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Abstract

Despite extensive studies, the underlying reason as to why overparameterized neural
networks can generalize remains elusive. Existing theory shows that common
stochastic optimizers prefer flatter minimizers of the training loss, and thus a natural
potential explanation is that flatness implies generalization. This work critically
examines this explanation. Through theoretical and empirical investigation, we
identify the following three scenarios for two-layer ReLU networks: (1) flatness
provably implies generalization; (2) there exist non-generalizing flattest models and
sharpness minimization algorithms fail to generalize poorly, and (3) perhaps most
strikingly, there exist non-generalizing flattest models, but sharpness minimization
algorithms still generalize. Our results suggest that the relationship between
sharpness and generalization subtly depends on the data distributions and the
model architectures and sharpness minimization algorithms do not only minimize
sharpness to achieve better generalization. This calls for the search for other
explanations for the generalization of over-parameterized neural networks.

1 Introduction

It remains mysterious why stochastic optimization methods such as stochastic gradient descent (SGD)
can find generalizable models even when the architectures are overparameterized (Zhang et al., 2016;
Gunasekar et al., 2017; Li et al., 2017; Soudry et al., 2018; Woodworth et al., 2020). Many empirical
and theoretical studies suggest that generalization is correlated with or guaranteed by the flatness
of the loss landscape at the learned model (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016;
Dziugaite & Roy, 2017; Jastrzebski et al., 2017; Neyshabur et al., 2017; Wu et al., 2018; Jiang et al.,
2019; Blanc et al., 2019; Wei & Ma, 2019a,b; HaoChen et al., 2020; Foret et al., 2021; Damian et al.,
2021; Li et al., 2021; Ma & Ying, 2021; Ding et al., 2022; Nacson et al., 2022; Wei et al., 2022; Lyu
et al., 2022; Norton & Royset, 2021; Wu & Su, 2023). Thus, a natural theoretical question is

Question 0. Does the flatness of the minimizers always correlate with the generalization capability?
The answer to the question turns out to be false. First, Dinh et al. (2017) theoretically construct very
sharp networks with good generalization. Second, recent empirical results (Andriushchenko et al.,
2023b) find that sharpness may not have a strong correlation with test accuracy for a collection of
modern architectures and settings, partly due to the same reason—there exist sharp models with good
generalization. We note that, technically speaking, Question 0 is ill-defined without specifying the
collection of models on which the correlation is evaluated. However, those sharp but generalizable
models appear to be the main cause for the non-correlation.
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Architecture All Flattest Minimizers
Generalize Well.

Sharpness Minimization
Algorithms Generalize.

2-layer w/o Bias ✓ (Theorem 3.1) ✓
2-layer w/ Bias ✗ (Theorem 4.1) ✗
2-layer w/ simplified BatchNorm ✓ (Theorem 3.2) ✓
2-layer w/ simplified LayerNorm ✗ (Theorem 5.1) ✓

Table 1: Overview of Our Results. Each row in the table corresponds to one architecture. The second
column indicates whether all flattest minimizers of training loss generalize well. ✓ indicates that all
(near) flattest minimizers of training loss provably generalize well and ✗ indicates that there provably
exists flattest minimizers that generalize poorly. The third column indicates whether the sharpness
minimization algorithms generalize well in our experiments. Results in row 2 and 4 deny Question 1
and Question 2 respectively.

Observing the existing theoretical and empirical evidence, it is natural to ask the one-side version of
Question 0, where we are only interested in whether sharpness implies generalization but not vice
versa.
Question 1. Do all the flattest neural network minimizers generalize well?
Though there are some theoretical works that answer Question 1 affirmatively for simplified linear
models (Li et al., 2021; Ding et al., 2022; Nacson et al., 2022; Gatmiry et al., 2023), the answer
to Question 1 for standard neural networks remains unclear. Those theoretical results linking
generalization to sharpness for more general architectures typically also involve other terms in
generalization bounds, such as parameter dimension or norm (Neyshabur et al., 2017; Foret et al.,
2021; Wei & Ma, 2019a,b; Norton & Royset, 2021), thus do not answer Question 1 directly.

Our first contribution is a theoretical analysis showing that the answer to Question 1 can be false,
even for simple architectures like 2-layer ReLU networks. Intriguingly, we also find that the answer
to Question 1 subtly depends on the architectures of neural networks. For example, simply removing
the bias in the first layer turns the aforementioned negative result into a positive result, as also shown
in the Theorem 4.3 of Wu & Su (2023) (that the authors only came to be aware of after putting this
work online).

More concretely, we show that for the 2 parity xor problem with mean square loss and with data
sampled from hypercube {−1, 1}d, all flattest 2-layer ReLU neural networks without bias provably
generalize. However, when bias is added, for the same data distribution and loss function, there exists
a flattest minimizer that fails to generalize for every unseen data. Since adding bias in the first layer
can be interpreted as appending a constant input feature, this result suggests that the generalization of
the flattest minimizer is sensitive to both network architectures and data distributions.

Recent theoretical studies (Wu et al., 2018; Blanc et al., 2019; Damian et al., 2021; Li et al., 2021;
Arora et al., 2022; Wen et al., 2022; Nacson et al., 2022; Lyu et al., 2022; Bartlett et al., 2022; Li
et al., 2022) also show that optimizers including SGD with large learning rates or label noise and
Sharpness-Aware Minimization (SAM, Foret et al. (2021)) may implicitly regularize the sharpness of
the training loss landscape. These optimizers are referred to as sharpness minimization algorithms in
this paper. Because Question 1 is not always true, it is then natural to hypothesize that sharpness-
minimization algorithms will fail for architectures and data distributions where Question 1 is not
true.
Question 2. Will sharpness minimization algorithm fail to generalize when there exist non-
generalizing flattest minimizers?
A priori, the authors were expecting that the answer to Question 2 is affirmative, which means that a
possible explanation is that the sharpness minimization algorithm works if and only if for certain
architecture and data distribution, Question 1 is true. However, surprisingly, we also answer this
question negatively for some architectures and data distributions. In other words, we found that
sharpness-minimization algorithms can still generalize well even when the answer to Question 1
is false. The result is consistent with our theoretical discovery that for many architectures, there
exist both non-generalizing and generalizing flattest minimizers of the training loss. We show
empirically that sharpness-minimization algorithms can find different types of minimizers for different
architectures.

Our results are summarized in Table 1. We show through theoretical and empirical analysis that the
relationship between sharpness and generalization can fall into three different regimes depending on
the architectures and distributions. The three regimes include:
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• Scenario 1. Flattest minimizers of training loss provably generalize and sharpness minimization
algorithms find generalizable models. This regime (Theorems 3.1 and 3.2) includes 2-layer ReLU
MLP without bias and 2-layer ReLU MLP with a simplified BatchNorm (without mean subtraction
and bias). We answer both the Question 1 and Question 2 affirmatively in this scenario.1

• Scenario 2. There exists a flattest minimizer that has the worst generalization over all minimizers.
Also, sharpness minimization algorithms fail to find generalizable models. This regime includes 2
layer ReLU MLP with bias. We deny Question 1 while affirm Question 2 in this scenario.

• Scenario 3. There exist flattest minimizers that do not generalize but the sharpness minimization
algorithm still finds the generalizable flattest model empirically. This regime includes 2-layer
ReLU MLP with a simplified LayerNorm (without mean subtraction and bias). In this scenario, the
sharpness minimization algorithm relies other unknown mechanisms beyond minimizing sharpness
to find a generalizable model. We deny both Question 1 and Question 2 in this scenario.

2 Setup
Rademacher Complexity. Given n data S = {xi}ni=1, the empirical Rademacher complexity of
function class F is defined as RS(F) = 1

n Eϵ∼{±1}n supf∈F
∑n

i=1 ϵif(xi). Architectures. As
summarized in Table 1, we will consider multiple network architectures and discuss how architecture
influences the relationship between sharpness and generalization. For each model fθ parameterized
by θ, we will use d to denote the input dimension and m to denote the network width. We will now
describe the architectures in detail.

2-MLP-No-Bias.fnobias
θ (x) = W2relu (W1x) with θ = (W1,W2).

2-MLP-Bias. fbias
θ (x) = W2relu (W1x+ b1) with θ = (W1, b1,W2). We additionally de-

fine MLP-Bias as fbias,D
θ (x) = WDrelu · · ·W2relu (W1x+ b1),

2-MLP-Sim-BN. f sbn
θ (x, {xi}i∈[n]) = W2SBNγ (relu (W1x+ b1) , {relu (W1xi + b1)}) ,

where the simplified BatchNorm SBN is defined as ∀m,n ∈ N, ∀i ∈ [n], x, xi ∈ Rm, j ∈
[m],SBNγ(x, {xi}i∈[n])[j] = γx[j]/

(∑n
i=1(xi[j])

2/n
)1/2

and θ = (W1, b1, γ,W2).

2-MLP-Sim-LN. f sln
θ (x) = W2

relu(W1x+b1)
max{∥relu(W1x+b1)∥2,ϵ} where ϵ is a sufficiently small posi-

tive constant.
Surprisingly, our results show that the relationships between sharpness and generalization are

strikingly different among these simple yet similar architectures.

Data Distribution. We will consider a simple data distribution as our testbed. Data distribution
Pxor is a joint distribution over data point x and label y. The data point is sampled uniformly from
the hypercube {−1, 1}d and the label satisfies y = x[1]x[2]. Many of our results, including our
generalization bound in Section 3 and experimental observations can be generalized to broader family
of distributions (Appendix B).

Loss. We will use mean squared error ℓmse for training and denote the training loss as L. In Ap-
pendix B, we will show that all our theoretical results and empirical observations hold for logistic
loss with label smoothing probability p > 0. We will also consider zero one loss Pr(yfθ(x) > 0) for
evaluating the model. We will use interpolating model to denote the model with parameter θ that
minimizes L.

Definition 2.1 (Interpolating Model). A model fθ interpolates the dataset {(xi, yi)}ni=1 if and only if
∀i, fθ(xi) = yi.

Sharpness. Our theoretical analysis focuses on understanding the sharpness of the trained models.
Precisely, for a model fθ parameterized by θ, a dataset {(xi, yi)}ni=1 and loss function ℓ, we will use
the trace of Hessian of loss function, Tr(∇2L(θ)) to measure how sharp the loss is at θ, which is a
proxy for the sharpness along a random direction (Wen et al., 2022), or equivalently, the expected
increment of loss under a random gaussian perturbation (Foret et al., 2021; Orvieto et al., 2022) .

Tr(∇2L(θ)) is not the only choice for defining sharpness, but theoretically many sharpness mini-
mization algorithms have been shown to minimize this term over interpolating models. In particular,

1The condition for Question 2 is not satisfied and thus the answer to Question 2 is affirmative.
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(a) Baseline (b) 1-SAM

Figure 1: Scenario I. We train a 2-layer MLP with ReLU activation without bias using gradient
descent with weight decay and 1-SAM on Pxor with dimension d = 30 and training set size n = 100.
In both cases, the model reaches perfect generalization. Notice that although weight decay doesn’t
explicitly regularize model sharpness, the flatness of the model decreases through training, which is
consistent with our Lemma 3.1 relating sharpness to the norm of the weight.

under the assumptions that the minimizer of the training loss form a smooth manifold Cooper (2018);
Fehrman et al. (2020), Sharpness-Aware Minimization (SAM) (Foret et al., 2021) with batch size
1 and sufficiently small learning rate η and perturbation radius ρ (Wen et al., 2022; Bartlett et al.,
2022), or Label Noise SGD with sufficiently small learning rate η (Blanc et al., 2019; Damian et al.,
2021; Li et al., 2021), prefers interpolating models with small trace of Hessian of the loss. Hence, we
choose to analyze trace of Hessian of the loss and will use SAM with batch size 1 (we denote it by
1-SAM) as our sharpness minimization algorithm in our experiments.

