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ABSTRACT

RNA secondary structure prediction is critical for understanding RNA function
but remains challenging due to complex structural elements like pseudoknots and
limited training data. We introduce DEPfold, a novel deep learning approach that
re-frames RNA secondary structure prediction as a dependency parsing problem.
DEPfold presents three key innovations: (1) a biologically motivated transfor-
mation of RNA structures into labeled dependency trees, (2) a biaffine attention
mechanism for joint prediction of base pairings and their types, and (3) an optimal
tree decoding algorithm that enforces valid RNA structural constraints. Unlike tra-
ditional energy-based methods, DEPfold learns directly from annotated data and
leverages pretrained language models to predict RNA structure. We evaluate DEP-
fold on both within-family and cross-family RNA datasets, demonstrating signif-
icant performance improvements over existing methods. DEPfold shows strong
performance in cross-family generalization when trained on data augmented by
traditional energy-based models, outperforming existing methods on the bpRNA-
new dataset. This demonstrates DEPfold’s ability to effectively learn structural
information beyond what traditional methods capture. Our approach bridges nat-
ural language processing (NLP) with RNA biology, providing a computationally
efficient and adaptable tool for advancing RNA structure prediction and analysis.1

1 INTRODUCTION
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Figure 1: RNA secondary structure example and its
corresponding dependency structure

Ribonucleic acid (RNA) molecules play cru-
cial roles in biological processes, including
gene expression regulation, protein synthesis,
and gene editing systems such as CRISPR-
Cas9 (Atkins et al., 2011; Sullenger & Nair,
2016; Grabow & Jaeger, 2014). RNA con-
sists of an ordered sequence of nucleotides,
each containing one of four bases: adenine
(A), guanine (G), cytosine (C), and uracil (U).
This sequence is referred to as the RNA’s pri-
mary structure. These bases can form pairs,
defining the secondary structure, as illustrated
in Figure 1.

The function of RNA is closely related to its
secondary structure. Accurate prediction of
these structures is essential for understanding
RNA functional mechanisms, designing RNA-
targeted drugs, and studying RNA evolution
(Puzzarini & Barone, 2018; Saini et al., 2021).
While experimental methods such as X-ray
crystallography, nuclear magnetic resonance,
and cryo-electron microscopy can determine RNA structures (Zhang et al., 2022; Kappel et al.,
2020), these approaches are generally limited by low throughput and high costs. The RNAcentral

1Our code is available at https://github.com/Vicky-0256/DEPfold.git.
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database has cataloged over 24 million non-coding RNA sequences, yet only a tiny fraction have ex-
perimentally determined structures (The RNAcentral Consortium, 2016). RNA secondary structure
prediction is a fundamental problem in biology, and serves wetlab biologists in tasks such as drug
discovery (Oluoch et al., 2018) and cell analysis (Sethi et al., 2013).

Currently, there are two main methods for RNA structure prediction: energy-based methods and
statistical and deep learning methods (Hajiaghayi et al., 2012). With energy based methods, the
main prediction algorithm relies on minimizing, in an inference procedure, an energy objective that
describes the alignment between the different nucleotides in the RNA sequence. Deep learning
methods, on the other hand, rely on the usual machine learning setup, with a training set from which
a structured prediction model is learned.

While energy-based models are overall more stable because they do not rely on training and are
not sensitive to the distribution of the data they were trained on as deep learning models, their
overall performance is often not very high when compared to deep learning models tested within
distribution. Deep learning models do not generalize well out of their training distribution, because
the amount of RNA sequenced data is small, for example, compared to proteins, where very large
models such as AlphaFold (Jumper et al., 2021) are state of the art.

We balance these two issues, and motivated by NLP research on dependency parsing,2 we develop
DEPfold, an RNA structure prediction model, in which dependency parsing supports the following:

• A more detailed annotated structure than just basic alignment between nucleotides. This refined
structures makes the learning problem easier for the underlying dependency model, as it provides
additional constraints to the RNA structure, such as explicitly modeling unaligned nucleotides.

• A nested structure that follows the underlying assumptions for RNA structures. Pseudoknots3

excluded, there is an underlying understanding that RNA structures are nested, and this is the
reason why often models such as context-free grammars have been used for them (Knudsen &
Hein, 1999; Do et al., 2006a). Our dependency model, while locally directly models the alignment
between the different nucleotides, also has a global constraint in the form of a dependency trees
that follows a nested structure.

• When pseudoknots are being included in the prediction problem, we can support that additional
modification by changing the underlying inference algorithm for the dependency parsing model.
Pseudoknots, we find, are equivalent to adding a certain level of non-projectivity to the depen-
dency parsing model, as both notions indicate edges that cross each other in the dependency tree.

• Our dependency formulation model is built in such a way that it is easy to incorporate further
constraints to the inference problem, such as energy-based constraints. This yields a hybrid model
that balances well between learning from data and relying on a physical energy model originating
in molecular biology (Zuker & Stiegler, 1981).

• Our approach relies on an encoding model to transform the RNA sequence into a sequence of
embeddings. This component is plug-in, and can be used, for example, with a foundation model
for RNA structures.

DEPfold adapts the biaffine parser of Dozat & Manning (2016), which uses deep biaffine attention
to compute dependency relations. This parser decomposes the task into two modules: one pre-
dicting the existence of directed edges between nucleotides, and another predicting the best label
for each potential edge. By transforming RNA structures into labeled dependency trees, DEPfold
leverages the power of dependency parsing while maintaining biological constraints. This approach
effectively predicts both the existence and types of base pairings, including pseudurknots, and can
handle RNA sequences exceeding 3000 nucleotides. We conduct extensive experiments to compare
DEPfold with state-of-the-art methods on several benchmark datasets, demonstrating its superior
performance, particularly in predicting pseudoknots and long-range interactions. Moreover, DEP-
fold shows strong cross-family generalization when trained on augmented data, suggesting effective
learning of structural information beyond traditional methods.

