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A Proofs574

A.1 Proofs of results from Section 4575

A.1.1 Proof of Proposition 4.1576

Proof. Reformulating (4.1) we find that with probability at least 1 − δ it holds that:577

sup
f∈F

|(P − Pn)f | ≤ R(FZ) +
√

2∥F∥∞ log(2/δ)√
n

. (A.1)

Next, we compound the bounds for R(FZ). The optimum α > 0 in the first line of (4.2) is the578

one for which n
9 = ln N (F , α, ∥ · ∥∞). Keeping in mind (4.6), we choose α = diam(Z)n− 1

ddimZ579

in (4.2), which gives (abbreviating d = ddimZ, D = diamZ)580

R(FZ) ≲ D/n1/d + n−1/2
ˆ ∞

Dn−1/d

(D/t)d/2dt = D/n1/d + (D/n)1/2
ˆ ∞

n−1/d

τ−d/2dτ

= D

n1/d

(
1 + 2

d − 2

)
.

Now the last equation and equation (A.1) yield the claim.581

A.1.2 Proof of Proposition 4.2582

We start with a preliminary result under hypotheses of strict equivariance. In this case,583

we are able to use a change of variables to reduce the generalization error formula to an584

equivalent one depending only on a measurable choice of G-orbit representatives of elements585

from Z:586

Proposition A.1. Let F be a set of G-invariant functions, and let Z0 ⊂ Z be a choice of587

G-orbit representatives for points in Z, such that ι0 : Z → Z0 associating to each z ∈ Z its588

orbit representative z0, is Borel measurable. Let F0 := {f |Z0 : f ∈ F} and denote by ι0(D)589

the image measure of D. Then for each n ∈ N if {Zi}n
i=1 are i.i.d. samples with Zi ∼ D and590

Z0
i := ι0 ◦ Zi, we have591

GenErr(F , {Zi}, D) = GenErr(G)(F , {Zi}, D) = GenErr(F0, {Z0
i }, ι0(D)).

Proof. For the first equality, we use the definition of GenErr and the change of variable592

formula (3.1) and the fact that G-invariant functions f satisfy f(Z) = Eg[f(g · Z)]. For the593

second equality, note that by hypothesis, for each f ∈ F we have f(z) = f(g · z) for all594

g ∈ G, z ∈ Z, in particular f(z) = f(ι0(z)) and we conclude by a change of variable by the595

map ι0 in the expectations from the definition of GenErr(G).596

Now the proof Proposition 4.2 combines the above idea with a simple extra step:597

Proof of Proposition 4.2: The proof uses the triangular inequality. For f ∈ F and g ∈ Stabϵ,598

we have:599

|Pf − Pnf | =

∣∣∣∣∣E[f(Z)] − 1
n

n∑
i=1

f(Zi)

∣∣∣∣∣ ≤

∣∣∣∣∣E[g · f(Z)] − 1
n

n∑
i=1

g · f(Zi)

∣∣∣∣∣+ 2∥g · f − f∥∞.

By averaging over g ∈ Stabϵ, we obtain the inequality in the statement of the proposition. The600

equality follows by a change of variable via map ι0
ϵ , exactly as in the strategy of Proposition601

A.1.602

A.1.3 Proof of Corollary 4.3 and of the more general result of Theorem A.3603

In order to make the treatment better digestible, we first consider the intuitively simpler604

case of strict equivariance, and then describe how to extend it to the more general case of605

approximate and partial equivariance. In this case, if we restrict our equivariant functions to606

only the space of orbit representatives Z0, the dimension counts from classical generalization607

bounds of Proposition 4.1 improve as follows:608

15



Corollary A.2. Assume that F is composed of G-invariant functions and that d0 :=609

ddim(Z0) > 2. Also, denote D0 := diam(Z0). With the same notation as in Proposition A.1610

and with the hypotheses of Proposition 4.1, for any probability distribution D over Z, the611

following holds with probability at least 1 − δ:612

GenErr(F , {Zi}, D) ≲ d0

d0 − 2

(
Dd0

0
n

)1/d0

+ n−1/2
√

∥F∥∞ log(2/δ).