Notations. We use Tr to denote the trace of a matrix and x[i] to denote the value of the i-th coordinate
of vector x. We will use ⊙ to represent element-wise product. We use 1 as the (coordinate-wise)
indicator function, for example, 1 [x > 0] is a vector of the same length as x whose j-th entry is 1 if
x[j] > 0 and 0 otherwise. We will use Õ(x) to hide logarithmic multiplicative factors.

3 Scenario I: All Flattest Models Generalize
3.1 Flattest models provably generalize
When the architecture is 2-MLP-No-Bias, we will show that the flattest models can provably
generalize, hence answering Question 1 affirmatively for this architecture and data distribution Pxor.

Theorem 3.1. For any δ ∈ (0, 1) and input dimension d, for n = Ω
(
d log

(
d
δ

))
, with

probability at least 1 − δ over the random draw of training set {(xi, yi)}ni=1 from Pn
xor, let

L(θ) ≜ 1
n

∑n
i=1 ℓmse(f

nobias
θ (xi), yi) be the training loss for 2-MLP-No-Bias, it holds that for

all θ∗ ∈ argminL(θ)=0 Tr
(
∇2L (θ)

)
, we have that

Ex,y∼Pxor

[
ℓmse

(
fnobias
θ∗ (x) , y

)]
≤ Õ (d/n) .

Theorem 3.1 shows that for Pxor, flat models can generalize under almost linear sam-
ple complexity with respect to the input dimension. We note that Theorem 3.1 implies
that Prx,y∼Pxor

[
fnobias
θ∗ (x)y > 0

]
≤ Õ (d/n) . because if fnobias

θ∗ (x)y ≤ 0, it holds that
ℓmse

(
fnobias
θ∗ (x) , y

)
≥ 1. This shows that the model can classify the input with high accuracy.

The major proof step is relating sharpness to the norm of the weight itself.

Lemma 3.1. Define ΘC ≜ {θ = (W1,W2) |
∑m

j=1 ∥W1,j∥2|W2,j | ≤ C}. Under the setting
of Theorem 3.1, there exists a absolute constant C independent of d and δ, such that with probability
at least 1− δ, argminL(θ)=0 Tr

(
∇2L (θ)

)
⊆ ΘC and RS({fnobias

θ | θ ∈ ΘC}) ≤ Õ
(√

d/n
)

.

We would like to note that similar results of Theorem 3.1 and lemma 3.1 have also been shown in a
prior work Wu & Su (2023) (that the authors were not aware of before the first version of this work
was online).

The almost linear complexity in Theorem 3.1 is not trivial. For example, Wei et al. (2019) shows that
learning the distribution will require Ω(d2) samples for Neural Tangent Kernel (NTK) (Jacot et al.,
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(a) 2-layer MLP with simplified BN

W1,i[1] W1,i[2] ∥W1,i[3 : d]∥2
18.581 -18.582 0.02
-14.363 -14.363 0.03
13.768 13.771 0.03
-12.601 12.601 0.01

(b) Weights of the four neurons with the largest
norm in the first Layer

Figure 2: Interpretable Flattest Solution We train a 2-layer MLP with simplified BN using 1-SAM
on Pxor with dimension d = 30 and training set size n = 100. After training, we find that the
model is indeed interpretable. In Figure 2b, we inspect the weight of the four neurons of the four
largest neurons in the first layer and we observe that the four neurons approximately extract features
±x[1]± x[2].

2018). In contrast, our result shows that learning the distribution only requires Õ(d) samples as long
as the flatness of the model is controlled.

Beyond reducing model complexity, flatness may also encourage the model to find a more interpretable
solution. We prove that under a stronger than i.i.d condition over the training set, the near flattest
interpolating model with architecture 2-MLP-Sim-BN will provably generalize and the weight of the
first layer will be centered on the first two coordinates of the input, i.e., ∥W1,i[3 : d]∥2 ≤ ϵ∥W1,i∥2.

Condition 1 (Complete Training Set Condition). There exists set S ⊂ {−1, 1}d−2, such that the
linear space spanned by S − S = {s1 − s2 | s1, s2 ∈ S} has rank d − 2 and the training set is
{(x, y) | x ∈ Rd, x[3 : d] ∈ S, x[1], x[2] ∈ {−1, 1}, y = x[1]× x[2]}.

Theorem 3.2. Given any training set {(xi, yi)}ni=1satisfying Condition 1, for any width m and any
ϵ > 0, there exists constant κ > 0, such that for any width-m 2-MLP-Sim-BN , f sbn, satisfying
f sbn
θ interpolates the training set and Tr

(
∇2L(θ)

)
≤ κ + infL(θ′)=0 Tr

(
∇2L(θ′)

)
, it holds that

∀x ∈ {−1, 1}d,
∣∣x[1]x[2]− fθ(x)

∣∣ ≤ ϵ and that ∀i ∈ [m], ∥W1,i[3 : d]∥2 ≤ ϵ∥W1,i∥2.

One may notice that in Theorem 3.2 we only consider the approximate minimizer of sharpness. This
is because the gradient of output with respect to W1, b1, despite never being zero, will converge to
zero as the norm of W1, b1 converges to ∞.

Condition 1 may seem stringent. In practice (Figure 2b), we find it not necessary for 1-SAM to find a
generalizable solution. We hypothesize that this condition is mainly technical. Theorem 3.2 shows
that sharpness minimization may guide the model to find an interpretable and low-rank representation.
Similar implicit bias of SAM has also been discussed in Andriushchenko et al. (2023a) The proof is
deferred to Appendix B.1

3.2 SAM empirically finds the flattest model that generalizes

We use 1-SAM to train 2-MLP-No-Bias on data distribution Pxor to verify our Theorem 3.1 (Figure 1).
As expected, the model interpolates the training set and reaches a flat minimum that generalizes
perfectly to the test set.

We then verify our Theorem 3.2 by training a 2-layer MLP with simplified BN on data distribution
Pxor (Figure 2a). Here we do not enforce the strong theoretical Condition 1. However, we still
observe that SAM finds a flat minimum that generalizes well. We then perform a detailed analysis of
the model and find that the model is indeed interpretable. For example, the four largest neurons in
the first layer approximately extract features {relu(c1x[1] + c2x[2]) | c1, c2 ∈ {−1, 1}} (Figure 2b).
Also, the first 2 columns of the weight matrix of the first layer, corresponding to the useful features
{relu(c1x[1] + c2x[2]) | c1, c2 ∈ {−1, 1}}, have norms 42.47 and 42.48, while the largest column
norm of the rest of the weight matrix is only 5.65.
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4 Scenario II: Both Flattest Generalizing and Non-generalizing Models Exist,
and SAM Finds the Former

4.1 Both generalizing and non-generalizing solutions can be flattest

In previous section, we show through Theorems 3.1 and 3.2 that sharpness benefits generalization
under some assumptions. It is natural to ask whether it is possible to extend this bound to general
architectures. However, in this section, we will show that the generalization benefit depends on
model architectures. In fact, simply adding bias to the first layer of 2-MLP-No-Bias makes non-
vacuous generalization bound impossible for distribution Pxor. This then leads to a negative answer
to Question 1.

Definition 4.1 (Set of extreme points). A finite set S ⊂ Rd is a set of extreme points if and only if for
any x ∈ S, x is a vertex of the convex hull of S.

Definition 4.2 (Memorizing Solutions). A D-layer network is a memorizing solution for a training
dataset if (1) the network interpolates the training dataset, and (2) for any depth k ∈ [D − 1], there
is an injection from the input data to the neurons on depth k, such that the activations in layer k for
each input data is a one-hot vector with the non-zero entry being the corresponding neuron.

Theorem 4.1. For any D ≥ 2, if the input data points {xi} of the training set form a set of extreme
points (Definition 4.1), then there exists a width n layer D MLP-Bias that is a memorizing solution
(Definition 4.2) for the training dataset and has minimal sharpness over all the interpolating solutions.

As one may suspect, these memorizing solutions can have poor generalization performance.

Proposition 4.1. For data distribution Pxor, for any number of samples n, there exists a width-n 2-
MLP-Bias that memorizes the training set as in Theorem 4.1, reaches minimal sharpness over all the
interpolating models and has generalization error max{1− n/2d, 0} measured by zero one error.

This corollary shows that a flat model can generalize poorly. Comparing Theorems 3.1 and 4.1, one
may observe the perhaps surprising difference caused by slightly modifying the architectures (adding
bias or removing the BatchNorm). To further show the complex relationship between sharpness and
generalization, the following theorem suggests, despite the existence of memorizing solutions, there
also exists a flattest model that can generalize well.

Proposition 4.2. For data distribution Pxor, for any number of samples n, there exists a width-n 2-
MLP-Bias that interpolates the training dataset, reaches minimal sharpness over all the interpolating
models, and has zero generalization error measured by zero one error.

The flat solution constructed is highly simple. It contains four activated neurons, each corresponding
to one feature in ±x[1]± x[2] (Equation (5)).

Proof sketch. For simplicity, we will consider 2-MLP-Bias here. The construction of the memorizing
solution in Theorem 4.1 is as follows (visualized in Figure 3). As the input data points form a set of
extreme points (Definition 4.1), for each input data point xi, there exists a vector ∥wi∥ = 1, wi ∈ Rd,
such that ∀j ̸= i, w⊤

i xi > w⊤
i xj . We can then choose

W1 = [
√

ri|yi|wi/ϵ]
⊤
i , b1 = [

√
ri|yi|

(
−w⊤

i xi + ϵ
)
/ϵ]⊤,W2 = [sign(yi)

√
|yi|/ri]i.

Here ri = (∥xi∥2 + 1)1/2 and ϵ is a sufficiently small positive number. Then it holds that
relu(W1xi + b1) =

√
ri|yi|ei, where ei is the i−th coordinate vector. This shows there is a

one-to-one correspondence between the input data and the neurons. It is easy to verify that the
model interpolates the training dataset. Furthermore, for Pxor and sufficiently small ϵ, for any input
x ̸∈ {xi}i∈[n], it holds that relu(W1x+ b1) = 0. Hence the model will output the same label 0 for
all the data points outside the training set. This indicates Proposition 4.1.

To show the memorization solution has minimal sharpness, we need the following lemma that relates
the sharpness and the Jacobian of the model.

Lemma 4.1. For mean squared error loss lmse, if model fθ is differentiable and interpolates dataset
{(xi, yi)}i∈[n], then Tr

(
∇2L(θ)

)
= 2

n

∑n
i=1 ∥∇θfθ(xi)∥2.
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x1

w1x + b1 > 0

x2

w2x + b2 > 0

x3

w3x + b3 > 0

Figure 3: Visualization of Memorization Solu-
tions. This is an illustration of the memorizing
solutions constructed in Theorem 4.1. Here the
input data points come from a unit circle and are
marked as dots. The shady area with the corre-
sponding color represents the region where the
corresponding neuron is activated. One can see
that the network can output the correct label for
each input data point in the training set as long as
the weight vector on the corresponding neuron is
properly chosen. Further, the network will make
the same prediction 0 for all the input data points
outside the shady area and this volume can be made
almost as large as the support of the training set
by choosing ϵ sufficiently small. Hence the model
can interpolate the training set while generalizing
poorly.

Proof of Lemma 4.1. By standard calculus, it holds that,

Tr
(
∇2L(θ)

)
=

1

n

n∑
i=1

Tr
(
∇2

θ

[
(fθ(xi)− yi)

2
])

=
2

n

n∑
i=1

Tr
(
∇2

θfθ(xi)(fθ(xi)− yi) + (∇θfθ(xi)) (∇θfθ(xi))
⊤
)

=
2

n

n∑
i=1

Tr
(
(∇θfθ(xi)) (∇θfθ(xi))

⊤
)
=

2

n

n∑
i=1

∥∇θfθ(xi)∥22. (1)

The first equation in Equation (1) use ∀i, fθ(xi) = yi. The proof is then complete.

