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Appendix

A.1 Hyper-parameters for Imagen fine-tuning and sample generation.

The quality, diversity, and speed of text-conditioned diffusion model sampling are strongly affected by mul-
tiple hyper-parameters. These include the number of diffusion steps, where larger numbers of diffusion steps
are often associated with higher quality images and lower FID. Another hyper-parameter is the amount of
noise-conditioning augmentation (Saharia et al., 2022b), which adds Gaussian noise to the output of one
stage of the Imagen cascade at training time, prior to it being input to the subsequent super-resolution
stage. We considered noise levels between 0 and 0.5 (with images in the range [0,1]), where adding more
noise during training degrades more fine-scale structure, thereby forcing the subsequent super-resolution
stage to be more robust to variability in the images generated from the previous stage.

During sampling, we use classifier-free guidance (Ho & Salimans, 2022; Nichol et al., 2021), but with smaller
guidance weights than Imagen, favoring diversity over image fidelity to some degree. With smaller guidance
weights, one does not require dynamic thresholding (Saharia et al., 2022b) during inference; instead we opt
for a static threshold to clip large pixel values at each step of denoising. Ho et al. (Ho & Salimans, 2022)
identify upper and lower bounds on the predictive variance, Σθ(xt, t), used for sampling at each denoising
step. Following (Nichol & Dhariwal, 2021) (Eq. 15) we use a linear (convex) combination of the log upper
and lower bounds, the mixing parameter for which is referred to as the logvar parameter. Figures 3 and 4
show the dependence of FID Val, and training set IS and Classification Accuracy Scores on guidance weight
and logvar mixing coefficient for the base model at resolution 64×64 and the 64→ 256 super-resolution
model. These were used to help choose model hyper-parameters for large-scale sample generation.

Below are further results relate to hyperparameter selection and its impact on model metrics.
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Figure A.1: Left: Training set CAS vs IS Pareto curves for train set resolution of 64×64 showing the impact
of guidance weights. Right: FID Train vs IS Pareto curves for resolution of 64x64 showing the impact of
guidance weights.
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Figure A.2: Sampling refinement for 64×64 base model. Left: Validation set FID vs. guidance weights for
different values of log-variance. Right: Validation set FID vs. Inception score (IS) when increasing guidance
from 1.0 to 5.0.
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Figure A.3: Top-1 and Top-5 training set classification accuracy score (CAS@1.2M) vs FID Train
(FID@1.2M) Pareto curves (sweeping over guidance weight) showing the impact of conditioning noise aug-
mentation at 256×256 when sampling with different number of steps. As indicated by number overlaid on
each trend line, guidance weight is decreasing from 30 to 1.
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Figure A.4: Top-1 and Top-5 training set classification accuracy score (CAS@1.2M) vs FID Train
(FID@1.2M) Pareto curves (sweeping over guidance weight) showing the impact of conditioning noise aug-
mentation at 256×256 when sampling with different number of steps at a fixed noise level. As indicated
by number overlaid on each trend line guidance weight is decreasing from 30 to 1. At highest noise level
(0.5) lowering number sampling step and decreasing guidance can lead to a better joint FID@1.2M and
CAS@1.2M. At lowest noise level (0.0) this effect is subtle and increasing sampling steps and lower guidance
weight can help to improve CAS@1.2M.
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Figure A.5: Fine-tuning of SR model helps to jointly improve classification accuracy as well as FID of the
vanilla Imagen.
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Figure A.6: Sampling refinement for 1024×2014 super resolution model. Left: CAS vs. guidance weights
under varying noise conditions. Right: Training set CAS vs. Inception score (IS) when increasing guidance
from 1.0 to 5.0 under varying noise conditions.