Proof. Due to Proposition A.1, we only need to bound GenErr(F0, {Z0
i }, ι0(D)). Thus it613

suffices to apply Proposition 4.1 for the above function. We note that ∥F0∥∞ ≤ ∥F∥∞ to614

conclude.615

The drawback of the above Corollary, is that it leaves open the question of how to actually616

bound the diameter and dimension of Z0, on which we do not have direct control. The next617

steps we take consist precisely in translating the information from properties of G to relevant618

properties of Z0.619

A first, simpler, approach could be the following. Under the reasonable assumption that Z, Z0620

have diameter greater than 1, the leading term on the left in Corollary A.2 is n−1/d0 .Thus621

the optimal choices of Z0 are those which minimize the doubling dimension d0 = ddim(Z0)622

amongst sets of representatives of G-orbits. This is a weak regularity assumption, implying623

that we want Z0 to not oscillate wildly. The effect of G on coverings is evident in case G,624

Z0 are manifolds, and Z = Z0 × G (see (A.3) for the strictly equivariant case, and the more625

general (A.5) for the general case). Since ddim coincides with topological dimension, we626

immediately have627

d0 = d − dim(G).
Intuitively, the dimensionality of G can be understood as eliminating degrees of freedom628

from Z, and it is this effect that improves generalization by n−1/(d−dim(G)) − n−1/d.629

In order to include more general situations, we now describe a second, more in-depth approach.630

We take a step back and rather than addressing direct diameter and dimension bounds631

for Z0, we go "back to the source" of Proposition 4.1. We update the bounds on covering632

numbers of Z0, directly in terms of the G-action and of Z. The ensuing framework is robust633

enough to later include, after a few adjustments, also the cases of partial and approximate634

equivariance. Here is our fundamental bound, which generalizes and extends [49, Thm.3].635

Theorem A.3. Assume that Z is a metric space with distance d and S ⊂ G is a subset of a636

metric group G consisting of transformations g : Z → Z (with action denoted g · z := g(z))637

for which there exists a choice of S-orbit representatives Z0 ⊂ Z and a distance function638

dG on S satisfying the following for L, L′ ∈ (0, +∞] (with the conventions 1/ + ∞ := 0 and639

N (X, 0) := +∞, N (X, +∞) := 0):640

1. For all z0, z′
0 ∈ Z0 and all g ∈ S it holds that 1

L d(z0, z′
0) ≤ d(g ·z0, g ·z′

0) ≤ L′d(z0, z′
0).641

2. For all g, g′ ∈ S and z0, z′
0 ∈ Z0 it holds that 1

L dG(g, g′) ≤ d(g · z0, g′ · z′
0) ≤642

L′dG(g, g′).643

Then for each δ′ > 0 the following holds644

N (Z0, 2δ′L)N (S, 2δ′L) ≤ N (Z, δ′) ≤ N (Z0, δ′/2L′)N (S, δ′/2L′). (A.2)

Before the proof, we observe how Corollary 4.3 can be recovered using the choice L > 0, L′ =645

+∞ in Theorem A.3:646

Proof of Corollary 4.3: We apply Theorem A.3 to S = Stabϵ and Z0 = Z0
ϵ as in the corollary647

statement. Then we take δ = 2Lδ′ in the conclusion (A.2), and consider only the lower648

bound inequality, which directly gives the claim of the corollary.649

Proof of Theorem A.3: In this proof, we will denote a minimal α-ball cover of a metric space650

X by Xα.651
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Note that we are not assuming G to be a group, but due to lower bound in property 1. it652

follows that z0 7→ g · z0 is injective (for z0 ̸= z′
0 we have d(z0, z′

0) > 0 and thus g · z0 ≠ g · z′
0),653

and when below we write "g−1" this has to be interpreted as the inverse of the g-action,654

restricted to its image.655

Further, note that the case when one of L, L′ is +∞, corresponds to removing the part of656

the assumptions (and of the conclusions) involving that value, thus we only consider the case657

of finite L′ and finite L.658

On fixing an arbitrary point z ∈ Z, we can write z = g · z0 for a suitable g ∈ G, z0 ∈ Z0.659