After establishing Lemma 4.1, one can then explicitly calculate the lower bound of ∥∇θfθ(xi)∥2
condition on fθ(xi) = yi. For simplicity of writing, we will view the bias term as a part of the weight
matrix by appending a 1 to the input data point. Precisely, we will use notation x′

i ∈ Rd+1 to denote
transformed input satisfying ∀j ∈ [d], x′

i[j] = xi[j], x
′
i[d+ 1] = 1 and W ′

1 = [W1, b1] ∈ Rm×(d+1)

to denote the transformed weight matrix.

By the chain rule, we have,

∥∇θfθ(xi)∥2 = ∥∇W ′
1
fθ(xi)∥2F + ∥∇W2

fθ(xi)∥2F
= ∥(W2 ⊙ 1 [W ′

1x
′
i > 0])x′⊤

i ∥2F + ∥relu (W ′
1x

′
i) ∥22.

= ∥W2 ⊙ 1 [W ′
1x

′
i > 0] ∥22∥x′

i∥2 + ∥relu (W ′
1x

′
i) ∥22. (2)

Then by Cauchy-Schwarz inequality, we have

∥∇θfθ(xi)∥2 = ∥W2 ⊙ 1 [W ′
1x

′
i > 0] ∥22∥x′

i∥2 + ∥relu (W ′
1x

′
i) ∥22

≥ 2∥x′
i∥
∣∣∣(W2 ⊙ 1 [W1xi > 0])

⊤ relu (W ′
1x

′
i)
∣∣∣ = 2∥x′

i∥|yi|. (3)

In Equation (3), we use condition fθ(xi) = yi. Finally, notice that the lower bound is reached when

W2 ⊙ 1 [W ′
1x

′
i > 0] = relu (W ′

1x
′
i) /∥x′

i∥. (4)

Condition Equation (4) is clearly reached for the memorization construction we constructed, where
both sides of the equation are equal to

√
|yi|/∥x′

i∥ei. This completes the proof of Theorem 4.1.

However, the memorization network is not the only parameter that can reach the lower bound. For
example, for distribution Pxor, if parameter θ satisfies,

∀i, j ∈ {0, 1},W1,2i+j+1 = r[(−1)i, (−1)j , ..., 0], b1[2i+ j + 1] = −r,W2[2i+ j] = (−1)i+j/r.
(5)

∀k > 4,W1,k = [0, ..., 0], b1[k] = 0,W2[k] = 0,
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(a) Baseline (b) 1-SAM

Figure 4: Scenario II. We train a 2-layer MLP with ReLU activation with Bias using gradient descent
with weight decay and 1-SAM on Pxor with dimension d = 30 and training set size n = 100. One
can clearly observe a distinction between the two settings. The minimum reached by 1-SAM is flatter
but the model fails to generalize and the generalization performance even starts to degenerate after
4000 epochs. The difference between Figures 1b and 4b indicates a small change in the architecture
can lead to a large change in the generalization performance.

(a) Baseline (b) 1-SAM

Figure 5: Scenario II with Softplus Activation. We train a 2-layer MLP with Softplus activation
(SoftPlus(x) = log(1+ ex)) with bias using gradient descent with weight decay and 1-SAM on Pxor

with dimension d = 30 and training set size n = 100. We observe a similar phenomenon as Figure 4.

with r = (d2 + 1)1/4. then for any x ∈ {−1, 1}d, it holds that relu(W1x+ b1) = re5/2−x[1]−x[2]/2

and fθ(x) = x[1]× x[2]. Hence it is possible for Equation (5) to hold while the model has perfect
generalization performance.

4.2 SAM empirically finds the non-generalizing solutions

In this section, we will show that in multiple settings, SAM can find solutions that have low sharpness
but fail to generalize compared to the baseline full batch gradient descent method with weight decay.
This proves that flat minimization can hurt generalization performance. However, one should note
that Question 2 is not denied for the current architectures.

Converged models found by SAM fail to generalize. We perform experiments on data distribution
Pxor in Figure 4. We apply small learning rate gradient descent with weight decay as our baseline
and observe that the converged model found by SAM has a much lower sharpness than the baseline.
However, the generalization performance of SAM is much worse than the baseline. Moreover, the
generalization performance even starts to degenerate after 4000 epochs. We conclude that in this
scenario, sharpness minimization can empirically hurt generalization performance.

1-SAM may fail to generalize with other activation functions. A natural question is whether the
phenomenon that 1-SAM fails to generalize is limited to ReLU activation. In Figure 5, we show
empirically that 1-SAM fails to generalize for 2-layer networks with softplus activation trained on
the same dataset, although there is no known guarantee for the existence of memorizing solutions.
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(a) Standard Training (b) Projected Training

Figure 6: Scenario III. We train two-layer ReLU networks with simplified LayerNorm on data
distribution Pxor with dimension d = 30 and sample complexity n = 100 using 1-SAM. In Figure 6a,
we use standard training. In Figure 6b, we restricted the norm of the weight and the bias of the first
layer as 10, to avoid minimizing the sharpness by simply increasing the norm. We can see that in
both cases, the models almost perfectly generalize.

5 Scenario III: Both Flattest Generalizing and Non-generalizing Models
Exist, and SAM Finds the Latter

5.1 Both generalizing and non-generalizing solutions can be flattest

Despite the surprising contrary between Theorems 3.1 and 4.1, experiments show that Question 2
consistently hold. However, we will provide a counterexample in this section. Specifically, we will
consider data distribution Pxor and 2-layer ReLU MLP with simplified LayerNorm. One can first show
both generalizing and non-generalizing solutions exist similar to Theorem 4.1 and propositions 4.1
and 4.2.

Theorem 5.1. If the input data points {xi} of the training set form a set of extreme points (Defini-
tion 4.1), for sufficiently small ϵ, then there exists a width-n 2-MLP-Sim-LN with hyperparameter ϵ
that is a memorizing solution (Definition 4.2) for the training dataset and has minimal sharpness
over all the interpolating solutions.

Proposition 5.1. For data distribution Pxor, for sufficiently small ϵ, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyperparameter ϵ that memorizes the training set as
in Theorem 4.1, reaches minimal sharpness over all the interpolating models and has generalization
error max{1− n/2d, 0} measured by zero one error.

Proposition 5.2. For data distribution Pxor, for sufficiently small ϵ, for any number of samples n,
there exists a width-n 2-MLP-Sim-LN with hyperparameter ϵ that interpolates the training dataset,
reaches minimal sharpness over all the interpolating models, and has zero generalization error
measured by zero one error.
The construction and intuition behind Theorem 5.1 and propositions 5.1 and 5.2 are similar to that
of Theorem 4.1 and propositions 4.1 and 4.2. The proof is deferred to Appendix B.
5.2 SAM empirically finds generalizing models

Notice in Section 5.1 our theory makes the same prediction as in Section 4. However, strikingly,
the experimental observation is reversed (Figure 6). Now running SAM can greatly improve the
generalization performance till the model perfectly generalizes. This directly denies Question 2 as
now we have a scenario in which sharpness minimization algorithms can improve generalization till
perfect generalization while there exists a flattest minimizer that will generalize poorly.

6 Discussion and Conclusion
We present theoretical and empirical evidence for (1) whether sharpness minimization implies
generalization subtly depends on the choice of architectures and data distributions, and (2) sharpness
minimization algorithms including SAM may still improve generalization even when there exist
flattest models that generalize poorly. Our results suggest that low sharpness may not be the only
cause of the generalization benefit of sharpness minimization algorithms.
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A Discussion on Limitation

Limitations and future work. Our results only cover a small subset of existing architectures. A
natural extension for our work will be to examine whether flatness implies generalization for deep
networks without the bias terms or if the flattest memorizing models exist for such architecture.

In our work, we assume 1-SAM always finds a valid global minimizer for sharpness. However, in
previous works, only a local tendency of decreasing sharpness is proven. In all our experiments
where the sharpness lower bound can be exactly characterized, we observe that the converged model
found by 1-SAM always approximately reaches the lower bound. A possible future direction is
characterizing under what condition can 1-SAM be used as a global optimizer for sharpness over
minimizers.

Our work also suggests that there does not exist a universal generalization theory for neural networks
only based on sharpness. A broader problem would be what other properties of the model can be
used to explain the generalization of neural networks.
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B Omitted Proofs

We will define argminθ(f(θ)) as the set of the minimizers f . When f has a unique minimizer, we
also overload the definition to refer to that element. We will use 1 to denote the indicator function.

B.1 Formal results for 2-MLP-Sim-BN

B.1.1 Proof of Theorem 3.2

We will first prove a lemma showing that the model with a sparse second layer weight in L1 norm
will satisfy the conclusion of Theorem 3.2.
Lemma B.1. Given any training set{(xi, yi)}ni=1 satisfying Condition 1, for any width m and any ϵ >
0, for any width-m 2-MLP-Sim-BN ,f sbn and parameter θ satisfying f sbn

θ interpolates the training
set and ∥γ⊙W2∥1 = infL(θ′)=0 ∥γ′⊙W ′

2∥1, then it holds that ∀x ∈ {−1, 1}d,
∣∣x[1]x[2]−fθ(x)

∣∣ = 0
and ∀i ∈ [m], ∥W1,i[3 : d]∥2 = 0.

Proof of Lemma B.1. As the training set satisfies Condition 1, there is an integer r such that n = 4r
and we assume WLOG for k ∈ 0, 1, .., r − 1, {x4k+t}t∈{0,1,2,3} has the same last d− 2 coordinates
and the first two coordinates are (1, 1), (1,−1), (−1, 1), (−1,−1) respectively. Define ai ≜ W1xi +

b1. Further define a as a[j] =
√∑

i∈[n]
1
n relu(ai[j])

2. As the model interpolates the training set, we
have

m∑
j=1

(γ ⊙W2)[j]yirelu(ai[j])/a[j] = 1,∀i ∈ [n].

Summing the above n equalities, we have that
m∑
j=1

(γ ⊙W2)[j]

n∑
i=1

yirelu(ai[j])/a[j] = n.

This then implies
m∑
j=1

|(γ ⊙W2)[j]| ≥
n

maxj |
∑n

i=1 yirelu(ai[j])/a[j]|
.

However, we have by Cauchy-Schwarz inequality that for each 1 ≤ j ≤ m,

|
n∑

i=1

yirelu(ai[j])| ≤

√√√√√r

r−1∑
k=0

(
3∑

t=0

y4k+trelu(a4k+t[j])

)2
.

Notice that x4k+1 + x4k+4 = x4k+2 + x4k+3, it holds that a4k+1 + a4k+4 = 2b1 = a4k+2 + a4k+3

and hence by Lemma B.27, it holds that√√√√√r

r−1∑
k=0

(
3∑

t=0

y4k+trelu(a4k+t[j])

)2
 ≤

√√√√r

n∑
i=1

relu(ai[j])2 =
n

2
a[j].

This then implies
m∑
j=1

|(γ ⊙W2)[j]| ≥
n

n/2
= 2.

One can then show 2 is the minimum of ∥γ ⊙W2∥1 over minimizers by choosing the weights as

∀i, j ∈ {0, 1},W ′
1,2i+j+1 = [(−1)i, (−1)j , ..., 0], b′1[2i+ j + 1] = −1,W ′

2[2i+ j] =
1

2
, γ[2i+ j + 1] = 1;

∀k > 4,W ′
1,k = [0, ..., 0], b′1[k] = 0,W ′

2[k] = 0, γ[k] = 1.
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The training loss is minimized and ∥γ ⊙W2∥1 = 2.

Hence ∥γ⊙W2∥1 = infL(θ′)=0 ∥γ′ ⊙W ′
2∥1 implies all the inequalities above must be equality. This

implies ∀j ∈ [m], |
∑n

i=1 yirelu(ai[j])|/a[j] =
n
2 , which by Lemma B.27 then implies the following

condition: for any j ∈ [m], there exists tj such that a4k+t[j] ≤ 0 for t ̸= tj and a4k+tj [j] is a
constant independent of k. 2

This implies for any s1, s2 ∈ S with S defined in Condition 1, it holds that ∀i ∈ [m],W1,i[3 :
d] (s1 − s2) = 0. As the linear space spanned by S − S has rank d − 2, this implies that ∀i ∈
[m], ∥W1,i[3 : d]∥2 = 0. As the model predict correctly over the training set and does not use the
last d − 2 coordinates, we have that ∀x ∈ {−1, 1}d,

∣∣x[1]x[2] − fθ(x)
∣∣ = 0. The proof is then

complete.