A.2 Class Alignment of Imagen vs. Fine-Tuned Imagen

What follows are more samples to compare our fine-tuned model vs. the Imagen model are provided in
Figures A.7, A.8, and A.9. In this comparison we sample our fine-tuned model using two strategies. First,
we sample using the proposed vanilla Imagen hyper-parameters which use a guidance weight of 10 for the
sampling of the base 64×64 model and subsequent super-resolution (SR) models are sampled with guidance
weights of 20 and 8, respectively. This is called the high guidance strategy in these figures. Second, we
use the proposed sampling hyper-parameters as explained in the paper which includes sampling the based
model with a guidance weight of 1.25 and the subsequent SR models with a guidance weight of 1.0. This is
called the low guidance weight strategy in these figures.
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Figure A.7: Example 1024×1024 images from vanilla Imagen (first row) vs. fine-tuned Imagen sampled with
Imagen hyper-parameters (high guidance, second row) vs. fine-tuned Imagen sampled with our proposed
hyper-parameter (low guidance, third row). Fine-tuning and careful choice of sampling parameters help to
improve the alignment of images with class labels, and also improve sample diversity. Sampling with higher
guidance weight can improve photorealism, but lessens diversity.
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Figure A.8: Example 1024×1024 images from vanilla Imagen (first row) vs. fine-tuned Imagen sampled with
Imagen hyper-parameters (high guidance, second row) vs. fine-tuned Imagen sampled with our proposed
hyper-parameter (low guidance, third row). Fine-tuning and careful choice of sampling parameters help to
improve the alignment of images with class labels, and also improve sample diversity. Sampling with higher
guidance weight can improve photorealism, but lessens diversity.
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Figure A.9: Example 1024×1024 images from vanilla Imagen (first row) vs. fine-tuned Imagen sampled with
Imagen hyper-parameters (high guidance, second row) vs. fine-tuned Imagen sampled with our proposed
hyper-parameter (low guidance, third row). Fine-tuning and careful choice of sampling parameters help to
improve the alignment of images with class labels, and also improve sample diversity. Sampling with higher
guidance weight can improve photorealism, but lessens diversity.
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A.3 High Resolution Random Samples from the ImageNet Model

Figure A.10: Random samples at 1024×1024 resolution generated by our fine-tuned model. The classes are
snail (113), panda (388), orange (950), badger (362), indigo bunting (14), steam locomotive (820), carved
pumpkin (607), lion (291), loggerhead sea turtle (33), golden retriever (207), tree frog (31), clownfish (393),
dowitcher (142), lorikeet (90), school bus (779), macaw (88), marmot (336), green mamba (64).
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A.4 Hyper-parameters and model selection for ImageNet classifiers.

This section details all the hyper-parameters used in training our ResNet-based model for CAS calculation,
as well as the other ResNet-based, ResNet-RS-based, and Transformer-based models, used to report classifier
accuracy in Table 3. Table A.1 and Table A.2 summarize the hyper-parameters used to train the ConvNet
architectures and vision transformer architectures, respectively.

For classification accuracy (CAS) calculation, as discussed before we follow the protocol suggested in (Ravuri
& Vinyals, 2019). Our CAS ResNet-50 classifier is trained using a single crop. To train the classifier, we
employ an SGD momentum optimizer and run it for 90 epochs. The learning rate is scheduled to linearly
increase from 0.0 to 0.4 for the first five epochs and then decrease by a factor of 10 at epochs 30, 60, and
80. For other ResNet-based classifiers we employ more advanced mechanisms such as using a cosine schedule
instead of step-wise learning rate decay, larger batch size, random augmentation, dropout, and label smooth-
ing to reach competitive performance (Sun et al., 2017). It is also important to emphasize that ResNet-RS
achieved higher performance than ResNet models through a combination of enhanced scaling strategies,
improved training methodologies, and the implementation of techniques like the Squeeze-Excitation module
(Bello et al., 2021). We follow the training strategy and hyper-parameter suggested in (Bello et al., 2021) to
train our ResNet-RS-based models.

For vision transformer architectures we mainly follow the recipe provided in (Beyer et al., 2022) to train a
competitive ViT-S/16 model and (Touvron et al., 2021) to train DeiT family models. In all cases we re-
implemented and train all of our models from scratch using real only, real + generated data, and generated
only data until convergence.

Table A.1: Hyper-parameters used to train ConvNet architectures including ResNet-50 (CAS) (Ravuri &
Vinyals, 2019), ResNet-50, ResNet-101, ResNet-152, ResNet-RS-50, ResNet-RS-101, and ResNet-RS-152
(Bello et al., 2021).

Model ResNet-50 (CAS) ResNet-50 ResNet-101 ResNet-152 ResNet-RS-50 ResNet-RS-101 ResNet-RS-152

Epochs 90 130 200 200 350 350 350

Batch size 1024 4096 4096 4096 4096 4096 4096
Optimizer Momentum Momentum Momentum Momentum Momentum Momentum Momentum
Learning rate 0.4 1.6 1.6 1.6 1.6 1.6 1.6
Decay method Stepwise Cosine Cosine Cosine Cosine Cosine Cosine
Weight decay 1e-4 1e-4 1e-4 1e-4 4e-5 4e-5 4e-5
Warmup epochs 5 5 5 5 5 5 5
Label smoothing - 0.1 0.1 0.1 0.1 0.1 0.1
Dropout rate - 0.25 0.25 0.25 0.25 0.25 0.25
Rand Augment - 10 15 15 10 15 15

24



Published in Transactions on Machine Learning Research (10/2023)

Table A.2: Hyper-parameters used to train the vision transformer architectures, i.e., ViT-S/16 (Beyer et al.,
2022), DeiT-S (Touvron et al., 2021), DeiT-B (Touvron et al., 2021), and DeiT-L (Touvron et al., 2021).