Let η := δ′/2L′. For fixed covers Z0
η , Gη, there exists a point z′

0 ∈ Z0
η with d(z′

0, z0) < η and660

g′ ∈ Gη with dG(g′, g) < η. Thus by property 1. we have d(g · z′
0, z) < L′η = ϵ/2 and by661

property 2. we have d(g′ · z′
0, g · z′

0) < L′η = δ′/2. By the triangle inequality, d(g′ · z′
0, z) < δ′662

and thus Gη · Z0
η is an δ′-cover of Z. Thus we have663

N (Z, δ′) ≤ #Gδ′/2L′ #Z0
δ′/2L′ ,

optimizing over the cardinalities on the right hand side yields the second inequality in (A.2).664

Now consider an δ′-cover Zδ′ of Z, and for η = 2δL consider an η-cover Gη of G. We find665

that for each z ∈ Zδ′ , there exists at most one g ∈ Gη such that dist(z, g · Z0) < η/2L = δ′.666

Notice that if this were false, we could use the triangle inequality and contradict property 2.667

in the statement. For each g ∈ Gη denote Zg the set of such points z ∈ Zδ′ such that there668

exists x ∈ g · Z0, and assign exactly one such x = x(z) to each z, forming a set Xg of all669

such x(z). Any other point x′ ∈ g · Z0 such that d(x′, z) < δ′ then satisfies d(x′, x) < 2δ′ by670

triangle inequality, and thus Xg is a 2δ′-cover of g ·Z0. If for g ·z0 ∈ g ·X0 the point x ∈ g ·X0671

satisfies d(g · z0, x) < 2δ′, then by property 1. in the statement we have d(z0, g−1 · x) < 2δ′L,672

and thus g−1 · Xg is a 2δ′L-cover of Z0, having the same cardinality as Zg. We then compute673

as follows, proving the first inequality in (A.2):674

N (Z, δ′) ≥
∑

g∈Gη

#Zg =
∑

g∈Gη

#(g−1 · Xg) ≥ N (G, 2δ′L)N (Z0, 2δ′L).

675

A.1.4 Proof of Theorem 4.4676

As before, we focus again first on the exact equivariance case, where Theorem A.4 is the677

direct analogue to (or special case of) Theorem 4.4.678

Under the hypotheses of Theorem A.3 on the G-action, we directly obtain the following, for679

the strictly equivariant case:680

N (Z0, δ) ≤ N (Z, δ/2L)
N (G, δ) . (A.3)

We next impose that for δ ≲ diam(G) the group G satisfies the natural "volume growth"681

assumption, where for compact groups Vol(G) is its dim(G)-dimensional Hausdorff measure682

and dim(G) is the usual Hausdorff dimension, and for finite groups we use minimum separation683

notation δG > 0 as defined in (4.4):684

Assumption: N (G, δ) ≳
{

#G/(max{δ, δG})ddim(G), if G finite,

Vol(G)/δdimG, if dimG > 0.
(A.4)

Similarly to Proposition 4.1, we then get the following, in which the leading term in the685

bound has exponent figuring d0 = ddim(Z) − dim(G). Recall that dim(G) = 0 for finite686

groups, thus the distinction can be made directly in terms of the dimension of G.687

Theorem A.4. Let δ > 0 be fixed. Assume that for a given ambient group G the group688

G satisfies assumption (A.4) and that its action satisfies the the assumptions 1. and 2. of689

Theorem A.3 for some finite L > 0 and L′ = +∞. We denote dG = ddim(G) if G is a discrete690

group and dG = dim(G) if G is compact and non-discrete, and d = ddim(Z). Furthher assume691

d0 := d − dG > 2. Furthermore, set |G| := Vol(G) if dimG > 0 and |G| := #G for finite G.692

Then with the notations of Proposition 4.1 we have with probability ≥ 1 − δ693

GenErr(F , {Zi}, D) ≲ n−1/2
√

∥F∥∞ log(2/δ) + (E),
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where694

(E) :=


d0

d0−2 δ
−d0/2+1
G

(
(2L)dDd

|G|n

)1/2
if G is finite and (2L)dDd < |G|n δd0

G ,

d0
d0−2

(
(2L)dDd

|G|n

)1/d0
otherwise.