We also have an approximate version of the above lemma.

Lemma B.2. Given any training set {(xi, yi)}i∈[n] satisfying Condition 1, for any ϵ > 0 and width
m, there exists κ > 0, such that for any width-m 2-MLP-Sim-BN f sbn parameterized by θ satisfying
f sbn
θ interpolates the training set and ∥γ∥22 + ∥W2∥22 ≤ κ + infL(θ)=0

(
∥γ∥22 + ∥W2∥22

)
, it holds

that ∀x ∈ {−1, 1}d,
∣∣x[1]x[2]− fθ(x)

∣∣ ≤ ϵ and ∀i ∈ [m], ∥W1,i[3 : d]∥2 ≤ ϵ.

Proof of Lemma B.2. Suppose for any κ > 0, there exists θκ, such that
∑

x∈{−1,1}d

∣∣x[1]x[2] −
fθκ(x)

∣∣ > ϵ, L(θκ) = 0 and ∥γκ∥22 + ∥W2,κ∥22 ≤ κ+ infL(θ)=0 ∥γ∥22 + ∥W2∥22, We can normalize
the first layer of θκ such that ∥Wκ,1∥22+∥bκ,1∥2 = 1 without changing the function represented by the
network. Then (Wκ,1, bκ,1,W2,κ, γκ) falls in a bounded set. Therefore there exists an accumulation
point θ∗ = (W ∗

1 , b
∗
1,W

∗
2 , γ

∗) of {θ1/i}i∈N, however as L(θ) and ∥γ∥22 + ∥W2∥22 are continuous
functions of θ, this implies that L(θ∗) = 0 and ∥γ∗∥22 + ∥W ∗

2 ∥22 = infL(θ)=0

(
∥γ∥22 + ∥W2∥22

)
.

Notice by AM-GM inequality we have that ∥γ∥22 + ∥W2∥22 ≥ 2∥γ ⊙W2∥1 and equality holds when
γ = W2. We then have infL(θ)=0

(
∥γ∥22 + ∥W2∥22

)
= 2 infL(θ)=0 ∥γ ⊙W2∥1 and γ∗ = W ∗

2 . Then
by Lemma B.1, we have that

∑
x∈{−1,1}d

∣∣x[1]x[2]− fθ∗(x)
∣∣ = 0. However θ∗ is an accumulation

point of θκ satisfying
∑

x∈{−1,1}d

∣∣x[1]x[2]− fθ1/i(x)
∣∣ > ϵ. This then leads to a contradiction.

We will now lower bound the sharpness of the model,

Lemma B.3. For any parameter θ for architecture 2-MLP-Sim-BN satisfying that L(θ) = 0, it
holds that Tr

(
∇2L(θ)

)
≥ ∥W2∥22 + ∥γ∥22 and infL(θ)=0 Tr

(
∇2L(θ)

)
= infL(θ)=0 ∥W2∥22 + ∥γ∥22.

Proof of Lemma B.3. Define ai and a as in proof of Lemma B.1. By Lemma 4.1,

Tr
(
∇2L(θ)

)
=

1

n

n∑
i=1

∥∇θf
sbn
θ (xi)∥22

≥ 1

n

n∑
i=1

∥∇γf
sbn
θ (xi)∥22 + ∥∇W2

f sbn
θ (xi)∥22

=
1

n

m∑
j=1

n∑
i=1

|W2[j]ai[j]/a[j]|22 + |γ[j]ai[j]/a[j]|22

= ∥W2∥22 + ∥γ∥22.

This inequality can approximately reach equality when W2 = γ and ∥W1∥2 is sufficiently large.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. This is a direct consequence of Lemma B.2 and Lemma B.3.

2Notice that for any k, the order of a4k+t[j] is the same.
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B.2 Formal results for 2-MLP-No-Bias

We will prove a more general result that holds for any data distribution satisfying the following
condition.

Condition 2. There exists constant C and σ independent of d and m such that the data distribution
D over data points x and label y satisfies that x is symmetric3 subgaussian random vector (Defini-
tion B.4) with parameter σ and variance Id. Further, there exists parameter θ = (W1,W2) for width-
m architecture 2-MLP-No-Bias such that Pr

(
fnobias
θ (x) = y

)
= 1 and

∑m
j=1 ∥W1,j∥2|W2,j | ≤ C.

Theorem B.1. Given any data distribution D satisfying Condition 2, for any δ ∈ (0, 1) and input
dimension d, for n = Ω

(
d log

(
d
δ

))
, with probability at least 1− δ over the random draw of training

set {(xi, yi)}ni=1 from Dn, let L(θ) ≜ 1
n

∑n
i=1 ℓmse(f

nobias
θ (xi), yi) be the training loss for width-m

2-MLP-No-Bias, it holds that for all θ∗ ∈ argminL(θ)=0 Tr
(
∇2L (θ)

)
,

Ex,y∼D
[
ℓmse

(
fnobias
θ∗ (x) , y

)]
≤ Õ (d/n) .

We will also prove a more general result than Lemma 3.1.

Lemma B.4. Define ΘC ≜ {θ = (W1,W2) |
∑m

j=1 ∥W1,j∥2|W2,j | ≤ C}. Under the setting
of Theorem B.1, there exists a absolute constant C1 independent of d and δ, such that with probability
at least 1 − δ over the randomness of dataset {(xi, yi)}ni=1, argminL(θ)=0 Tr

(
∇2L (θ)

)
⊆ ΘC1

and RS({fnobias
θ | θ ∈ ΘC1

}) ≤ Õ
(√

d/n
)

.

B.2.1 Lemmas for uniform convergence

We will begin with two uniform convergence bounds that will be used in the proof of Lemma 3.1.

Lemma B.5. Given any data distribution D satisfying Condition 2, there exists constant C2 > C1 > 0
depending on σ, for any δ ∈ (0, 1), input dimension d, and number of samples n = Ω

(
d log

(
d
δ

))
,

with probability at least 1− δ over the random draw of set {(xi, yi)}ni=1 from Dn, for any w ∈ Rd,
we have that,

C2d ≥ 1

n

n∑
i=1

∥xi∥221
(
w⊤xi > 0

)
≥ C1d. (6)

Lemma B.6. Given any data distribution D satisfying Condition 2, there exists constant C2 > C1 > 0
depending on σ, for any δ ∈ (0, 1), input dimension d, and number of samples n = Ω

(
d log

(
d
δ

))
,

with probability at least 1 − δ over the random draw of set {(xi, yi)}ni=1 from Dn, for any w ∈
Rd, ∥w∥2 = 1, we have that,

C2 ≥ 1

n

n∑
i=1

|w⊤xi|221
(
w⊤xi > 0

)
≥ C1. (7)

We will first prove Lemma B.5 by a combination of Concentration Inequalities and uniform conver-
gence bound based on Rademacher complexity.

Proof of Lemma B.5. We will first prove the upper bound, by Lemma B.17, it holds that

Pr(∥Xi∥22 ≥ 32σ2d+ 8σ2 log(2n/δ)) ≤ δ

2n
.

Hence when log(2n/δ) ≤ 1024d, the proof for the upper bound is complete. If log(2n/δ) > 1024d,
then by Lemma B.17 and Chebyshev’s inequality, we have that

Pr(
1

n

n∑
i=1

∥xi∥22 > 3d/2) ≤ 4Var(∥x∥22)
d2n

≤ 2048d2

n
≤ 2048d2 exp(−1024d)δ ≤ δ/2.

3x and −x equal in distribution.
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This concludes the proof of the upper bound.

We will then prove the lower bound. We will first show that there exists Ω(n) data points in
{xi}, such that ∥xi∥ ≥ Ω(

√
d). By Lemma B.19, we have there exists constant ϵ, ζ such that

Pr(∥x∥22 > ϵd) > ζ.

Define indicator bi ≜ 1
(
∥xi∥22 ≥ ϵd

)
, then bi are i.i.d Bernoulli random variables. We then have

p = Pr(bi = 1) > ζ. By Chernoff’s bound, it holds that

Pr

(
1

n

n∑
i=1

bi ≤ p/2

)
≤ exp(−np/8) ≤ δ

4
,

for any n > 8 log(1/δ)
ζ . This shows that with probability at least 1− δ

4 , we have that,

1

n

n∑
i=1

bi ≥ p/2 ≥ ζ/2.

This shows that there exists n′ ≥ ⌊ζn/2⌋ data points in {xi}, such that ∥xi∥22 ≥ ϵd. We can then
relabel the data points as z1, ..., zn′ . Then zi are i.i.d random variables with ∥zi∥22 ≥ 1/2 conditioning
on the value of n′. We can then have for any w ∈ Rd,

1

n

n∑
i=1

∥xi∥221
(
w⊤xi > 0

)
≥ 1

n

n′∑
i=1

∥zi∥221
(
w⊤zi > 0

)
≥ ζ

2

1

n′

n′∑
i=1

∥zi∥221
(
w⊤zi > 0

)
≥ ζϵd

2

1

n′

n′∑
i=1

1
(
w⊤zi > 0

)
.

Finally, define F = {z → 1
(
w⊤z > 0

)
}, by Lemma B.22, we have that VC(F) ≤ d. By Corol-

lary B.1, we have that the empirical Rademacher complexity of F on {zi}i∈[n′] is upper bounded by√
4d logn′

n′ ≤ 4
√

d logn
ζn .

By Lemma B.23, with probability at least 1− δ
4 , we have that

sup
f∈F

∣∣∣∣∣∣ 1n′

n′∑
i=1

f(zi)− E[f(z)]

∣∣∣∣∣∣ ≤ 2Rn′(F) + 3

√
log 4

δ

n′ .

The symmetry of xi implies that E[f(zi) | n′] = 1/2. This shows that with probability at least 1− δ
4 ,

we have that for any w ∈ Rd,

1

n′

n′∑
i=1

1
(
w⊤zi > 0

)
≥ 1

2
− 2Rn′(F)− 3

√
log 4

δ

n′

≥ 1

2
− 8

√
d log n

ζn
− 3

√
log 4

δ

ζn
.

Hence when n = Ω(d log(d/δ)), with probability at least 1− δ/2, we have that for any w ∈ Rd,

1

n

n∑
i=1

∥xi∥221
(
w⊤xi > 0

)
≥ ϵCd

2

1

n′

n′∑
i=1

1
(
w⊤z > 0

)
≥ ϵζd

8
.

This concludes our proof.
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We will then prove Lemma B.6, and we will use the following lemma motivated by Matoušek (2008).

Lemma B.7. Given any data distribution D satisfying Condition 2, there exists C depending on
σ, such that for any δ ∈ (0, 1), input dimension d, number of samples n ≥ C log(2/δ), and
w ∈ Rd, ∥w∥2 = 1, with probability at least 1− δ over the random draw of set {(xi, yi)}ni=1 from
Dn, we have that,

3

2
≥ 1

n

n∑
i=1

|w⊤xi|2 ≥ 1

2
. (8)

Proof of Lemma B.7. Notice that w⊤xi is a subgaussian random variable with parameter σ2. Hence
by Lemma B.14, w⊤xi is a subexponential random variable with expectation 1. The rest follows
from Lemma B.16.

This lemma can be viewed as a variant of the Johnson-Lindenstrauss lemma. We will now proceed to
show that we can prove a similar high probability bound when the indicator function 1

(
w⊤xi > 0

)
is taken into account.

