
Under review as a conference paper at ICLR 2021

−1 0 1

d

0.0

0.5

1.0

h(
d,

 t)

t = 0.8150

(a) G.E. Aware

−1 0 1

d

0.0

0.5

1.0

h(
d,

 t)

t = 0.8150

(b) G.E. Ignorant

−1 0 1

d

0.0

0.5

1.0

h(
d,

 t)

t = 0.9950

(c) G.E. Aware

−1 0 1

d

0.0

0.5

1.0

h(
d,

 t)

t = 0.9950

(d) G.E. Ignorant

Figure 4: Extrapolation results by two neural networks (with identical architectures) that are aware
or ignorant of the governing equation of the Allen–Cahn equation. The blue solid lines are refer-
ence solutions and the red dotted lines are extrapolation predictions. In all cases, better results are
obtained when a neural network is aware of the governing equation, i.e., trained with LG.

A IMPORTANCE OF LEARNING GOVERNING EQUATION

Here, we demonstrate the importance of learning governing equation in solving forward problems
with an example, Allen–Cahn equation. The Allen–Cahn equation is a nonlinear reaction-diffusion
problem, which describes the process of phase separation in alloys:

g(d, t) = ht − 0.0001hdd + 5h3 − 5h = 0, d ∈ [−1, 1], t ∈ [0, 1], (11)

with the initial condition h(d, 0) = d2 cos(πd),∀d ∈ [−1, 1], and the periodic boundary conditions
h(−1, t) = h(1, t) and hd(−1, t) = hd(1, t),∀t ∈ [0, 1]. We note that m = 1 and dbc ∈ {−1, 1}
in this PDE. For computing its reference solutions, a spectral Fourier discretization with 512 modes
and a fourth-order explicit Runge–Kutta temporal integrator with time-step 10−6 is used.

To show the efficacy of the training method in Eqs. 2 through 5, we compare the method with the
following naı̈ve training method with the computed reference solutions:

argmin
θ

LI + LB + LR,

LR
def
=

1

NR

∑
(d,t)

(
f(d, t;θ)− h(d, t)

)2
,

whereLR is to train θ with the reference solutions of the Allen–Cahn equation with h(d, t) (t ≤ 0.8).
We note that the naı̈ve model does not learn the governing equation but learn through the supervision
with the reference solutions.

We also setNG = NR and t ≤ 0.8 to construct LG for the fair comparison with the naı̈ve model. We
adopt the neural network architecture used in (Raissi et al., 2019) and train it with the two different
training methods. As a result, one is aware of the governing equation because we use LG and the
other is ignorant of it because we use LR instead of LG. Figure 4 shows the extrapolation results for
t = {0.8150, 0.9950} obtained by using the two neural networks and we clearly see the governing-
equation-aware neural network outperforms the other. In particular, the two figures at t = 0.9950
shows the efficacy of learning the governing equation: the prediction of the naı̈ve model in Figure 4
(d) is not conforming to the underlying physical laws, considering that the Allen–Cahn equation
is about the separation process of alloy. On the other hand, the model in Figure 4 (c) is aware of
the existence of the valley around x = 0. This simple example demonstrates that the governing-
equation-aware regression model generalizes much better for samples with unseen characteristics,
e.g., extrapolation in the example. Thus, it is of our particular interest to make neural networks
aware of governing equations in this work.

B PROOFS

Theorem B.1. Given a machine learning task, let θ∗ and α∗i,j , for all i, j, be a cooperative equi-
librium solution and governing equation (in terms of LT + L̂I + L̂G + RG) — in other words, we

12

Under review as a conference paper at ICLR 2021

Table 6: The architecture of the network f

Layer Design Input Dim. Output Dim.
1 Conv2d(filter size 3x3, stride 1, padding 1) 62 × 67 62 × 67
2 GroupNormalization(67 groups) 62 × 67 62 × 67
3 Conv2d(filter size 3x3, stride 1, padding 1) 62 × 67 62 × 64
4 GroupNormalizaiton(32 groups) 62 × 64 62 × 64
5 ReLU

cannot minimize LT + L̂I + L̂G +RG only by updating either of θ∗ or α∗i,j . By alternately solving
the forward and the inverse problem, we can obtain θ∗ and α∗i,j , for all i, j.

Proof. We prove the theorem in the following sequence: i) we first prove that the forward problem
is well-posed so that its solution uniquely exists, ii) the inverse problem can also be uniquely solved,
and iii) we can obtain an equilibrium owing to the aforementioned uniquely-solvable characteristics.