Proof. We follow the same computation as Proposition 4.1, but use Proposition A.1 in order695

to reduce to restrictions of functions to Z0. In this case, using (A.3) and assumption (A.4),696

and with notation as in our statement, we will have:697

N (Z0, t) ≲ (2L)dDd

|G|
max{δG, t}−d0 ,

where we have δG = 0 for dimG > 0. We set C := (2L)dDd

|G| for simplicity of notation. In case698

Cδd0
G < 1 (which includes the case dimG > 0), we take α = (C/n)1/d0 in the Dudley integral699

(4.2) and find700

R(FZ0) ≲ α + n−1/2
ˆ ∞

α

√
Ct−d0dt,

from which the proof goes exactly as in Proposition 4.1, with C replacing Dd, and we get701

the second option for the value of (E) as given in our statement. In case Cδd0
G < 1 instead702

we take α = 0 and our above bound for N (Z0, t) plugged into (4.2) (recalling the notation703

for C):704

R(FZ0) ≲
ˆ ∞

0

√
C max{δG, t}−d0dt = δ

−d0/2+1
G

√
C/n +

√
C/n

ˆ ∞

δG

t−d0/2dt,

from which the second case of the value of (E) follows by direct computation.705

Now the proof of Theorem 4.4 proceeds in exactly the same manner as the above. Below we706

explain the required adaptations:707

Proof of Theorem 4.4: The following updates are the principal adaptations required for the708

above proof of Theorem A.4:709

• The role of G should be replaced by Stabϵ, except for the fact that parameters δG, dG710

remain unchanged (i.e. we use their values corresponding to "ambient" group G711

rather than those for Stabϵ).712

• The G-orbit representative set Z0 then should be replaced by representatives Z0
ϵ for713

orbits of Stabϵ.714

With these changes, assumption (A.4) implies its more general version, assumption (4.7).715

Indeed, |G| equals #G for finite G and Vol(G) for compact G, and δG > 0 only in the first716

case. Furthermore, we have δStabϵ
≥ δG as a direct consequence of Stabϵ ⊆ G.717

We observe that Corollary 4.3 (which also is obtained from Theorem A.3 with the above two718

main substitutions) directly gives the version of Theorem (A.3) required to get the correct719

replacement of (A.3) under our initially declared two substitutions. We get:720

N (Z0
ϵ , δ) ≤ N (Z, δ/2L)

N (Stabϵ, δ) . (A.5)

With the above changes, the proof follows by exactly the same steps as in the above proof of721

Theorem A.4.722

Remark A.5. Note that, as might be evident from the last proof, we could have introduced723

new more precise parameters to keep track of dimensionality and minimum separation for724

Stabϵ rather than formulating assumption (4.7) in terms of dG, δG. This is justified for the725

aims of this work. Indeed, all the main situations of interest to us are those in which Stabϵ726

is a "large" subset of G, i.e. it has dimension dG, and in all our examples for finite groups727

δG > 0, the minimum separation for Stabϵ is within a small factor of δG itself.728
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A.2 Proof of Proposition 5.1729

Proof. We have that Z = (X, Y ) is a data distribution in which by our assumption 2.730

preceding the proposition, we have that almost surely Y = y∗(X) for a deterministic function731

y∗. With this notation, we may write732

EZ [f(Z)] = EX0
ϵ
Eg|X0

ϵ
[f(g · X0

ϵ , y∗(g · X0
ϵ )].