Model ViT-S/16 DeiT-S DeiT-B DeiT-L

Epochs 300 300 300 300

Batch size 1024 4096 4096 4096
Optimizer AdamW AdamW AdamW AdamW
Learning rate 0.001 0.004 0.004 0.004
Learning rate decay Cosine Cosine Cosine Cosine
Weight decay 0.0001 - - -
Warmup epochs 10 5 5 5

Label smoothing - 0.1 0.1 0.1

Rand Augment 10 9 9 9
Mixup prob. 0.2 0.8 0.8 0.8
Cutmix prob. - 1.0 1.0 1.0

Table A.3: Augmenting the real ImageNet training dataset by adding synthetic images, at resolutions 64×64,
256×256 and 1024×1024, we measure the mean accuracy (on the ImageNet Val set) and standard deviation of
ResNet-50 ImageNet classifiers, computed from 10 independent training runs. The baseline Top-1 accuracy
of the classifier trained on real data (ie the top row) is 76.39± 0.21. These results are plotted in Figure 6.

Train Set 64×64 256×256 1024×1024
Size (M) Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

1.2 68.63 ± 0.15 88.42 ± 0.10 76.39 ± 0.21 93.25 ± 0.04 76.39 ± 0.21 93.25 ± 0.08
1.5 69.53 ± 0.13 88.65 ± 0.05 76.64 ± 0.12 93.35 ± 0.06 77.05 ± 0.09 93.47 ± 0.07
1.8 69.93 ± 0.08 89.01 ± 0.01 77.09 ± 0.08 93.50 ± 0.01 77.57 ± 0.12 93.65 ± 0.09
2.1 70.53 ± 0.09 89.47 ± 0.08 77.30 ± 0.05 93.61 ± 0.07 77.95 ± 0.07 93.85 ± 0.04
2.4 70.65 ± 0.12 89.71 ± 0.01 77.61 ± 0.08 93.84 ± 0.03 78.12 ± 0.05 94.07 ± 0.06
2.7 70.98 ± 0.10 89.86 ± 0.03 77.49 ± 0.04 93.69 ± 0.08 77.94 ± 0.10 93.91 ± 0.11
3.0 71.37 ± 0.12 89.97 ± 0.05 77.36 ± 0.08 93.65 ± 0.04 77.72 ± 0.13 93.78 ± 0.07
3.3 71.47 ± 0.09 90.13 ± 0.01 77.25 ± 0.07 93.62 ± 0.06 77.58 ± 0.12 93.71 ± 0.04
3.6 71.53 ± 0.09 90.30 ± 0.05 77.16 ± 0.04 93.55 ± 0.04 77.48 ± 0.04 93.66 ± 0.05
4.8 71.98 ± 0.09 90.50 ± 0.05 76.52 ± 0.04 93.18 ± 0.08 76.75 ± 0.07 93.25 ± 0.04
6.0 72.31 ± 0.10 90.69 ± 0.07 76.09 ± 0.08 92.94 ± 0.07 76.34 ± 0.13 92.95 ± 0.06
7.2 72.44 ± 0.11 90.81 ± 0.05 75.81 ± 0.08 92.77 ± 0.08 75.87 ± 0.09 92.71 ± 0.01
8.4 72.65 ± 0.10 90.84 ± 0.10 75.44 ± 0.06 92.62 ± 0.04 75.57 ± 0.07 92.50 ± 0.06
9.6 72.75 ± 0.09 90.90 ± 0.04 75.28 ± 0.10 92.52 ± 0.07 75.10 ± 0.19 92.26 ± 0.07
10.8 72.86 ± 0.11 90.91 ± 0.04 75.11 ± 0.12 92.44 ± 0.04 74.72 ± 0.13 91.96 ± 0.20
12.0 72.98 ± 0.09 91.01 ± 0.03 75.04 ± 0.05 92.31 ± 0.06 74.24 ± 0.09 91.64 ± 0.16

25