Lemma B.8. Given any data distribution D satisfying Condition 2, there exists C depending
on σ, such that for any δ ∈ (0, 1), input dimension d, sample complexity n ≥ C log(4/δ) and
w ∈ Rd, ∥w∥2 = 1, with probability at least 1− δ over the random draw of set {(xi, yi)}ni=1 from
Dn, it holds that,

3

2
≥ 1

n

n∑
i=1

|w⊤xi|21
(
w⊤xi > 0

)
≥ 1

8
. (9)

Proof of Lemma B.8. The upper bound is a direct consequence of Lemma B.7.

We will now prove the lower bound. We will first use a doubling trick using the symmetry of
the data distribution. Randomly sample {bi}i∈n uniformly from {−1, 1}n, and define zi = bixi.
We have that zi and xi equals in distribution. Hence, we have that |w⊤xi|21

(
w⊤xi > 0

)
and

|w⊤bixi|21
(
biw

⊤xi > 0
)

equals in distribution. As bi is independent with xi, this shows that
|w⊤xi|21

(
w⊤xi > 0

)
equals in distribution to |w⊤xi|2ci where ci is a Rademacher random variable

independent of xi.4 Hence, we only need to prove that

Pr(
1

n

n∑
i=1

|w⊤xi|2ci <
1

8
) < δ/2. (10)

By Chernoff bound, we have that

Pr(
1

n

n∑
i=1

ci ≤
1

4
) ≤ exp(− n

16
). (11)

Hence when n > 16 log(4/δ), we have that Pr( 1n
∑n

i=1 ci ≤
1
4 ) < δ/4. This then implies that,

Pr(
1

n

n∑
i=1

|w⊤xi|2ci <
1

8
) ≤ Pr(

1

n

n∑
i=1

ci ≤
1

4
) + Pr(

1

n

n∑
i=1

|w⊤xi|2ci <
1

8
| 1
n

n∑
i=1

ci ≥
1

4
) ≤ δ

2
,

(12)

for the last inequality, we apply Lemma B.7. This concludes our proof.

Notice that Lemma B.8 is a point-wise bound, we will then use the technique of covering to prove a
uniform bound. We will first prove a uniform bound for the case where the indicator function is not
taken into account.

Definition B.1 (ϵ-covering). A set S ∈ Rd is an ϵ-covering of a set S′ ∈ Rd, if and only if
∀s′ ∈ S′,∃s ∈ S, ∥s− s′∥2 ≤ ϵ.

4For special case where w⊤xi = 0, this still holds as both sides are zero.
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Lemma B.9. For any ϵ > 0, there exists an ϵ-covering S of the unit sphere in Rd with cardinality
smaller than

(
2
ϵ + 1

)d
.

Proof. Consider a maximal subset T of the unit sphere in Rd satisfying that ∀t ̸= t′ ∈ T, ∥t−t′∥2 ≥ ϵ.
As T is maximal, it is an ϵ-covering of the unit sphere.

Further consider set T ′ = {x | ∃t, ∥x− t∥2 ≤ ϵ
2}, which is the union of |T | disjoint balls with radius

ϵ/2. Hence T ′ has volume C|T |( ϵ2 )
d with C being the volume of the unit ball in Rd. However, T ′ is

contained in a ball with radius 1 + ϵ
2 centered at origin. Hence it holds that C|T |( ϵ2 )

d ≤ C
(
1 + ϵ

2

)d
.

This implies |T | ≤
(
2
ϵ + 1

)d
.

Lemma B.10. Given any data distribution D satisfying Condition 2, there exists C depending on
σ, such that for any δ ∈ (0, 1), input dimension d and sample complexity n ≥ Cd log(dδ ), with
probability at least 1− δ over the random draw of set {(xi, yi)}ni=1 from Dn, it holds that for any
w ∈ Rd, ∥w∥2 = 1,

2 ≥ 1

n

n∑
i=1

|w⊤xi|2 ≥ 1

4
. (13)

Proof of Lemma B.10. Consider a 1/16 covering of the unit sphere in Rd, w1, ..., wN , we have that
N ≤ 64d. By Lemma B.7 and Union Bound, we have with probability at least 1− δ over the random
draw of set {(xi, yi)}ni=1 from Dn, for any k ∈ [N ], we have that,

3

2
≥ 1

n

n∑
i=1

|w⊤
k xi|2 ≥ 1

2
.

Now suppose the above event happens and

w∗ = argmax
w∈Rd,∥w∥2=1

1

n

n∑
i=1

|w⊤xi|2, γ = max
w∈Rd,∥w∥2=1

1

n

n∑
i=1

|w⊤xi|2. (14)

Since {wi}1i=1 is a 1/16 covering of unit sphere, there exists k ∈ [N ] such that ∥w∗ − wk∥ ≤ 1
16 ,

then we have that by Cauchy-Schwarz inequality,

γ − 3

2
≤ 1

n

n∑
i=1

|w∗⊤xi|2 −
1

n

n∑
i=1

|w⊤
k xi|2

≤ 1

n

n∑
i=1

|(w∗ − wk)
⊤xi|2|(w∗ + wk)

⊤xi|2

≤

√√√√ 1

n

n∑
i=1

|(w∗ − wk)⊤xi|2

√√√√ 1

n

n∑
i=1

|(w∗ + wk)⊤xi|2

≤ γ∥w∗ − wk∥∥w∗ + wk∥

≤ γ

8
.

This then implies that γ ≤ 2. Hence, with probability 1− δ, we have that the upper bound holds.
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Now for any w ∈ Rd, ∥w∥2 = 1, suppose ∥w − wk∥2 ≤ 1
16 , we have that

1

n

n∑
i=1

|w⊤xi|2 ≥ 1

n

n∑
i=1

|w⊤
k xi|2 +

1

n

n∑
i=1

(
|w⊤xi|2 − |w⊤

k xi|2
)

≥ 1

2
− 1

n

n∑
i=1

|(w∗ − wk)
⊤xi||(w∗ + wk)

⊤xi|

≥ 1

2
−

√√√√ 1

n

n∑
i=1

|(w∗ − wk)⊤xi|2

√√√√ 1

n

n∑
i=1

|(w∗ + wk)⊤xi|2

≥ 1

2
− γ

1

8
≥ 1

4
.

This shows that with probability 1− δ, the lower bound holds as well. The proof is complete.

We can now prove Lemma B.6.

Proof of Lemma B.6. By Lemma B.10, we have that with probability at least 1−δ/2 over the random
draw of set {(xi, yi)}ni=1 from Dn, for any w ∈ Rd, ∥w∥2 = 1, we have that,

1

n

n∑
i=1

|w⊤xi|2 ∈ [
1

4
, 2].

This directly implies the upper bound. For lower bound, consider a 1/64 covering of the unit sphere in
Rd, w1, ..., wN , we have that N ≤ 128d. By Lemma B.8 and Union Bound, we have with probability
at least 1− δ/2 over the random draw of set {(xi, yi)}ni=1 from Dn, for any k ∈ [N ], we have that,

1

n

n∑
i=1

|w⊤
k xi|21

(
w⊤

k xi > 0
)
≥ 1

8
.

Now suppose the above event happens and for any w ∈ Rd, ∥w∥2 = 1, suppose ∥w − wk∥ ≤ 1
32 ,

by Lemma B.26, we have that

1

n

n∑
i=1

|w⊤xi|21
(
w⊤xi > 0

)
≥ 1

n

n∑
i=1

|w⊤
k xi|21

(
w⊤

k xi > 0
)
+

1

n

n∑
i=1

(
|w⊤xi|21

(
w⊤xi > 0

)
− |w⊤

k xi|21
(
w⊤

k xi > 0
))

≥1

8
− 1

n

n∑
i=1

|(w − wk)
⊤xi|2(|w⊤xi|+ |w⊤

k xi|)

≥1

8
−

√√√√ 1

n

n∑
i=1

|w⊤xi|2

√√√√ 1

n

n∑
i=1

|(w − wk)⊤xi|2 −

√√√√ 1

n

n∑
i=1

|w⊤
k xi|2

√√√√ 1

n

n∑
i=1

|(w − wk)⊤xi|2

≥1

8
− 2× 2× 1

64
=

1

16
.

This completes the proof.

B.2.2 Proof of Lemma B.4

Based on Appendix B.2.1, we are now ready to show that for 2-MLP-No-Bias, sharpness is within a
constant factor of the norm of the parameters.
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Lemma B.11. Given any data distribution D satisfying Condition 2, there exists constant C2 > C1 >
0 depending on σ, for any δ ∈ (0, 1), input dimension d and number of samples n = Ω

(
d log

(
d
δ

))
,

with probability at least 1− δ over the random draw of training set {(xi, yi)}ni=1 from Dn, for any
parameter θ = (W1,W2) of 2-MLP-No-Bias satisfying that L(θ) = 0, it holds that,

C2

(
∥W1∥2F + d∥W2∥2

)
≥ Tr

(
∇2L(θ)

)
≥ C1

(
∥W1∥2F + d∥W2∥2

)
.

Proof of Lemma B.11. By Lemma 4.1, we have that,

Tr
(
∇2L(θ)

)
=

2

n

n∑
i=1

∥∥∥∥ ∂L

∂W1

∥∥∥∥2
F

+

∥∥∥∥ ∂L

∂W2

∥∥∥∥2
2

=
2

n

n∑
i=1

(
∥W2 ⊙ 1 [W1xi > 0] ∥22∥xi∥2 + ∥relu (W1xi) ∥22

)
=

m∑
j=1

(
∥W2,j∥22

(
2

n

n∑
i=1

1 [W1,jxi > 0] ∥xi∥2
)

+

n∑
i=1

|relu (W1,jxi) |2
)
.

By Equations (6) and (7), there exists C2 > C1, such that for any w ∈ Rd, it holds that

1

n

n∑
i=1

1
[
w⊤xi > 0

]
∥xi∥2 ∈ [C1d/2, C2d/2].

1

n

n∑
i=1

|relu
(
w⊤xi

)
|2 ∈ [C1∥w∥2/2, C2∥w∥2/2].

This then implies our result.

We can now prove Lemma B.4.

Proof of Lemma B.4. By Condition 2, there exists parameter θ = (W1,W2), such that L(θ) = 0 and∑m
j=1 ∥W1,j∥2|W2,j | ≤ C. We can properly rescale W1,j and W2,j such that ∥W1∥2F + d∥W2∥2 =

2
√
d
∑m

j=1 ∥W1,j∥2|W2,j | ≤ 2C
√
d.

Now by Lemma B.11, we have that there exists C2 > C1 > 0, such that for any θ∗ = (W ∗
1 ,W

∗
2 ) ∈

argminL(θ)=0 Tr
(
∇2L(θ)

)
, it holds that

2C2C
√
d ≥ C2

(
∥W1∥2F + d∥W2∥2

)
≥ Tr

(
∇2L(θ)

)
≥ Tr

(
∇2L(θ∗)

)
≥ C1

(
∥W ∗

1 ∥2F + d∥W ∗
2 ∥2
)

= 2C1

√
d

m∑
j=1

∥W ∗
1,j∥2|W ∗

2,j |.

This then implies that
∑m

j=1 ∥W ∗
1,j∥2|W ∗

2,j | ≤ C2C
C1

, completing the proof of the first claim.

By Lemma B.17, with probability at least 1 − δ, we have that maxi ∥xi∥22 = Õ(
√
d). The second

claim then follows from Lemma B.24.

B.2.3 Proof of Theorem B.1

We are now ready to prove Theorem B.1 based on Lemma B.4.

Proof of Theorem B.1. Based on Lemma B.4, there exists constant C1 > C with C defined
in Condition 2, with probability at least 1 − δ, such that argminL(θ)=0 Tr

(
∇2L(θ)

)
⊂ ΘC1 and

RS(ΘC1) = Õ(
√

d
n ). To get the faster rate Õ(d/n), we would like to apply Theorem B.3. The main

technical difficulty to apply Theorem B.3 here is that for distribution D, the loss function L is not
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necessarily bounded. To address this issue, we will consider a truncated version of the mean squared
error (as in Gatmiry et al. (2023)).

lc(x, y) = ℓc(x−y) =


(x− y)2, if x− y ∈ [−c, c],

−(x− y)2 + 4c|x− y| − 2c2, if x− y ∈ [−2c,−c] ∪ [c, 2c],

2c2, if x− y ∈ (−∞,−2c] ∪ [2c,∞).