Firstly, the forward problem is well-posed under the mild analytic condition of the following Eq. 12
— note that the following terms appear in the left-hand side of Eq. 1.

α0,0 + α1,0f + α2,0f
2 + α3,0f

3 + α0,1fd + α1,1ffd + α2,1f
2fd + α3,1f

3fd + α0,2fdd

+ α1,2ffdd + α2,2f
2fdd + α3,2f

3fdd + α0,3fddd + α1,3ffddd + α2,3f
2fddd + α3,3f

3fddd
(12)

For Eq. 12 to be analytic, f should be analytic w.r.t. d. All of fd, fdd, and fddd become analytic
if f is analytic, and a composition of analytical functions is still analytic. Many neural network
operators are analytic, e.g., softplus, fully-connected, exponential, and log, whereas some others are
not, e.g., ReLU and absolute. Therefore, the analytical requirement can be fulfilled. If well-posed,
the solution of the forward problem becomes a special case of the Cauchy problem and its solution
uniquely exists.

Secondly, we prefer the most sparse governing equation that minimized the loss. Therefore, its
solution can be uniquely defined and our training pursues it.

Lastly, let θ(k) and α(k)
i,j , for all i, j, be the solution and the governing equation obtained at k-th

iteration of the algorithm. We quit the while loop when the sum of all the loss values converge and
do not decrease in Alg. 1, which corresponds to the definition of the Nash equilibrium. Therefore,
our algorithm always returns an equilibrium state.

C IMAGE CLASSIFICATION WITH MNIST AND SVHN

We describe detailed experimental environments. Table 6 shows the detailed network architecture
of f that we used for our experiments. The list of hyperparameters that we had considered for our
experiments is as follows:

1. Train for 160 epochs with a batch size 128,

2. Use a MSE loss function for L̂G, L̂I and a cross entropy loss function for LT ,

3. Use the standard PyTorch Adam optimizer for updating the governing equation g, (d, t) ∈
H , and the network f . On SVHN dataset, for the governing equation and (d, t) pairs, we
use a weight decay of 1e-3. For MNIST, we update the governing equation and (d, t) pairs
every epoch, and for SVHN, we update the governing equation and (d, t) pairs every 5
epochs.

4. htask is a feature map in this case and its output size is in Table 6. We note that PR-Net has
the same output size as that of ODE-Net. Refer to Section H about how we construct htask

with the set H of (d, t) pairs.

13

Under review as a conference paper at ICLR 2021

Table 7: The architecture of the network f

Layer Design Input Dim. Output Dim.
1 Conv2d(1x1, stride 1) 162 × 67 162 × 384
2 BatchNorm2d 162 × 384 162 × 384
3 HSwish
4 GroupConv2d(5x5, stride 1, groups 384) 162 × 384 162 × 384
5 BatchNorm2d 162 × 384 162 × 384
6 SE Block 162 × 384 162 × 384
7 HSwish
8 Conv2d(1x1, stride 1) 162 × 384 162 × 64
9 BatchNorm2d 162 × 64 162 × 64

5. Utilize different learning rates for each dataset. For MNIST, we use a learning rate of 1e-3
to update the governing equation and (d, t) pairs and for SVHN, we use 3e-4 to update the
governing equation and (d, t) pairs. For every datasets, we adjust the learning rate with a
decay ratio of {0.1, 0.01, 0.001} every 60, 80 and 140 epoch.

D IMAGE CLASSIFICATION WITH TINY IMAGE NET

We describe detailed experimental environments. Table 7 shows the detailed network architecture
of f that we used for our experiments. The list of hyperparameters that we had considered for our
experiments is as follows:

1. Hswish and SE Block in Table 7 refers to hard-swish activation function and squeeze-and-
excitation module used in (Howard et al., 2019), respectively.

2. Train for 150 epochs with a batch size of 64 and use early stopping.

3. Use a MSE loss function for L̂G, L̂I and a cross entropy loss function with label smoothing
0.1 for LT

4. Use three separate optimizers for updating the governing equation g, (d, t) ∈ H , and the
network f . For the governing equation and (d, t) pairs, we use the standard Pytorch Adam
optimizer with the L1 regularization with a coefficient of w = 2e−5 and a weight decay of
2e-4, respectively. We update the governing equation and (d, t) pairs every 5 epochs. For
the network f , we use the SGD optimizer with 0.9 momentum and apply a weight decay of
2e-4 to the learned weights in its convolutional and fully connected layers only.