Recalling that we restrict to functions of the form f(x, y) = ℓ(f̃(x), y) = dY(f̃(x), y)2, we733

first consider the precise equivariance case ϵ = 0. In this case for g ∈ Stabϵ(F) we find also734

f̃(g · X0
ϵ ) = g · f̃(X0

ϵ ) and thus when optimizing over f̃ we have to determine the optimal735

value of y = f̃(X0
ϵ ) to be associate to each X0

ϵ . Thus as a consequence of all the above, if F̃736

would be the class of all precisely Stabϵ-equivariant measurable functions, we would get the737

following rewriting:738

AppGap(F , D) = min
f̃∈F̃

EZ [dY(f̃(X), y∗(X)] = EX0
ϵ

min
y∈Y

Eg|X0
ϵ

[
dY(g · y, y∗(g · X0

ϵ )2] . (A.6)

For ϵ > 0, for each fixed X0
ϵ = x0

ϵ we may further perturb the associated y = f̃(x0
ϵ ) by at most739

ϵ in the direction of y∗(X0
ϵ ), while still obtaining a measurable function with approximation740

ℓ∞-norm error bounded by ϵ, thus the above bound is improved to741

AppErr(F , D) ≤ EX0
ϵ

min
y

Eg|X0
ϵ

[(
dY(g · y, y∗(g · X0

ϵ )) − ϵ
)2

+

]
, (A.7)

as desired. In case F̃ contains a strict subset of measurable invariant functions with error ϵ,742

we would only get an inequality instead of the first equality in (A.6) but we still have the743

same bound as in (A.7), and thus the proof is complete.744

A.3 Proof of Theorem 5.2745

Proof. We use the isodiametric inequality (5.1) in G, applying it to Stabϵ(F) for F ∈ Cϵ,λ.746

Then by taking Stabϵ(F) = X which is optimal for inequality (5.1) we can saturate the two747

bounds (modulo discretization errors for discrete G) and we get748

|Stabϵ(F)|
|G|

≃ λ, diam(Stabϵ(F)) ≃ CGλ1/ddim(G).

We next use Lipschitz deformation bounds and find that for all x ∈ X we have749

diam {y∗(g · x) : g ∈ Stabϵ(F)} ≤ diam(Stabϵ(F)) Lip(y∗) L′

≤ CGλ1/ddim(G)ϵ(F)) Lip(y∗) L′.

Then we use Proposition 5.1 for F and observe that when g, X0
ϵ are random variables as750

in the proposition, in particular g ∈ Stabϵ(F) and for each X0
ϵ = x0

ϵ we find the following751

estimate valid uniformly over y ∈
{

y∗(g · X0
ϵ ) : g ∈ Stabϵ(F)

}
:752

dY(y, y∗(g · x0
ϵ)) ≤ C ′

Gλ1/ddim(G) Lip(y∗) L′.

In a similar way, we also find753

dY(y, g · y) ≤ C ′
Gλ1/ddim(G) L′.

By triangle inequality, and using the assumption that Lip(y∗) ≃ 1 it follows that754

dY(y, y∗(g · x0
ϵ) ≤ C ′

Gλ1/ddim(G)(1 + Lip(y∗))L′ ≲ C ′
Gλ1/ddim(G) Lip(y∗) L′.

Then we may perturb each y by ϵ in order to possibly diminish this value without violating755

the condition defining Stabϵ(F), and with these choices we obtain the claim.756
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A.4 Finding the optimal λ = λ∗ for the bound of Theorem 6.1757

We note that λ∗ minimizing Cλα + C ′λ−β for α, β > 0 is given by758

λ∗ =
(

β

α

C ′

C

)1/(α+β)
.

recall that in our case have the following choices, for case 1 and case 2 in the theorem’s759

statement.760

α1 = α2 = 1/dG, β1 = 1/2, β2 = 1/d0,

and761

C = CGLip(y∗)L′,

C ′
1 ≃ (2LD)d/2|G|1/2

δ
(d0−2)/2
G

,

C ′
2 ≃ (2LD)d/d0 |G|1/d0 ,

and thus the optimal choice of λ is762

in case nλ ≥ C3, λ∗ =
(

2
dG

(2LD)d/2|G|1/2

δ
(d0+2)/2
G

)2dG/(dG+2)

n−dG/(dG+2),

in case nλ > C3, λ∗ =
(

d0

dG
(2LD)d/d0 |G|1/d0

)d0dG/(d0+dG)
n−dG/(dG+2).