(15)

We will choose c = Õ(
√
d) as in Lemma B.18 such that Ex,y∼D[∥x∥21 [C1∥x∥ ≥ c]] = Õ( dn ) and

Ex,y∼D[∥x∥21 [C∥x∥ ≥ c]] = Õ( dn ). By Condition 2, we have for x, y ∼ D, there exists θ∗1 ∈ ΘC

such that fnobias
θ∗
1

(x) = y, then

Ex,y∼D[ℓmse(f
nobias
θ (x), y)]− Ex,y∼D[lc(f

nobias
θ (x), y)]

≤Ex,y∼D[(f
nobias
θ (x)− y)21

[
|fnobias

θ (x)− y| ≥ c
]
]

≤2Ex,y∼D[f
nobias
θ (x)21

[
|fnobias

θ (x)| ≥ c
]
] + 2Ex,y∼D[f

nobias
θ∗ (x)21

[
|fnobias

θ∗ (x)| ≥ c
]
].

As we have θ ∈ ΘC1
, it holds that

|fnobias
θ (x)| ≤

m∑
i=1

|W2,i|∥W1,i∥2∥x∥ ≤ C1∥x∥.

This then implies that,

Ex,y∼D[f
nobias
θ (x)21

[
|fnobias

θ (x)| ≥ c
]
] ≤ C2

1Ex,y∼D[∥x∥21 [C1∥x∥ ≥ c]] = Õ(
d

n
).

Similarly, Ex,y∼D[f
nobias
θ∗ (x)21

[
|fnobias

θ∗ (x)| ≥ c
]
] = Õ( dn ). Hence, we have that

Ex,y∼D[ℓmse(f
nobias
θ (x), y)]− Ex,y∼D[lc(f

nobias
θ (x), y)] = Õ(

d

n
).

We then define the truncated version of L as Lc(θ) = 1
n

∑n
i=1 lc(W

⊤
2 relu(W1xi), yi). Then we

clearly have L(θ) = 0 =⇒ Lc(θ) = 0 Now by Theorem B.3, we have that for any θ ∈ ΘC1 and
L(θ) = 0, it holds that with probability at least 1− δ/2,

Ex,y∼D[lc(f
nobias
θ (x), y)] ≤ Õ(

d+ c2 log(1/δ)

n
) = Õ(

d

n
).

This completes the proof.

B.2.4 Proof of Theorem 3.1 and lemma 3.1

One can easily construct width 4 2-MLP-No-Bias such that for Prx,y∼D
(
fnobias
θ (x) = y

)
= 1. For

example, one can have that

W1 =

 1 + ϵ 1− ϵ 0 · · ·
1 + ϵ −1 + ϵ 0 · · ·
−1− ϵ 1− ϵ 0 · · ·
−1− ϵ −1 + ϵ 0 · · ·

 ,W2 =
1

2− 2ϵ
[1 −1 −1 1] .

Hence Pxor satisfies the condition in Condition 2 and this completes the proof of Theorem 3.1
and lemma 3.1.

B.3 Formal results For MLP-Bias

We will prove Theorem 4.1 and a generalization of Proposition 4.2 in this section. We note that Propo-
sition 4.1 is already proved in Section 4.
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B.3.1 Proof of Theorem 4.1

We have demonstrated the proof for 2-MLP-Bias in Section 4, and the proof for layer-D MLP-Biasis
conceptually similar.

Proof of Theorem 4.1. We will still use notation x′
i ∈ Rd+1 to denote transformed input satisfying

∀j ∈ [d], x′
i[j] = xi[j], x

′
i[d + 1] = 1 and W ′

1 = [W1, b1] ∈ Rm×(d+1) to denote the transformed
weight matrix.

For the simplicity of writing, we will use the following notations,
ai,0 = x′

i, ai,1 = relu(W1xi + b1), ai,d = relu(Wdai,d−1), d > 1

We will also use Ai,d to denote the diagonal matrix with 1 (ai,d > 0) as the diagonal entries.

By Lemma 4.1 and the chain rule, we have that

∥∇θf
bias,D
θ (xi)∥22 =

D∑
j=2

∥∇Wj
fθ(xi)∥2F + ∥∇W ′

1
fθ(xi)∥2F

=

D−1∑
j=1

∥WDAi,D−1 · · ·Wj+1Ai,j∥22∥ai,j−1∥22 + ∥ai,D−1∥22

By AM-GM inequality and Cauchy-Schwarz inequality, we have that

∥∇θf
bias,D
θ (xi)∥22 =

D−1∑
j=1

∥WDAi,D−1 · · ·Wj+1Ai,j∥22∥ai,j−1∥22 + ∥ai,D−1∥22

≥ D
((
ΠD−1

j=1 ∥WDAi,D−1 · · ·Wj+1Ai,j∥22∥ai,j−1∥22
)
∥ai,D−1∥22

) 1
D

≥ D
((
ΠD−1

j=1 ∥WDAi,D−1 · · ·Wj+1Ai,j∥22∥ai,j∥22
)
∥x′

i∥22
) 1

D

≥ D|yi|2(D−1)/D∥x′
i∥

2/D
2 .

As every training data point is an extreme point of the convex hull of {xi}, for each input data point
xi, there exists a vector ∥wi∥ = 1, wi ∈ Rd, such that ∀j ̸∈ i, w⊤

i xi > w⊤
i xj . Finally, the above

inequality can be reached by a memorizing solution when we choose,

W1 = [uiwi/ϵ]
⊤
i , b1 = [ui

(
−w⊤

i xi + ϵ
)
/ϵ]⊤i ,

Wj = diag([1/ri]i∈[n]),∀2 ≤ j ≤ D − 1,

WD = [sign(yi)/ri]i∈[n],

with ri, ui satisfyng ri = (∥x′
i∥/|yi|)1/D, ui = |yi|rD−1

i when yi ̸= 0, ri = ui = 1 when yi = 0.
The proof is then completed.

B.3.2 Generalization of Proposition 4.2

We will directly prove a more general version of Proposition 4.2, which is Proposition B.1.
Proposition B.1. Given any constant s, for any data distribution D over input x and label y satisfying
that (1) the label y depends only on the first s coordinates I of the input, (2) xI are sampled from a
set of extreme points in R|I| and (3) Pr(∥x∥2 = R) = 1, for sufficiently large width m depending on
D, there exists a flattest minimizer θ∗ for width-m 2-MLP-Bias with generalization error 0.

Proof of Proposition B.1. The proof is similar to the proof of Proposition 4.2. Suppose the set of
extreme points in R|I| contains k elements v1, ..., vk satisfying ∥vk∥ = v and corresponds to label
y1, ..., yk. Then there exist vectors ∥wi∥ = 1, wi ∈ R|I|, such that ∀j ̸= i, w⊤

i vi > w⊤
i vj . We will

then choose m = k and let,
∀j ∈ [k],W1,j = r[vj , ..., 0]/ϵ, b1[j] = r(−w⊤

j vj + ϵ)/ϵ,W2[j] = yj/r, (16)

with r2 = |yj |(R2 + 1) and ϵ sufficiently small. It is easy to verify that the construction will reach
the smallest sharpness for any training set.
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The construction above critically relies on the fact that there exists a set of extreme points in R|I|

containing the input data points. We will show that this is not necessary by the following example.
Proposition B.2. Given any constant L, for any data distribution D over input x and label y = f(x)
satisfying that (1) the label function f depends only on the first 2 coordinates I of the input and
is L-lipschiz, (2) the input data points satisfy xI are sampled uniformly from the unit circle in
R2, and (3) Pr(∥x∥2 = R) = 1, for any δ ∈ (0, 1/20) and n = Ω(log(1/δ)/δ), with probability
1 − δ over the random draw of training set {(xi, yi)}i∈[n], there exists a flattest minimizer θ∗ for
width-n 2-MLP-Bias with generalization error O(δ2).

Proof. Suppose the largest value of label y is Y . Suppose for dataset {(xi, yi)}, the first two
coordinates of {xi} forms a set {vi} that lies on the unit circle in R2 and corresponds to label {yi}.
Suppose WLOG vi is sorted by the angle it forms with the x-axis. We will then define zi as the
midpoint of the arc vi−1vi and wi as the unit vector perpendicular to zizi+1. Here zn+1 = z1 and
w0 = wn. The flattest minimizers θ∗ is then defined as,

∀j ∈ [n],W1,j = r[wj , ..., 0]/w
⊤
j zj , b1[j] = r(−w⊤

j vj + w⊤
j zj)/w

⊤
j zj ,W2[j] = yj/r, (17)

with r2 = |yj |
√
R2 + 1. Verifying that the construction will reach the smallest sharpness for the

training set is easy. Now splitting the sphere into N = ⌈2π/δ⌉ > 1/δ arcs with length no longer than
δ. Then by the standard coupon collector problem, with probability at least 1− δ, when n ≥ N log δ,
there is at least one point in each arc. Under such case, we have that zjzj+1 has length no greater
than 2δ and w⊤

j zj > 1− 10δ for any j.

Therefore, for any v ∈ R2, ∥v∥ = 1, suppose WLOG v fails in arc z1z2 and corresponds to label y,
then fbias

θ∗ (x) = y1w
⊤
1 (v − v1 + z1)/w

⊤
1 z1 for x[1 : 2] = v . Therefore, we have that

∥fbias
θ∗ (x)− y∥22 ≤ ∥fbias

θ∗ (v)− y1∥22 + ∥y1 − y∥22
≤ ∥y1w⊤

1 (v − v1)/w
⊤
1 z1∥22 + L2∥v − v1∥22

≤ 4Y 2δ2/(1− 10δ)2 + L2δ2.

This shows that the expected generalization error is bounded by O(δ2). The proof is completed.

B.4 Formal results for 2-MLP-Sim-LN

B.4.1 Proof of Theorem 5.1

We will first lower bound the sharpness of all minimizers of 2-MLP-Sim-LN by the following lemma.
Lemma B.12. Given any number of samples n and ϵ > 0, for any training set {(xi, yi)}i∈[n]

satisfying that the input data points {xi} of the training set form a set of extreme points, for width-n
2-MLP-Sim-LN with hyperparameter ϵ, it holds that

inf
L(θ)=0

Tr
(
∇2L(θ)

)
≥ 2

n

n∑
i=1

min(1,
2

ϵ

√
∥xi∥22 + 1|yi|).

Proof. By Lemma 4.1, we have that

Tr
(
∇2L(θ)

)
=

2

n

n∑
i=1

∥∇θfθ(xi)∥22.

We will then discuss by cases to show the lower bound of ∥∇θfθ(xi)∥22 for each i ∈ [n] when
fθ(xi) = yi, we will continue to use notation x′

i ∈ Rd+1 to denote transformed input satisfying
∀j ∈ [d], x′

i[j] = xi[j], x
′
i[d + 1] = 1 and W ′

1 = [W1, b1] ∈ Rm×(d+1) to denote the transformed
weight matrix.

1. If ∥relu(W1xi + bi)∥2 > ϵ, then it holds that

∥∇θfθ(xi)∥22 ≥ ∥∇W2
fθ(xi)∥22

= ∥ relu(W1xi + bi)

∥relu(W1xi + bi)∥2
∥22 = 1.
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2. If ∥relu(W1xi + bi)∥2 ≤ ϵ, then it holds that

∥∇θfθ(xi)∥22 ≥ ∥∇W ′
1
fθ(xi)∥22 + ∥∇W2

fθ(xi)∥22

=
1

ϵ2
(∥W⊤

2 1 (relu(W1xi + bi) > 0) ∥22∥x′
i∥22 + ∥relu(W1xi + bi)∥22)

≥ 2

ϵ2
∥x′

i∥2|W⊤
2 relu(W1xi + bi)|

≥ 2

ϵ
∥x′

i∥2|yi|.