5. htask is a feature map in this case and its output size is in Table 7. We note that PR-Net has
the same output size as that of ODE-Net. Refer to Section H about how we construct htask

with the set H of (d, t) pairs.
6. Utilize different learning rates for each optimizer. For learning the governing equation and

(d, t) pairs, we use a learning rate of 1e-4. For training the network f , we gradually warm-
up the learning rate for 5 epochs and use the cosine-annealing with the minimum learning
rate set to 2e-4.

7. Use a dropout rate of 0.3 and batch-normalization layers with a momentum of 0.1.

E ADVERSARIAL ATTACK WITH TINY IMAGENET

We describe detailed experimental environments for the reported adversarial attack experiments. We
do not change the network architecture for these experiments. The list of hyperparameters of FGSM
and PGD that we considered for our experiments is as follows:

1. For FGSM attack, we used a maximum perturbation of ε = {0.5/255, 1/255, 3/255}.
2. For PGD attack, we employed a maximum perturbation of ε = {0.5/255, 1/255, 3/255}

with 3 steps with a step-size of α = 1/255.

14

Under review as a conference paper at ICLR 2021

(a) Original (b) Noise (c) Crop (d) Rotation (e) Jittering

Figure 5: Out-of-distribution examples

+ =

(a) FGSM

+ =
(b) PGD

Figure 6: Adversarial attack examples. Goldfish with a confidence of 0.8931 is perturbed to torch
with a confidence of 0.3546 in (a) and to candle with a confidence of 0.4810 in (b).

F TRANSFER LEARNING FROM TINY IMAGENET TO OTHER IMAGE
DATASETS

We describe detailed experimental environments for the reported transfer learning experiments. We
do not change the network architecture for these experiments. We adopt the weights of the Tiny
ImageNet pretrained model, and replace the last fully connected layer with a randomly initialized
one that fits a target dataset. We then fine-tune all the layers of the pretrained model. All the target
datasets are uniformly resized to 64 x 64. For data augmentation, we only used random horizontal
flip for better reproducibility of our experiment. Note that same hyperparameters and training set-
tings are employed for PR-Net, ODE-Net, and MobileNet V3. The list of hyperparameters that we
considered for each target dataset is as follows:

1. To transfer from Tiny ImageNet to CIFAR100, CIFAR10, Food-101, we train for 80 epochs
with a batch size of 64. We gradually warm-up the learning rate to 0.15 for 5 epochs and
use the cosine-annealing with the minimum learning rate set to 2e-4. We utilize a dropout
rate of 0.3 in fully connected layers and employ SGD optimizer with a momentum of 0.9
and a weight decay of 1e-4 applied to the learned weights in the convolutional and fully
connected layers only.

2. To transfer from Tiny ImageNet to FGVC Aircraft and Cars, we train for 80 epochs with
a batch size of 64. We gradually warm-up the learning rate to 0.15 for 5 epochs and use
the cosine-annealing with the minimum learning rate set to 2e-4. We utilize a dropout
rate of 0.3 in fully connected layers and employ SGD optimizer with a momentum of 0.9
and a weight decay of 5e-4 applied to the learned weights in the convolutional and fully
connected layers only.

3. To transfer from Tiny ImageNet to DTD, we train for 150 epochs with a batch size of 64 and
an initial learning rate of 0.001 that drops by a factor of 10 every 50 epoch. We employed
SGD optimizer with a momentum of 0.9 and applied a weight decay of 5e-4 to the learned
weights in the convolutional and fully connected layers only.

G OUT-OF-DISTRIBUTION AND ADVERSARIAL IMAGE SAMPLES

We introduce a selected set of images that we produced for our robustness experiments. Figure 5
shows a set of image samples for the out-of-distribution image classification and Figure 6 shows a
set of images perturbed by FGSM and PGD with ε = 3/255. The original image is predicted as
goldfish with a confidence of 0.8931 by PR-Net. The perturbed image by FGSM is predicted as

15

Under review as a conference paper at ICLR 2021

Table 8: Training overhead in terms of the GPU memory usage (megabytes) and the training time
(seconds per iteration) in MNIST and SVHN