B Examples763

We describe some concrete examples of partial and approximate equivariance using the764

language we used in section 3.2 while sourcing them from existing literature. But first, we765

expand a little on our equivariance error notation.766

B.1 Equivariance error notation767

Recall that the action of elements of an ambient group G over the product space Z = X × Y768

may be written as follows: For coordinates z = x × y we may write g · z = (g · x, g · y), and769

thus for f̃ : X → Y and f(x, y) = ℓ(f̃(x), y), we have the action770

(g · f)(z) := f(g · z) = ℓ(f̃(g · x), g · y).

For the equivariance error of g, f , interpreted as "the error of f ’s approximate equivariance771

under the action by g", we get the following, which is valid in the common situations in772

which ℓ(y, y′) ≥ 0 in general with ℓ(y, y) = 0 for all y ∈ Y:773

ee(f, g) := ∥g · f − f∥∞ = sup
x,y

∣∣∣ℓ(f̃(g · x), g · y) − ℓ(f̃(x), y)
∣∣∣ ≥ sup

x
ℓ(f̃(g · x), g · f̃(x)), (B.1)

where the last inequality follows by restricting the supremum from X × Y to the graph of f̃ ,774

namely by imposing y = f̃(x).775

In several recent works, the equivariance error is defined simply by comparing g · f̃(x)andf̃(g ·776

x), as in the rightmost term of (B.1), thus it is lower than the one found here. We provide a777

justification for our definition of the equivariance error:778

• The loss ℓ is the integrative part of the model, thus a definition for equivariance779

error which does not include it will only detect partial information concerning the780

influence of symmetries.781

• The notion of equivariance error defined via ℓ simplifies the comparison between f̃782

and data distributions D.783
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B.2 Examples784

B.2.1 Imperfect translation equivariance in classical CNNs785

We consider here the most common examples of group equivariant convolutional networks786

(GCNNs), which are the usual Convolutional Neural Networks (CNNs) for computer vision787

tasks. We follow observations from [25] and [11], and connect the underlying ideas to788

Theorem 6.1.789

Setting of the problem. We consider a usual CNN layer, keeping in mind a segmentation790

task, where both X = Y represent spaces of images. More precisely, we think of images791

as pixel values at integer-coordinate positions taken from the index set Z × Z. We also792

assume that the relevant information of each image only comes from a square of size n × n793

pixels, outside which the pixel values are taken to be 0. We consider the application of a794

single convolution kernel/filter, of k × k pixels (with k a small odd number). One typically795

applies padding by a layer of 0’s of size (k − 1)/2 on the perimeter of the n × n square, after796

which convolution with the kernel is computed on the n × n central pixels of the resulting797

(n + k − 1) × (n + k − 1) padded input image. The output relevant information is restricted798

to a n × n square, outside which pixel values are set to 0 again, via padding.799

Metric on X . As a natural choice of distance over X we may consider L2-difference800

between pixel-value functions, or interpret pixel values as probability densities, and use801

Wasserstein distance, or consider other ad-hoc image metrics.802

Group action: translations. The group acting on our “pixel-value functions” is the803

group of translations with elements from Z × Z. We expect the following invariance for the804

segmentation function f : X → X :805

f(v · x) = v · f(x),

where x ∈ X represents an image with pixel values assigned to integer coordinates and806

v ∈ Z2 is a translation vector and (in two alternative notations) v · x = τv(x) is the result of807

translating all pixel values of x by v.808

Deformation properties of the action. If we take the previously mentioned distance809

functions on X and the usual distance induced from R2 over translation vectors v, it is easy810

to verify that the assumptions of Theorem A.3 about the action of translations hold, and the811