This concludes the proof.

Proof of Theorem 5.1. By Lemma B.12, we only need to construct a memorizing solution that has
sharpness 2

n

∑n
i=1 min(1, 2

ϵ

√
∥xi∥22 + 1|yi|).

As the input data points form a set of extreme points, for each input data point xi, there exists a vector
∥wi∥ = 1, wi ∈ Rd, such that ∀j ̸∈ i, w⊤

i xi > w⊤
i xj . We can then construct the minimal sharpness

solution by choosing for sufficiently small δ,

W1 = [uiwi/δ]
⊤
i , b1 = [ui

(
−w⊤

i xi + δ
)
/δ]⊤i ,W2 = [riyi]i∈[n],

with ri, ui satisfying

1. ri = 1, ui = 2ϵ when
√
∥xi∥22 + 1|yi| > ϵ.

2. ri = ( ϵ√
∥xi∥2+1|yi|

)1/2, ui = ϵ(

√
∥xi∥2+1|yi|

ϵ )1/2 when 0 <
√

∥xi∥22 + 1|yi| ≤ ϵ.

3. ri = 0, ui = 2ϵ when yi = 0.

It is easy to check this is a memorizing solution that minimizes sharpness.5 The proof is then
completed.

B.4.2 Proof of Propositions 5.1 and 5.2

Proof of Proposition 5.1. We will suppose ϵ <
√
d+ 1, then for Pxor, the minimal sharpness is

always 2 by Lemma B.12. Consider the following construction for sufficiently small δ,

W1 = [2ϵxi/δ]
⊤
i , b1 = [2ϵ (−d+ δ) /δ]⊤i ,W2 = [yi]i∈[n],

Then first this is a memorizing solution that minimizes sharpness. Second, the generalization error
is 1− n/2d because for any x ̸∈ {xi}i∈[n], it holds that relu(W1x+ b1) = 0 and hence fθ(x) = 0,
The proof is then completed.

Proof of Proposition 5.2. We will suppose ϵ <
√
d+ 1, then for Pxor, the minimal sharpness is

always 2 by Lemma B.12. Consider the following construction for sufficiently small δ,

∀i, j ∈ [2],W1,2i+j = 2ϵ[(−1)i, (−1)j , ..., 0], b1[2i+ j] = −2ϵ,W2[2i+ j] = (−1)i+j . (18)
∀k > 4,W1,k = [0, ..., 0], b1[k] = 0,W2[k] = 0,

This is an interpolating parameter that minimizes sharpness that can perfectly generalize.

5When
√

∥xi∥22 + 1|yi| > ϵ, one can notice that ∇W ′
1
fθ(xi) = 0 as the activation in layer 1 is nonzero

only in one dimension.
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B.5 Discussion on the choice of loss function

In this section, we will show why our theoretical results hold for logistic loss with label smoothing
by showing that using the logistic loss with label smoothing yields the same set of minimizers and
flattest minimizers as a corresponding problem using mean squared error.

Definition B.2 (Logistic Loss with Label Smoothing). Logistic loss with label smoothing probability
p is defined as, ℓ : ℓlogistic,p(a, b) = −p log

(
eba

1+ea

)
− (1 − p) log

(
e(1−b)a

1+ea

)
, b ∈ {0, 1}. We will

denote the training loss yield as ℓlogistic,p as Llog.

Theorem B.2. For any probability p ∈ (0, 1), and for any training set {(xi, yi)}i∈[n] satisfying that
xi ∈ Rd and yi ∈ {0, 1}, let γp = ln( 1−p

p ), if the minimum of the mean squared error Lmse over set
{xi, γp(2yi − 1)} is 0, then the minimizers of Lmse over set {xi, γp(2yi − 1)} and the minimizers of
Llog over set {(xi, yi)} are the same.

Proof. This theorem is a direct consequence of the following inequality,

ℓlogistic,p(a, b) = −p log

(
eba

1 + ea

)
− (1− p) log

(
e(1−b)a

1 + ea

)
≥ −p log p− (1− p) log(1− p).

The minimal is reached when a = (2b− 1)γp where γp = ln( 1−p
p ).

Lemma B.13. For any probability p ∈ (0, 1), and for any training set {(xi, yi)}i∈[n] satisfying that
xi ∈ Rd and yi ∈ {0, 1}, let γp = ln( 1−p

p ), for any model fθ that is differentiable and interpolates
dataset {xi, γp(2yi − 1)}i∈[n], it holds that Tr

(
∇2Llog(θ)

)
= 1

p(1−p)
1
n

∑n
i=1 ∥∇θfθ(xi)∥2.

Proof. By standard calculus, it holds that,

Tr
(
∇2L(θ)

)
=
1

n

n∑
i=1

Tr
(
∇2

θ [ℓlogistic,p(fθ(xi), yi)]
)

=
1

n

n∑
i=1

Tr

(
∂θ

[
dℓlogistic,p(fθ(xi), yi)

dfθ(xi)
∇θfθ(xi)

])

=
1

n

n∑
i=1

dℓlogistic,p(fθ(xi), yi)

dfθ(xi)
Tr
(
∇2

θfθ(xi)
)

+
1

n

n∑
i=1

d2ℓlogistic,p(a, yi)

da2
|a=fθ(xi) Tr

(
∇2

θfθ(xi)
)
Tr
(
(∇θfθ(xi)) (∇θfθ(xi))

⊤
)

=
1

n

n∑
i=1

d2ℓlogistic,p(a, yi)

da2
|a=(2y−1)γp

Tr
(
(∇θfθ(xi)) (∇θfθ(xi))

⊤
)

=
1

n

1

p(1− p)

n∑
i=1

∥∇θfθ(xi)∥22. (19)

The proof is then complete.

By Lemmas 4.1 and B.13, we have that the sharpness yields by both loss functions are the same up to
a constant factor. Therefore, the flattest minimizers of both loss functions are the same.

B.6 Technical Lemmas

B.6.1 Concentration inequalities

Subgaussian random variables are defined as follows.

Definition B.3 (Subgaussian random variable). A random variable X is called σ-subgaussian if
E[X] = 0 and E [exp (λX)] ≤ exp

(
σ2λ2

2

)
for all λ ∈ R.
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Subgaussian random vectors are defined as,

Definition B.4 (Subgaussian random vector). A random vector x ∈ Rd is called σ-subgaussian if
E[x] = 0 and E

[
exp

(
λTx

)]
≤ exp

(
σ2∥λ∥2

2

2

)
for all λ ∈ Rd.

We will further define subexponential random variables.

Definition B.5 (Subexponential random variable). A random variable X is (σ, α)-subexponential if

E [exp (λ(X − E(X)))] ≤ exp
(

σ2λ2

2

)
for all |λ| ≤ 1

α .

Lemma B.14 (Honorio & Jaakkola (2014)). If random variable X is σ-subgaussian, then X2 is
(4
√
2σ2, 4σ2)-subexponential.

Lemma B.15 (Hoeffding’s Bound). If {Xi}i∈[n] are σ-subgaussian and independent, then there
exists Cσ > 0, for all t ≥ 0, Pr

(∣∣ 1
n

∑n
i=1 Xi

∣∣ ≥ t
)
≤ 2 exp

(
−nt2Cσ

)
.

Lemma B.16 (Rinaldo (2019)). If {Xi}i∈[n] are (σ, α)-subexponential and independent,
then there exists Cα,σ > 0, for all t ≥ 0, Pr

(∣∣ 1
n

∑n
i=1(Xi − E[Xi])

∣∣ ≥ t
)

≤
2 exp

(
−nmin

(
tCα,σ, t

2Cα,σ

))
.

Lemma B.17 (Rinaldo (2019)). If x ∈ Rd is a σ-Subgaussian random vector then for any t ≥ 0,

Pr
(
∥x∥22 ≥ 32σ2d+ 8σ2t

)
≤ exp(−t). (20)

It also holds that ∥x∥22 has bounded second moment E[∥x∥42] ≤ 2048σ4d2.

We will also need the following lemma bounding the truncated second-order moment of a subgaussian
random variable.

Lemma B.18. For any n > 0 and dimension d, for any d-dimension σ-subgaussian random vector
x, there exists c = O(

√
d log(dn)σ), such that E

[
∥x∥21 (∥x∥ > c)

]
≤ d

nσ
2.

Proof. We have that by Equation (20),

E
[
∥x∥21 (∥x∥ > c)

]
=c2 Pr

(
∥x∥2 > c2

)
+

∫ ∞

c

Pr
(
∥x∥2 > t2

)
dt2

≤c2 exp(−c2 − 32σ2d

8σ2
) +

∫ ∞

c

2t exp(− t2 − 32σ2d

8σ2
)dt

=c2 exp(−c2 − 32σ2d

8σ2
) + 8σ2 exp(− t2 − 32σ2d

8σ2
) |c∞

≤c2 exp(−c2 − 32σ2d

8σ2
) + 8σ2 exp(−c2 − 32σ2d

8σ2
)

Hence there exists c = O(
√
d log(dn)σ) such that E

[
∥x∥21 (∥x∥ > c)

]
≤ d

n .

We will finally show a constant probability lower bound on the norm of a subgaussian random vector
with unit variance.

Lemma B.19. Given any σ > 0, there exists constant ϵ, ζ, for any dimension d, for any σ-subgaussian
random vector x with connvariance Id, it holds that Pr(∥x∥22 > ϵd) > ζ.

Proof. As x is σ-subgaussian, it holds that for any λ ∈ R,

E∥v∥=1[exp(λv
⊤x)] ≤ exp(λ2σ2/2). (21)

Here the expectation over v in Equation (21) is taken over a uniform distribution over a unit ball and
v is independent of x. Hence v⊤x equals in distribution to v[1]∥x∥2. Hence it holds that,

E∥v∥=1[exp(v[1]∥x∥2)] ≤ exp(σ2/2). (22)
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Note that exp(x) ≥ 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 and ∀t ∈ N,E[(v[1])2t+1] = 0, it holds that

1 +
1

2
E[∥x∥22]E∥v∥=1[(v[1])

2] +
1

24
E[∥x∥42]E∥v∥=1[(v[1])

4] ≤ exp(σ2/2).

It is well known that E∥v∥=1[(v[1])
2] = 1

d and E∥v∥=1[(v[1])
4] = 3

(d+2)(d+4) . Also it holds that
E[∥x∥22] = d. Hence,

E[∥x∥42] ≤
(
exp(σ2/2)− 3/2

) (d+ 2)(d+ 4)

3
.

This implies that (
exp(σ2/2)− 3/2

) (d+ 2)(d+ 4)

3

≥E[∥x∥42I(∥x∥22 >
1

2
d)]

≥
(
E[∥x∥22I(∥x∥22 > 1

2d)]
)2

Pr(∥x∥22 > 1
2d)

=

(
E[∥x∥22]− E[∥x∥22I(∥x∥22 ≤ 1

2d)]
)2

Pr(∥x∥22 > 1
2d)

≥ d2

4Pr(∥x∥22 > 1
2d)

Hence, we can conclude that

Pr(∥x∥22 >
1

2
d) ≥ 3d2

4(d+ 2)(d+ 4) (exp(σ2/2)− 3/2)
≥ 1

20 (exp(σ2/2)− 3/2)
.

This concludes the proof.

B.6.2 Rademacher Complexity

Recall the definition of Rademacher complexity,
Definition B.6 (Rademacher complexity). Let F be a class of functions from X to Y . Let S =
{x1, . . . , xn} ⊂ X be a set of points. The empirical Rademacher complexity of F with respect to S
is defined as RS(F) = 1

n Eϵ∼{±1}n supf∈F
∑n

i=1 ϵif(xi).