Name # Params MNIST SVHN
Memory Usage Training Time Memory Usage Training Time

ResNet 0.60M 2,359 0.155 2,363 0.206
RK-Net 0.22M 819 0.229 823 0.223

ODE-Net 0.22M 819 0.235 823 0.307
PR-Net 0.21M 836 0.289 841 0.227

Table 9: Training overhead in terms of the GPU memory usage (megabytes) and the training time
(seconds per iteration) in Tiny ImageNet

Name # Params Width Multiplier Tiny ImageNet
Memory Usage Training Time

M.Net V3 1.21M 1 4,989 0.038
ODE-Net 1,36M 1 5,797 0.069
PR-Net 1.36M 1 7,583 0.077

M.Net V3 4.30M 2 9,139 0.057
ODE-Net 4.90M 2 9,977 0.211
PR-Net 4.56M 2 10,685 0.190

torch with a confidence of 0.3546 and the perturbed image by PGD is predicted as candle with a
confidence of 0.4810.

H DISCRETIZING FEATURE MAP DIMENSIONS FOR EFFICIENT PROCESSING

td2d1
Feature map
(6 * 6 * 64)

The same position in all channels (e.g., the
yellow elements) share the same index values

of d1,	d2,	and t	(e.g., the blue elements).

Figure 7: An illustration for
MNIST/SVHN on how to
increase the processing ef-
ficiency by discretizing the
last dimension and share
(d, t) pairs.

One more advantage of using PDEs is that we can discretize some
dimensions2. Given a feature map size of d1 × d2 × d3, one can de-
sign a neural network that outputs each scalar element for d ∈ R3 and
t ∈ [0, T]. However, this approach incurs a large number of queries,
i.e., d1 × d2 × d3 queries, to reconstruct the feature map. To increase
the efficiency in our experiments, we discretize the last dimension
and let the network f outputs a matrix of d1× d2 for each discretized
dimension of d3, in which case d ∈ R2. Therefore, we have d3 ma-
trices (i.e., channels), each of which has a size of d1 × d2. To further
increase the efficiency, we let all the elements in the same position of
the matrices share the same (d, t) pair where d ∈ R2 (See Figure 7
for the case of MNIST and SVHN as an example). In our case, we
append three more channels to the input feature map h(0), each chan-
nel of which contains the index values of d1, d2, and t, respectively.
When t = 0 and d1, d2 = {0, 0.2, 0.4, 0.6, 0.8, 1.0}, therefore, our network f(h(0), d, t;θ) should
output its initial condition h(0) to minimize L̂I — note that we normalize d1 and d2. To minimize
LT , we construct the output feature map htask with the various (d, t) pairs in H .

I TRAINING OVERHEAD

Our proposed PR-Net has several parts to be considered during its training process, e.g., governing
equation. Due to these additional parts, our proposed method requires more resources in comparison
with other baselines. However, training happens only once and after deployment, PR-Net shows
more efficient behaviors, e.g. shorter forward-pass inference time. In this section, we compare the
time and space overhead for MNIST, SVHN, and Tiny ImageNet.

2In fact, a PDE reduces to a system of ODEs after discretizing all spatial dimensions and maintaining
only one time variable, i.e, there is one ODE for each discretized dimension and a system of such ODEs
can approximate the original PDE. In this perspective, neural ODEs can be seen as that i) the hidden vector
dimensions are discretized and ii) the time variable is maintained.

16

Under review as a conference paper at ICLR 2021

100 200 300 400
Iters

6

4

2

0

2

4

6

8

10

Lo
g

lo
ss

LT

LI

LG

(a) Training curve in MNIST

200 400 600
Iters

2

0

2

4

6

8

10

Lo
g

lo
ss

LT

LI

LG

(b) Training curve in SVHN

Figure 8: The curves of log loss values decrease as training goes on in MNIST and SVHN.

Table 10: Image classification datasets used in our experiments

Dataset # Classes Size (Train / Test) Evaluation Metrics
MNIST 10 60,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
SVHN 10 73,257 / 26,032 Top-1, Top-5, Mean & Std. Per-Class

Tiny ImageNet 200 100,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
CIFAR 100 100 50,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
CIFAR 10 10 50,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class

FGVC Aircraft 70 6,667 / 3,333 Top-1, Top-5, Mean & Std. Per-Class
Food-101 101 75,750 / 25,250 Top-1, Top-5, Mean & Std. Per-Class

Describable Textures (DTD) 47 3,760 / 1,880 Top-1, Top-5, Mean & Std. Per-Class
Stanford Cars 196 8,144 / 8,041 Top-1, Top-5, Mean & Std. Per-Class

