat mechanism.

Table S3: Comparison with extra single-query baselines.
Method Query Input R@ 0.3 R@0.5 R@0.7 mIoU

CONE [S4] Single 4.7 1.8 0.5 -
2D-TAN [S10] Single - 8.8 3.2 11.5
VSLNet [S9] Single 45.0 30.8 18.6 32.8
DepNet [S1] Multiple 47.2 28.7 12.8 30.7
PRVG [S6] Multiple 52.7 29.3 10.5 34.7

LGMR (Ours) Multiple 67.9 46.7 21.8 44.4

1.2 More Implementation Details
We provide further implementation details for our proposed base-
line model, including feature dimensions, positional encodings,
subparagraph extractor, and loss calculation.
FeatureDimensions.Weuse pre-extracted SlowFast [S3], CLIP [S5],
and OCR features with dimensions of 2304, 768, and 768, respec-
tively. The CLIP and OCR features are first adaptively pooled at the
sequence dimension to have the same length as SlowFast features.
Then the three types of features are concatenated together at the
hidden dimension as the input video features with a hidden dimen-
sion of 3840. A fully-connected layer is used to project the input
video features to a 512-dimensional video representation for the
temporal encoding and query decoding. Likewise, the pre-extracted
text features have a hidden dimension of 768, and they are projected
by a fully-connected layer to have the same feature dimension of
512. For all transformer layers in the encoders and decoders, the
feature dimension is 512. All feed-forward layers have a hidden
dimension of 2048 and the number of attention heads is set to 8.
Positional Encodings. As proposed in the vanilla transformer ar-
chitecture [S8], we adopt a fixed set of high-dimensional sinusoidal
embeddings to indicate positional information. The positional em-
beddings are employed on all transformer layers, including trans-
former layers used in the local-global temporal encoder and the
local-global iterative decoder. Following the designs in DETR [S2],
we only add positional embeddings with the feature inputs of query
projection layers and key projection layers in all attention blocks.
Subparagraph Extractor. To construct the local subparagraph fea-
tures from token-level text features for local-global iterative reason-
ing in our decoder, we adopt a set of learnable vectors𝑂S ∈ R𝐸×𝐷
to represent potential meaningful local semantics in a paragraph
and then use one transformer decoder layer to extract useful sub-
paragraph features in an end-to-end manner. Here we empirically
set the number of learnable vectors 𝐸 to be 10 in all our experiments
and the positional embeddings are also only added to the inputs of
query projection layers and key projection layers.
Loss Calculation.We calculate the localization lossL𝑙𝑜𝑐 and atten-
tion loss L𝑎𝑡𝑡 for all transformer decoder layers in our local-global
iterative decoder, following the common practice in DETR [S2]
series works. Specifically, we feed the output global paragraph
features of each decoder layer to an MLP predictor to predict the
starting and ending timestamps. Note that we use a shared layer
normalization module to normalize the output features of all layers
before using them to predict the temporal interval corresponding
to each paragraph query. During training, L𝑙𝑜𝑐 is calculated on
predictions produced by each decoder layer. Similarly, our attention
loss is calculated on the temporal attention weights produced by
each decoder layer during training. For testing, we only take the
timestamp predictions from the last decoder layer of the model.
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1.3 Qualitative Analysis
In this section, we aim to conduct qualitative analysis based on the
visualization results, which can give a more intuitive understanding
of our multi-paragraph video grounding dataset and model.

1.3.1 Visualization Results. First of all, we visualize and present
a complete video-synopsis pair from the test set, as shown in Fig-
ure S1. This synopsis is composed of seven paragraph queries and
most of them are very lengthy and complex. In addition, it can
be seen that these paragraph queries typically contain multiple
sentences that describe a variety of concepts at different levels
of abstraction. For example, there are some abstract and concise
expressions like “confided her troubles to” that summarize a long
character conversation and convey the abstract concept “troubles”
that may need a certain level of contextual reasoning capability
to acquire an accurate understanding of it. Also, there are some
concrete and detailed descriptions like “Jeremy flipped through his
diary and saw a description of Vicky turning into a monster”, which
requires to comprehend rich visual details presented in the video
content for multimodal understanding. As a result of the above
characteristics, jointly conducting contextual understanding of the
video storylines and comprehensive perception of the visual details
in each paragraph poses a crucial challenge for the video-language
grounding models to overcome. Note that the target moments are
also lengthy with a duration of several minutes, which requires
models to effectively capture the more complex temporal structures
of the video moments while retaining the ability of memorizing
long-term visual contexts for better reasoning across multiple mo-
ments.