We will also define the following notion of the shattered set and VC dimension.
Definition B.7 (Shattered set). Let F be a class of functions from X to Y = {0, 1}. A set S =
{x1, . . . , xn} ⊂ X is said to be shattered by F if for every T ⊂ S, there exists f ∈ F such that
f(x) = 1 for all x ∈ T and f(x) = 0 for all x ∈ S \ T .
Definition B.8 (VC dimension). Let F be a class of functions from X to Y = {0, 1}. The VC
dimension of F is defined as VC(F) = sup{n ∈ N | there exists a set of size n shattered by F}.

We will use the following well-known lemmas.
Lemma B.20 (Massart’s Lemma). Let F be a class of functions from X to Y = {0, 1}. Further,

suppose A = {(f(xi))i∈n | f ∈ F}, then, RS(F) ≤
√

2 log |A|
n .

Lemma B.21 (Sauer’s Lemma). Let F be a class of functions from X to Y = {0, 1}. Further,
suppose A = {(f(xi))i∈[n] | f ∈ F}, then |A| ≤

∑VC(F)
i=0

(
n
i

)
.

Combining the above two lemmas, we get the following corollary.

Corollary B.1. Let F be a class of functions from X to Y = {0, 1}, then RS(F) ≤
√

4VC(F) logn
n .

Further, we also have the following lemma controlling the VC dimension.
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Lemma B.22. Suppose F = {x ∈ Rd → 1
(
w⊤x > 0

)
| w ∈ Rd}, then VC(F) = d.

The following uniform convergence bound based on Rademacher complexity is also well known.

Lemma B.23 (Shalev-Shwartz & Ben-David (2014)). Suppose for all f ∈ F , 0 ≤ f(x) ≤ 1, then
with probability at least 1− δ over the randomness of i.i.d. sampled S = {x1, . . . , xn} ⊂ X , it holds
that

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− E[f(x)]

∣∣∣∣∣ ≤ 2RS(F) + 3

√
log 4

δ

n
. (23)

To prove our main results, we will also need the following theorem due to Srebro et al. (2010).

Definition B.9. A loss function ℓ : R× R → R is H−smooth, if and only dℓ(x,y)
dx is H−lipschitz.

Theorem B.3 (Theorem 1 of Srebro et al. (2010)). For an H-smooth non-negative loss ℓ s.t.
∀x,y,f |ℓ(f(x), y)| ≤ b, for any δ > 0 we have that with probability at least 1 − δ over a ran-
dom sample of size n, for any f ∈ F with zero training loss L̂(h) = 0,

L(h) ≤ O

(
H log3 nR2

n(F) +
b log(1/δ)

n

)
.

Finally, we also need lemmas bounding the Rademacher complexity of norm-bounded linear hypoth-
esis and 2-MLP-No-Bias.

Lemma B.24. For any constant C > 0 and number of samples n, for the set of parameters for 2-MLP-
No-Bias ΘC ≜ {θ |

∑m
j=1 ∥W1,j∥2|W2,j | ≤ C, θ = (W1,W2)} and any training set {xi}i∈[n]

satisfying that ∥xi∥2 ≤ B, it holds that RS({fnobias
θ | θ ∈ ΘC}) ≤ 2CB√

n
.

Proof. Let u denotes u/∥u∥2 for u ̸= 0 and 0 when u = 0,

RS({fnobias
θ | θ ∈ ΘC}) =

1

n
E
σ

[
sup
θ

n∑
i=1

σif
nobias
θ (xi)

]

=
1

n
E
σ

sup
θ

n∑
i=1

σi

 m∑
j=1

W2,jrelu (W1,jxi)


=

1

n
E
σ

sup
θ

n∑
i=1

σi

 m∑
j=1

W2,j ∥W1,j∥2 relu
(
W1,j

T
xi

)
=

1

n
E
σ

sup
θ

m∑
j=1

W2,j ∥W1,j∥2

[
n∑

i=1

σirelu
(
W1,j

T
xi

)]
≤ 1

n
E
σ

sup
θ

m∑
j=1

|W2,j | ∥W1,j∥2 max
k∈[n]

∣∣∣∣∣
n∑

i=1

σirelu
(
W1,k

T
xi

)∣∣∣∣∣


≤=
C

n
E
σ

[
sup

ū:∥ū∥2=1

∣∣∣∣∣
n∑

i=1
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where H′ =
{
x 7→ relu

(
ū⊤x

)
: ū ∈ Rd, ∥ū∥2 ≤ 1

}
. By Talagrand’s lemma, since relu is 1-

Lipschitz, RS (H′) ≤ RS (H′′) where H′′ =
{
x 7→ ū⊤x : ū ∈ Rd, ∥ū∥2 ≤ 1

}
is a linear hypothesis

space. Using RS (H′′) ≤ B√
n

by Lemma B.25 concludes the proof.

Lemma B.25. For any constant C > 0 and number of samples n, for any set S = {xi}i∈[n] satisfying
that ∀i, xi ∈ Rd, ∥xi∥22 ≤ C2 and function class F =

{
x 7→ ⟨w, x⟩ | w ∈ Rd, ∥w∥2 ≤ 1

}
, it holds

that,

RS(F) ≤ C√
n
.

Proof.

RS(F) = E
σ

[
sup

∥w∥2≤1

1

n

n∑
i=1

σi ⟨w, xi⟩

]

=
1

n
E
σ

[
sup

∥w∥2≤1

〈
w,

n∑
i=1

σixi

〉]

=
1

n
E
σ

[∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
2

]

=
1

n

√√√√ n∑
i=1

∥xi∥22 ≤ C√
n
.

B.6.3 Elementary inequalities

We will prove some elementary inequalities that will be useful in the proof of our main results.
Lemma B.26. For any x, y ∈ R, |relu(x)2 − relu(y)2| ≤ (|x|+ |y|)|x− y|.

Proof. We will assume WLOG that x > y. We then discuss the following three cases.

1. 0 ≥ x > y, then the result is trivial.

2. x > 0 ≥ y, then |relu(x)2 − relu(y)2| = x2 ≤ (|x|+ |y|)|x− y|.

3. x > y > 0, then |relu(x)2 − relu(y)2| = x2 − y2 = (|x|+ |y|)|x− y|.

This completes the proof.

Lemma B.27. For any a, b, c, d ∈ R, if a+ d = b+ c, then

|relu(a) + relu(d)− relu(b)− relu(c)|2 ≤ (relu(a))2 + (relu(d))2 + (relu(b))2 + (relu(c))2 .

The equality holds if and only if three of the four values are not positive.

Proof. WLOG we assume a ≥ b ≥ c ≥ d. As ReLU is convex, we have that relu(a) + relu(d) −
relu(b)−relu(c) ≥ 0. Further, we have that relu(a)+relu(d)−relu(b)−relu(c) ≤ relu(a)−relu(b) ≤
relu(a). Thus, we have the desired result.
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Learning Rate Perturbation Radius Batch size Weight Decay Epochs
Figure 1a 0.01 0 100 0.05 1e5
Figure 1b 0.01 0.05 1 0 1e5
Figure 2a 0.005 0.1 1 0 1e5

0.003 1 1 0 1e5
Figure 4a 0.01 0 100 0.05 1e5
Figure 4b 0.01 0.05 1 0 2e5

0.01 0.1 1 0 4e5
Figure 5a 0.001 0 1 0.05 1e5
Figure 5b 0.0005 0.05 1 0 1e5

0.001 0.1 1 0 1e5
0.005 1 1 0 5e3

Figure 6a 0.1 0.1 1 0 1e5
Figure 6b 0.01 0.1 1 0 5e2

0.01 0.5 1 0 5e2
0.01 1 1 0 5e2

Figure 7a 0.01 0.2 1 0 1e5
Figure 7b 0.01 0.2 1 0 1e5
Figure 8a 0.1 0 10 0.01 1e5
Figure 8b 0.1 0.2 1 0 1e5
Figure 9a 0.01 0 1 0.05 1e5
Figure 9b 0.1 0.2 1 0 1e5
Figure 10a 0.1 0.2 1 0 4e4
Figure 10b 1 0.5 1 0 1e3

1 1 1 0 1e5
Figure 11a 0.01 0 1 0.05 1e5
Figure 11b 0.01 0.05 1 0 1e5

Table 2: Training details for Experiments. For Figures 6a and 10b, we scale down the initialization
of the first layer by a factor of 100 to avoid minimizing the sharpness by simply increasing the norm
at the beginning.

C Experiments

C.1 Training Details

For all the experiments, we use networks with width 500. The learning rates, perturbation radius, and
training epochs are summarized in Table 2. For those experiments where there are adjustments in
hyperparameters through the training process, we report all the hyperparameters in multiple rows.
We use 8 NVIDIA 2080 GPUs to train the models. The training time for each experiment is around
12 hours per 1e5 epochs

C.2 Extension To Uniform Ball Distribution

As our Theorems 4.1 and B.1 suggests, the generalization and memorization results should hold for
data distribution other than boolean hypercube. We perform experiments on uniform ball distribution
to verify this. Specifically, we sample data points uniformly from the ball with radius

√
d with

dimension d = 10 and the label is defined as y = |x[1]|−|x[2]|. The results are shown in Figure 7. We
can see that the flattest minimizers of the two architectures have very different generalization behavior.
The flattest minimizer of the MLP without bias has a much better generalization performance than
the one with bias. This is consistent with our theoretical results.

C.3 Extension To Logistic Loss

As Theorem B.2 and lemma B.13 suggests, our results can be extended to logistic loss with label
smoothing. We perform all our experiments mentioned in the main text on the same distribution Pxor,
with the mean squared error loss replaced by logistic loss with label smoothing p = 0.2 to verify this.
The results are shown in Figures 8 to 10.
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(a) 2-MLP-No-Bias (b) 2-MLP-Bias

Figure 7: Uniform Ball Distribution. We train a 2-layer MLP with ReLU activation with and
without Bias using 1-SAM on uniform ball distribution with dimension d = 10 and training set size
n = 100. One can again see the striking difference between the generalization behavior of the flattest
minimizers of the two architectures.

(a) Baseline (b) 1-SAM

Figure 8: Scenario I with Logistic Loss. We train a 2-layer MLP with ReLU activation without Bias
using gradient descent with weight decay and 1-SAM on Pxor with dimension d = 30 and training
set size n = 100. In both cases, the model reaches perfect generalization. Notice that although weight
decay doesn’t explicitly regularize model sharpness, the flatness of the model decreases through
training, which is consistent with our Lemma 3.1 relating sharpness to the norm of the weight.

(a) Baseline (b) 1-SAM

Figure 9: Scenario II with Logistic Loss. We train a 2-layer MLP with ReLU activation with Bias
using gradient descent with weight decay and 1-SAM on Pxor with dimension d = 30 and training
set size n = 100. One can observe a distinction between the two settings. The minimum reached
by 1-SAM is flatter but the model generalizes much worse and even starts to degenerate after 2000
epochs. The difference between Figures 8b and 9b is similar to the difference between Figures 1b
and 4b
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(a) Simplified BatchNorm (b) Simplified LayerNorm

Figure 10: Models with Normalization and Logistic Loss. We train two-layer ReLU networks
with simplified BatchNorm and LayerNorm on data distribution Pxor with dimension d = 30 and
sample complexity n = 100 using 1-SAM. We can see that in both cases, the models nearly perfectly
generalize.

(a) Baseline (b) 1-SAM

Figure 11: Scenario II with Deeper Networks. We train a 3-layer MLP with ReLU activation with
Bias using gradient descent with weight decay and 1-SAM on Pxor with dimension d = 30 and
training set size n = 100. One can observe a distinction between the two settings. The minimum
reached by 1-SAM is flatter, but the model generalizes much worse.

C.4 Extension To Deeper Networks

Our Theorem 4.1 suggests that memorization solutions can exist for deeper networks with biased
terms in the first layer. We perform experiments on deeper networks to verify this. Specifically, we
train a 3-layer MLP with ReLU activation with bias term in the first layer on Pxor with dimension
d = 30 and training set size n = 100. The results are shown in Figure 11. We can see that the
flattest minimizer of the 3-layer MLP with bias term in the first layer has a much worse generalization
performance than the baseline. This is consistent with our theoretical results.
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