Lipschitz constants with respect to the metric on X only depend on the mismatch near the812

boundary, due to “zero pixels moving in” and to “interior pixels moving out” of our n × n813

square, and being truncated. The ensuing bounds only depend on the precise distance that814

we introduce use on X .815

More realistic actions. An alternative more realistic definition of Z × Z-action consists816

of defining v · x as the truncation of τv(x) where, for pixels outside our “relevant” n × n817

square we set pixel value to 0 after the translation.818

Problems near the boundary. Nevertheless, the updated translation action, will move819

pixel values of 0, coming from pixels outside the n × n square, and will create artificial zero820

pixel values inside the image v · x, different than the values that would be present in real821

data.822

Imperfect equivariance of data. Also, even in the latter more realistic alternative, the823

above translation equivariance is not respecting by segmentation input-output pairs coming824

from finite n × n images, since, independently of n, the boundary pixel positions translated825

by v, fall outside the original image.826

Approximate stabilizer. In any case, we have to restrict the choices of v to integer-827

coordinate elements of a (subset of a) n × n square, containing only the translations that828

are relating “real” segmentations that appear within our n × n relevant window. It is thus829
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natural to restrict Stabϵ to only include vectors in a smaller subset of Z × Z, of cardinality830

|Stabϵ| ≤ n2.

The value of error ϵ may quantify the allowed error (or noisiness) for our model sets.831

Reducing to finite G and computing λ. For the sake of computing λ in our Theorem832

6.1, we can observe that input and output values outside the “padding perimeter” given by833

a (n + k − 1) × (n + k − 1) square, are irrelevant, and thus we may actually periodize the834

images and consider the images as subsets of a padded torus (Z/(n + k − 1)Z)2, which we835

consider as acting on itself by translations. In this case G ≃ (Z/(n + k − 1)Z)2, so that836

|G| = (n + k − 1)2 and thus λ = |Stabϵ|
(n + k − 1)2 .

Further extensions. In [25], it is argued that convolutional layers in classical CNNs are837

not fully translation-equivariant, and can encode positional information, due to the manner838

in which boundary padding is implemented. Possible solutions are increasing the padding to839

size k (so that the padded image is a square of size (n + 2k) × (n + 2k)) or extending images840

by periodicity, via so-called "circular padding" (which transforms each image into a space841

equivalent to the torus (Z/nZ)2). In either case, the application of actions by translations842

by vectors that are too large compared to the image size of n × n, will increase the mismatch843

between model equivariance and data equivariance.844

Stride and downsampling. In [11], a different equivariance error for classical CNNs is845

studied, related to the use of stride > 1 in order to lower the output dimensions of CNN layer846

outputs. If for example we use stride 2 when defining layer operation f : X → Y , then Y will847

have relevant pixel values only in an n/2 × n/2-square, and we apply the k × k convolution848

kernel only at positions with coordinates in (2Z) × (2Z) from image x. In this case we require849

that translations by group elements v ∈ (2Z) × (2Z) on x have the effect of a translation by850

v/2 ∈ Z on the output. However for shifts in the input via vectors v that do not have two851

even coordinates, we may not have have an explicit corresponding action on the output, and852

in [11] a solution via adaptive polyphase sampling is proposed. A possibility for studying853

the best polyphase sampling strategy via almost equivariance, would be to include a bound854

for equivariance error ϵ > 0 and consider the optimization problem of finding the polyphase855

approximation that minimizes theoretical or empirical quantifications of ϵ. As a benchmark856

(modelled on the case of infinite images without boundary effects) one could compare the857

above to the action via Stab0 = (2Z) × (2Z) which has λ = 1/4 within the ambient group858

G = Z × Z. Our Theorem 6.1 can be used to compare the effects of increasing or decreasing859

ϵ, λ, in terms of data symmetry.860

B.2.2 Partial equivariance in GCNNs861

In this section, we connect the main results from [38] to our setup. In [38], one of the main862

motivating examples was to consider rotations applied to a handwritten digit and revert863

them. The underlying group action was via SO(2) and only rotations of angles between864

[−60◦, 60◦] were permitted in one case, which allowed to not confound rotated digits “3” and865