In Figure S1, we also compare our model’s predicted temporal
intervals with the ground-truth timestamps to intuitively demon-
strate the abilities of our multi-paragraph video grounding model.
Overall, our model can make predictions close to the ground truth
and correctly determine most of the temporal boundaries for the
target video moments described by the given paragraph queries,
although in some cases the boundary locations predicted by the
model may not be very precise. To conduct a more detailed analysis
of the model predictions, we further present the text content of each
paragraph query in the synopsis and visualize some frames from
the video moments corresponding to these queries, as illustrated
in Figure S1. On the one hand, we can see the model is able to
successfully predict the temporal intervals that have a high degree
of overlap with the ground truth for the first two and the fourth
paragraph queries, i.e.,𝑄1,𝑄2 and𝑄4. In these cases, the paragraph
queries are complicated and lengthy while containing rich complex
concepts such as “Jeremy keeps asking about Vicky’s death, and
Elena refuses Damon to continue hypnotizing Jeremy" and “Elena
and Jeremy’s uncle paid a surprise visit, but Jenna didn’t welcome
him". Understanding these complex concepts requires the model to
have a strong ability to associate a broad range of textual semantics
in the paragraphs with the dialogue information as well as the
visual activities in the video for precise temporal grounding.

1.3.2 Analysis on Attention Weights. On the other hand, we also
observe some cases where the predictions are not very accurate. For
instance, one of the two predicted temporal boundaries is accurate

while the other one deviates from the ground truth by a consid-
erable margin for the third, fifth and seventh paragraphs, i.e., 𝑄3,
𝑄5 and 𝑄7. We analyze them to find potential reasons case by case.
For the third paragraph query in the synopsis, the model predicts a
very accurate starting timestamp but predicts a much later ending
timestamp in the video. In this case, localizing the ending times-
tamp is closely relevant to finding out the dialogue information
between the drama characters referred to by the description “Elena
found that Stefan was in bad shape, which Damon thought was the
reason why Stefan had been depressed for too long”. Furthermore,
we find the model incorrectly predicts the ending timestamp to
be around the 20-th minute in the video, where a salient visual
activity concerning the physical conflicts between two characters
is located. This might indicate our model’s deficiency in resisting
the distraction from irrelevant salient visual activities. For the fifth
paragraph query, its predicted starting timestamp is later than the
ground-truth starting timestamp. In this example, we find that the
incorrectly predicted starting time is actually corresponding to the
third sentence in this paragraph, i.e., “Taylor and Kelly flirted and
got into a fight after Matt found out”, which means the model has
missed the information associated with the first two sentences in
the paragraph during video-language grounding. This phenomenon
highlights the importance of fully understanding all the necessary
detailed information contained in the long-term textual content of
the paragraph queries and our model still needs to be improved in
this aspect.

For the seventh paragraph query, we notice that the model pre-
dicts the starting timestamp to be around the point where the two
characters’ dialogue mentions “the need is too strong” which is
directly related to the key word “thirst” in the given paragraph. The
model can only make its prediction for this case by considering the
above kind of simple correlations between the video content and
query semantics, thus causing an inaccurate starting boundary. Ac-
tually, the described character shows a very struggling and painful
expression and body movements at the ground-truth starting time,
which implicitly indicates the start of the video content specified by
the query. However, the model fails to perceive such subtle human
facial expressions and body movements to associate them with the
plot contexts for predicting the starting boundary, which suggests
this kind of ability needs to be further developed in future research.
Last but not least, we also find the overall position of the predicted
temporal interval of the sixth paragraph query𝑄6 is shifted a bit to
the right at the time axis. In this case, we find that the starting time
given by the model is very close to the moment corresponding to
the third sentence in the paragraph, i.e., “Jeremy flipped through
his diary and saw a description of Vicky turning into a monster”,
which implies the model may miss the query information of the
first two sentences in the paragraph. For the ending time, we find
that localizing the ground-truth boundary requires to capture the
short-term dialogue information implicitly corresponding to the
query description “John told Alaric that the ring was inherited by
the Gilbert family and that he had given it to Isobel”, while local-
izing a piece of short-term information from a long-term input is
challenging and the model can be struggling to handle such cases.

In conclusion, the temporal intervals predicted by our baseline
model can decently overlap with the ground truth in various cases,
demonstrating the model’s ability to associate most concepts across
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Damon advised Stefan to drink more human blood from the blood bank, otherwise his strength would be difficult to resist the vampires coming out of the tomb. Ele
na and Jeremy's uncle John paid a surprise visit, but Jenna didn't welcome him. John, who is the trustee of Elena and Jeremy's estate, doesn't agree to sell his bro
ther's lab, and Elena doesn't like him. Jeremy was unhappy about Vicky's death, so Taylor had to try his best to comfort him.