Table 8 summarizes the training overhead in MNIST and SVHN. ResNet requires the largest amount
of GPU memory but takes the smallest time per iteration. ODE-Net’s training time per iteration is
not as small as that of ResNet because it needs to solve integral problems. PR-Net has more factors
to consider in a training iteration and requires more memory than ODE-Net in almost all cases.
However, ODE-Net requires the longest time per iteration in SVHN because its adaptive step-size
solver needs many steps to solve the reverse-mode integral problems to calculate gradients with
the adjoint sensitivity method (Chen et al., 2018). It is worth noting that RK-Net, which has the
same architecture as ODE-Net but use the standard backpropagation, takes much lesser time than
ODE-Net.

For Tiny ImageNet, we summarize in Table 9. As expected, PR-Net require the largest amount of
memory for its more complicated training loss definitions than those of baselines. However, ODE-
Net requires the longest time per iteration when the width multiplier is set to 2. This phenomenon
also happened for MNIST and SVHN. The reverse-mode integral of the adjoint sensitivity method
has a space complexity of O(1) but in any case it needs to solve an integral problem, which incurs
additional time complexity.

Figure 8 illustrates the curves of LT , L̂I , L̂G in MNIST and SVHN. Both LT and L̂I are easier
to train than L̂G. The governing equation loss L̂G typically starts with a very large value and
decreases slowly as training goes on. In comparison with L̂G, the task lossLT decreases much faster,
which shows the difficulty of learning a physical dynamics (i.e., governing equation) governing the
classification procedures.

17

Under review as a conference paper at ICLR 2021

Table 11: Image classification in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Name M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Width Multiplier 1 1 1 2 2 2
Mobile Blocks 4 3 3 4 3 3
ODE Blocks N/A 1 N/A N/A 1 N/A
PDE Blocks N/A N/A 1 N/A N/A 1

Mean Accuracy 0.5809 0.5547 0.5972 0.6076 0.5672 0.6157
Std. Dev. Accuracy 0.1584 0.1628 0.1473 0.1570 0.1618 0.1496

Params 1.21M 1.36M 1.36M 4.30M 4.90M 4.56M
Inference Time 4.14 5.26 5.23 5.21 8.3 6.25

Out-of-distribution Robustness (Mean Accuracy)
Gaussian Noise 0.4495 0.4165 0.4685 0.4757 0.4474 0.4878

Random Crop & Resize 0.4636 0.4305 0.4841 0.4814 0.4419 0.4965
Random Rotation 0.3961 0.3667 0.4267 0.4256 0.3901 0.4381

Color Jittering 0.4206 0.3812 0.4429 0.4555 0.4108 0.4693
Out-of-distribution Robustness (Std. Dev. Accuracy)

Gaussian Noise 0.1747 0.1697 0.1610 0.1710 0.1754 0.1674
Random Crop & Resize 0.1768 0.1824 0.1731 0.1786 0.1862 0.1801

Random Rotation 0.1623 0.1690 0.1606 0.1719 0.1759 0.1664
Color Jittering 0.1505 0.1495 0.1462 0.1534 0.1491 0.1535

Table 12: Adversarial attacks in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Attack Method M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Mean Accuracy Std. Dev. Accuracy

FGSM(ε = 0.5/255) 0.3860 0.3656 0.4041 0.1778 0.1716 0.1685
FGSM(ε = 1/255) 0.2304 0.2287 0.2499 0.1631 0.1639 0.1561
FGSM(ε = 3/255) 0.0452 0.0464 0.0369 0.0775 0.0791 0.0653
PGD (ε = 0.5/255) 0.3733 0.3525 0.3910 0.1774 0.1726 0.1661
PGD (ε = 1/255) 0.1902 0.1908 0.2133 0.1488 0.1553 0.1467
PGD (ε = 3/255) 0.0218 0.0235 0.017 0.0506 0.0558 0.0480

J ADDITIONAL EXPERIMENTAL RESULTS – PER-CLASS ACCURACY

All datasets we used are summarized in Table 10. Since some datasets have many classes (e.g., 200
classes in Tiny ImageNet), we introduce the mean and standard deviation of per-class accuracy for
each dataset. In this section, we use only the top-1 accuracy to calculate the mean and standard
deviation of per-class accuracy — we did not use the per-class accuracy in the main paper. We note
that lower (resp. larger) values are preferred for the standard deviation (resp. for the mean).