“9” for example.866

The above task can be formulated on a space of functions f : X → Y in which X represents867

the space of possible images and Y the labels. Elements (Yd, Yθ) ∈ Y include a digit868

classification label Yd and a rotation angle value Yθ.869

We consider actions by group G = SO(2) = {Rϕ : ϕ ∈ R/360Z}, where Rϕ is the rotation870

matrix by angle ϕ, and the group operation corresponds to summing the angles, modulo871

360◦ (or in radians, modulo 2π). The action of Rϕ over X would be by rotation as usual872

(Rθ sends image x ∈ X to Rθ · x, now rotated by θ), and over Y we consider the action by873

Rϕ(Yd, Yθ) = (Yd, Yθ + ϕ),
i.e. the restriction of the action on the digit label leaves it invariant and the restriction of874

the action on the angle label is non-trivial, giving a shift on the label.875

22



The optimum labelling assigns to x a label y∗(x) enjoying precise equivariance under the876

above definitions of the actions, and thus we are allowed to permit equivariance error ϵ = 0.877

However as mentioned above, applying rotations outside the range θ ∈ [−60◦, 60◦] to the878

data would surely bring us outside the labelled data distribution, thus we are led to take879

ϵ = 0, Stab0 = {Rθ : θ ∈ [−60◦, 60◦]}.

We then have that |Stab0|/|SO(2)| = 1/3, with respect to the natural Haar measure on880

rotations. It is natural to think of the set of Stab0-action representatives of images X 0
0 given881

as the "unrotated" images. If we take a digit image that is rotated, say by 20◦, from its882

“base” version, and we apply a rotation of 50◦ to it (i.e. an element of Stab0), then we reach883

the version of the image now excessively rotated by 70◦. This means that without further884

modification, considering model symmetries with Stab0 taken to be independent of the point,885

would automatically generate some error when tested on the data. While decreasing the886

threshold angle in the definition of Stab0 from 60◦ would limit this effect, it will also decrease887

generalization error in the model. The study of point-dependent invariance sets Stabϵ is888

interesting in view of this example application, but it is outside the scope of the current889

approximation/generalization bounds and is left for future work.890

B.2.3 Possible applications to partial equivariance in Reinforcement Learning891

The use of approximate invariances for RL applications was considered in [21, Sec. 6] via soft892

equivariance constraints allowing better generalization for an agent moving in a geometric893

environment. While imposing approximate equivariance for memoryless G-action for groups894

such as G = SO(2),Z2 has produced positive results, it may be interesting, in analogy to895

the previous section, to include memory, and thus restrict the choices of group actions across896

time steps. Note that for a temporal evolution of T steps, the group action by G acting897

independently at each step would produce a T -interval action via the product group GT ,898

and allowing for a partial action via Stabϵ, with possibly increased fitness to evolving data.899

More precise time-dependence prescriptions and consequences within Q-learnig are left to900

future work.901

C Discussion of [19]902

In section 2 we mentioned [19] (reference [18] in the main file), which considers PAC-style903

bounds under model symmetry. [19] works with compact groups and argues how the learning904

problem in such a setup reduces to only working with a set of reduced orbit representatives,905

which leads to a generalization gain. This message of [19] is similar to ours, although we906

work with a more general setup. However, we noted that the main theorem in [19] has an907

error. Here, we briefly sketch the issue with the proof.908

One of the main quantities of interest in the main theorem of [19] is Dτ (X , H) (notation909

from their paper), which directly comes from the following bound, and is claimed to have a910

linear dependence on Cov(X , ρ, δ). Again, for the sake of easier verification, we follow their911

notation. Crucially, note that [19] uses the notation Cov as analogous to our N :912

Cov(H, ∥ · ∥L∞ , 2Cδ + κ) ≤ Cov(X , ρ, δ) sup
x∈X

Cov(H(x), ∥ · ∥∞, κ)

However, the correct application of the Kolmogorov-Tikhomirov estimate shows that the913

reasoning in the proof should yield a dependence which is exponential in Cov(X , ρ, δ), not914

linear. To see this, set s = 2 (sufficient for our purposes) in equation 238 in [52] (page 186).915

In other words, it is not possible to cover Lipschitz functions in infinity norm by only using916

constant functions.917
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