The police determined that Vicky committed suicide by overdose, and John, as a member of the founder's Association, brought a message to the Mystic Falls 
leadership that vampires were still active. Alaric shows Jeremy's vampire paper to Elena and advises her to care more about Jeremy.

𝑸𝑸𝟏𝟏

𝑸𝑸𝟐𝟐

John insisted on holding the founder's opening party, and Jeremy wondered why Jenna hated John so much. Elena confided her troubles to Stefan. She and 
Jeremy used to talk about everything, but now the gap between them is getting wider and wider. Elena found that Stefan was in bad shape, which Damon thought 
was the reason why Stefan had been depressed for too long.

𝑸𝑸𝟑𝟑

Elena chatted with Jeremy, but made no progress. Stefan and Damon go to the opening party, and Elena feels that Stefan has become very violent, unlike the one 
she knows. Jeremy keeps asking about Vicky's death, and Elena refuses Damon to continue hypnotizing Jeremy.𝑸𝑸𝟒𝟒

John told Damon that the tragedy of 1864 was likely to be repeated because of vampire misdeeds. John knew that Damon let the vampires go and Damon broke his 
neck. Taylor and Kelly flirted and got into a fight after Matt found out. Taylor couldn't help saying that Matt was seriously injured. Stefan became more and more 
difficult to control his desire for human blood, and Damon was surprised to find that John came back from the dead.

𝑸𝑸𝟓𝟓

John came back from the dead, and Damon was alert to find that John's ring was the same as Alaric's. He thought John would know more. Jeremy flipped 
through his diary and saw a description of Vicky turning into a monster. John told Alaric that the ring was inherited by the Gilbert family and that he had given it 
to Isobel. John sent Isobel to Mongolia at that time, and he had a certain relationship with Catherine.

𝑸𝑸𝟔𝟔

Stefan's thirst for blood had reached a level of madness, and he could no longer control himself.𝑸𝑸𝟕𝟕

Prediction
Ground Truth66s 323s

36s 297s

Prediction298s 434s
Ground Truth332s 453s

Prediction458s 1199s
Ground Truth456s 701s

Ground Truth774s 1471s
Prediction950s 1473s

Ground Truth1333s 1779s
Prediction1579s 1809s

Prediction2017s 2412s
Ground Truth1839s 2209s

Prediction2403s 2518s
Ground Truth2266s 2509s

Figure S1: Visualization results of themodel predictions and ground truth formulti-paragraph video grounding in SynopGround
dataset. This example is selected from the test set and the video is the 18-th episode of the TV Drama Vampire Diaries Season 1.
Due to space limitation, we uniformly sample frames from the temporal interval that encloses both the model predictions and
ground truth for better visual presentation. (Best viewed on screen when zoomed in)
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...... John, who is the trustee of Elena and 
Jeremy’s estate, doesn’t agree to sell his 
brother’s lab, and Elena doesn’t like ...…

…… no progress. 
Stefan and Damon go 
to the opening party, 
and Elena feels that 
Stefan has become very 
violent, unlike the one 
she knows ……

…… Taylor and Kelly 
flirted and got into a 
fight after Matt found 
out. Taylor couldn't 
help saying that Matt 
was seriously injured. 
Stefan became ……

…… John told Alaric 
that the ring was 
inherited by the Gilbert 
family and that he had 
given it to Isobel. John 
sent Isobel to Mongolia 
at that time, and ……

Stefan's thirst for blood 
had reached a level of 
madness, and he could 
no longer control 
himself.

…… as a member of the founder's 
Association, brought a message to the Mystic 
Falls leadership that vampires ……

…… She and Jeremy used to talk about 
everything, but now the gap between them is 
getting wider and wider ……

(a)

(b)
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𝑸𝑸𝟔𝟔 𝑸𝑸𝟕𝟕

Figure S2: (a) Visualization on the paragraph-to-video attention weights from the last decoder layer. (b) Visualization on frames
around the attention peak of the paragraph queries. Red text denotes the part of content within each paragraph query in the
synopsis that is directly related to the visual frame located around an attention peak. (Best viewed on screen when zoomed in)
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(c) (d)

(a) (b)

Figure S3: Visualization results of the token-level attention weights for different local subparagraph representations. (a), (b), (c)
and (d) respectively illustrate the attention weights from subparagraph 2, 9, 4 and 5 in the subparagraph extractor.