In Table 11, we summarize the mean and the standard deviation of per-class accuracy for our Tiny
ImageNet classification and out-of-distribution robustness experiments. In the Tiny ImageNet clas-
sification experiment, PR-Net shows the smallest standard deviation in all cases, which means that
it achieved more uniform per-class accuracy than other baselines. In some cases, ODE-Net fails to
show more uniform per-class accuracy than MobileNet V3. We could observe similar patterns for
the standard deviation in the out-of-distribution robustness experiment.

For our adversarial attack experiment, we summarize the mean and the standard deviation of per-
class accuracy in Table 12. PR-Net shows smaller standard deviations than other baselines. Some-
times, ODE-Net also shows good performance.

The datasets we used for our transfer learning experiments also have many classes and some of them
are not balanced, e.g., Aircraft, DTD, and Cars. In those unbalanced datasets, the mean of per-class
accuracy is different from the mean accuracy in Table 5. We summarize their means and standard
deviations of per-class accuracy in Table 13. As reported, PR-Net shows smaller standard deviation
values than baselines in many cases. For MNIST and SVHN, all methods have good per-class
accuracy distribution patterns.

18

Under review as a conference paper at ICLR 2021

Table 13: Transfer learning in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Dataset M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Mean Accuracy Std. Dev. Accuracy

CIFAR100 0.7676 0.7460 0.7750 0.1139 0.1142 0.1146
CIFAR10 0.9403 0.9280 0.9417 0.0301 0.04 0.029
Aircraft 0.5922 0.5704 0.6364 0.1889 0.1975 0.1909

Food-101 0.7317 0.7128 0.7366 0.1156 0.1199 0.1135
DTD 0.4819 0.5016 0.5154 0.1546 0.1683 0.1515
Cars 0.6322 0.5576 0.6294 0.1358 0.127 0.1360

K FEATURE MAP ANALYSES

We also analyzed the feature maps created by MobileNet V3, ODE-Net, and PR-Net in Figure 9.
For this, we use the method of image representation inversion which i) is to find an image whose
representation best matches a given representation vector, and ii) also had been used in (Engstrom
et al., 2019a) to check the quality of feature maps. According to (Engstrom et al., 2019a), robust
representations are approximately invertible. For MoblieNet V3, ODE-Net, and PR-Net, we recon-
struct the target image using the representation vector produced at the third Mobile block of each
model and strictly follow the inversion method used in (Mahendran & Vedaldi, 2015) after down-
loading the program codes in the respected github repository3. As shown in Figure 9, our PR-Net
shows the best inversion quality in many cases.

Figures 10 and 11 visualizes the feature maps of ResNet, ODE-Net, and PR-Net for MNIST and
SVHN using t-SNE algorithm. In terms of human visual perception, they all look similar. We further
employed the silhouette score to evaluate the quality of clusters on t-SNE embeddings, where the
number of clusters is the number of classes. PR-Net shows the best clustering outcomes by classes
in Table 14, e.g., a silhouette score of 0.4959 for ResNet in MNIST vs. 0.4991 for ODE-Net vs.
0.5079 for PR-Net.

Table 14: The silhouette score of clustering feature maps in MNIST and SVHN

Name MNIST SVHN
ResNet 0.49594527 0.42278063
RK-Net 0.5053296 0.42842203

ODE-Net 0.4991746 0.42694366
PR-Net 0.5079406 0.43123975

3https://github.com/utkuozbulak/pytorch-cnn-visualizations

19

https://github.com/utkuozbulak/pytorch-cnn-visualizations

Under review as a conference paper at ICLR 2021

(a) M.Net V3 (b) ODE-Net (c) PR-Net (d) Original

(e) M.Net V3 (f) ODE-Net (g) PR-Net (h) Original

(i) M.Net V3 (j) ODE-Net (k) PR-Net (l) Original

(m) M.Net V3 (n) ODE-Net (o) PR-Net (p) Original

(q) M.Net V3 (r) ODE-Net (s) PR-Net (t) Original

Figure 9: The visualization of image representation inversion in Tiny ImageNet

(a) ResNet (b) ODE-Net (c) PR-Net

Figure 10: The visualization of feature maps in MNIST. We use t-SNE to project the feature maps
onto a 2-dimensional space.

20

Under review as a conference paper at ICLR 2021

(a) ResNet (b) ODE-Net (c) PR-Net

Figure 11: The visualization of feature maps in SVHN. We use t-SNE to project the feature maps
onto a 2-dimensional space.

21