visual and linguistic modalities. However, our model still struggles
to predict very precise temporal boundaries in some challenging
cases that demand deep understanding and complex reasoning of
the story’s global context and crucial nuances. This points to an
important direction for future work to develop stronger models
that can better integrate global context and local details across
modalities and conduct complex reasoning in a long contextual
scope for better multi-paragraph video grounding.
Paragraph-to-Video Attention Weights. In Figure S2, we visu-
alize the learned temporal attention weights from the last layer
of the query decoder for the sample discussed in Section 1.3.1. To
make a clearer visualization presentation, we additionally show
the predicted timestamps of all paragraph queries in this sample
along with the corresponding ground-truth labels in the upper part
of Figure S2 (a). As we can see, both of the model’s final predic-
tions and attention weights obviously follow a consistent temporal
order with the ground-truth temporal intervals and the model’s
predictions are highly correlated with the temporal positions where
higher attention weights occur. This phenomenon intuitively sug-
gests that the learned correlation between language queries and
video content is crucial for achieving accurate temporal event local-
ization. Encouraging high attention weights for relevant query and
video elements is therefore beneficial for video-language ground-
ing, which has also been quantitatively verified by the remarkable

effect of the cross-modal attention loss according to our manuscript.
In particular, we also observe that for the third paragraph query
𝑄3, there are some temporal positions far away from the target
moment that are spuriously attended by the model, which directly
leads to a considerably delayed ending timestamp predicted by the
model. Upon manually reviewing the corresponding video content
that is spuriously attended by the model, we find that the main
reason for the inaccurate prediction in this case lies in the model’s
inability to correctly understand “She and Jeremy used to talk about
everything”. In fact, the mistakenly attended frames are about the
two characters talking with each other along the riverside, while
the model incorrectly associates such content with “used to talk”,
leading to inaccurate boundaries.

To more comprehensively understand the attention patterns of
the decoder, we select video frames that are located around the
temporal attention peaks of different paragraph queries and visu-
alize them in Figure S2 (b). Overall, we observe that these frames
with high attention weights from the paragraph queries are con-
sistently correlated with certain descriptions in the corresponding
paragraph, as shown by the red text in Figure S2 (b). Specifically, the
dialogue information of the video content can be viewed as directly
correlated with some part of the query content for 𝑄1, 𝑄2, 𝑄3 and
𝑄6. In these cases, characters in the frames are talking about crucial
information mentioned by the query. For example, the character
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is introducing his identity as a “founding family member” in the
visualized frame of𝑄2, while this information is exactly mentioned
in the second query by “as a member of the founder’s Association”.
In addition to that, there are also cases where the dialogue informa-
tion in the visualized frame is implicitly related to the query text.
For instance, for the third query 𝑄3, the character is saying “with
all these secrets just piling up”. This dialogue does not explicitly
mention information about the “gap” but actually implies the gap
between the two characters is becoming wider, which is described
in the query as “but now the gap between them is getting wider
and wider”. Furthermore, there are also cases where the visualized
frames present the visual activities referred to by the corresponding
query content, such as the situations in 𝑄4, 𝑄5 and 𝑄7. Concretely,
characters are seen fighting in the frame relevant to 𝑄5, which is
exactly described by the query as “got into a fight after Matt found
out”. Particularly, the character is shown to be struggling inside
and finally ends up drinking a cup of blood on the table, and this
visual activity actually corresponds to the description “and he could
no longer control himself” in the seventh query. In summary, we
find that our model has the ability to find cross-modal correlations
between query descriptions and the video content, regardless of
whether information from different modalities is correlated explic-
itly or implicitly through character dialogues or visual activities.
Subparagraph-to-Token Attention Weights. In Figure S3, we
further visualize the subparagraph-to-token attention weights in
the query decoder to better analyze the local-level structure model-
ing in our local-global reasoning process. As presented, the different
subparagraph features successfully learn to attend over different
parts of the language tokens in the paragraph query. Intuitively,
the attention weights from different subparagraphs can be roughly
grouped into two patterns, i.e., the pattern shared by (a) and (b)
and the pattern shared by (c) and (d), while different subparagraphs
belonging to the same pattern still show a certain level of diversity.
Moreover, the local semantics captured by different patterns of sub-
paragraph representations are highly complementary to each other.
For example, the attention weights in (c) mainly focus on language
tokens at the front of the paragraph while the attention weights in
(a) focus more on language tokens at the end of the paragraph. The
complementary information contained by multiple subparagraphs
helps the model to efficiently extract local semantic details. There-
fore, adaptively extracting subparagraph features is an effective
way to construct the local-global cross-modal reasoning process
regarding the long-term multimodal inputs.
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