2Dependency parsing is the problem of identifying a syntactic structure for natural language sentence by
identifying head-dependent relationships between words. See Kübler et al. (2009)

3Pseudoknots are a relatively unique type of bonds between nucleotides that violate nestedness in a tree.
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2 BACKGROUND AND NOTATION

Our RNA structure prediction algorithm relies on dependency parsing, a method in NLP that pro-
vides syntactic structures to natural language utterances (Kübler et al., 2009). These structures origi-
nate in the syntactic theory of Tesnière (2015) called dependency grammar. At the core of this theory,
it is stipulated that there is a head-dependent relationship between words in a sentence, described
as edges between the different words that all together constitute a dependency parse tree. More for-
mally, given an input sentence x = w0w1 . . . wn, where wi ∈ Σ (an alphabet or a vocabulary), a de-
pendency tree, as illustrated in Figure 1, is defined as y = {(i, j, ℓ), 0 ≤ i ≤ n, 1 ≤ j ≤ n, ℓ ∈ L},
where (i, j, ℓ) represents a dependency relation ℓ ∈ L from the head word wi to the modifier word
wj . In our case, the words are the nucleotides, and the edges between them describe alignment (or
lack of) relationships between them. Dependency trees can be directed or undirected. While the
alignments between nucleotides is undirected (corresponding to stem structures), we use a directed
formalism to model more freely both alignment between nucleotides and lack thereof.

RNA consists of an ordered sequence of nucleotides, each containing one of four bases: adenine (A),
guanine (G), cytosine (C), and uracil (U). Hence, we denote by X = Σ∗ where Σ = {A,G,U,C},
the set of RNA sequences, by Y the set of RNA structures (in the form of Figure 1) and by Z the
set of all dependency trees over RNA sequences from X . In RNA secondary structures, each nu-
cleotide pairs with at most one other nucleotide, forming structures such as stems and loops(Turner
& Mathews, 2009). For clarity, we refer to these base-paired structures as stems, and the un-
paired nucleotides form loops, as illustrated in Figure 1. A unique structural motif frequently
observed in RNA is the pseudoknot, a double-helical structure formed by base pairing between
single-stranded regions within stem-loop structures and external complementary sequences(Naderi
et al., 2021). Formally, a pseudoknot occurs when an RNA has two base pairs, i–j and i′–j′, such
that i < i′ < j < j′ (Achawanantakun & Sun, 2013). Pseudoknots can function as independent
elements or as parts of complex RNA structures, participating in stabilization, replication, RNA
processing, toxin inactivation, and gene expression control (Brierley et al., 2007; 2008; Giedroc &
Cornish, 2009). Therefore, predicting pseudoknots is of significant importance.

In this study, we adopt two methods to represent RNA secondary structures. The first is the arc
representation, where nucleotides are depicted as vertices and hydrogen bonds as arcs (Figure 1).
For secondary structures without pseudoknots, all arcs are nested or parallel; crossed arcs indicate
the presence of pseudoknots. The second method is the dot-bracket notation, where a . represents an
unpaired base (loop base), and paired brackets denote base pairs. In this notation, base pairs forming
stems are denoted by parentheses ’()’, and base pairs forming pseudoknots can be distinguished from
stems by using square brackets’[]’, angle brackets ’〈〉’, and so on.

RNA secondary structures are crucial for determining the molecule’s three-dimensional conforma-
tion and functional properties (Tinoco Jr & Bustamante, 1999). Accurate prediction of these struc-
tures aids in inferring tertiary interactions and has applications in drug design (Khatoon et al., 2014),
gene regulation studies (Mortimer et al., 2014), and RNA-based therapeutics (Yin et al., 2014). By
modeling stems, loops, and pseudoknots, we aim to capture the full complexity of RNA secondary
structures, enabling more accurate predictions and a deeper understanding of RNA functionality.

3 DEPFOLD: METHODOLOGY

3.1 TRANSFORMATION OF RNA STRUCTURES TO DEPENDENCY

At the core of our algorithm, there is a mapping between RNA structures and dependency trees.
Let τ : Y → Z be such a mapping. The dependency tree z = τ(y) attached to y includes all the
alignment information in y, but also additional annotation, such as relationships of “lack of align-
ment.” This additional fine-grained annotated structure further constrains and informs the learning
algorithm, and also formulates the basic alignment relationship as a nested structure, following
works for grammar-based and energy-based RNA structure prediction (Rivas & Eddy, 1999; Zuker
& Stiegler, 1981; Dowell & Eddy, 2004).The transformation process involves four key steps (de-
tailed in Appendix A. and B):

Sequence Partitioning Given an RNA sequence x ∈ X and its secondary structure y ∈ Y repre-
sented in bracket-dot notation, we partition x into three subsets based on the structural information:
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• S: The stem sequence, comprising nucleotides forming stem structures. In bracket-dot notation,
these are represented by matching parentheses ’(’ and ’)’.

• P = {P1, . . . , Pk}: A set of pseudoknot sequences, where each Pi contains nucleotides forming a
distinct pseudoknot. In extended bracket-dot notation, these are typically represented by different
types of brackets (e.g., square brackets ’[]’, curly braces ’{}’, or angle brackets ’〈〉’) to distinguish
multiple pseudoknots.

• L: The loop sequence, containing all remaining unpaired nucleotides. These are represented by
dots ’.’ in bracket-dot notation.

CC GG AU

Figure 2: Example of binary
tree construction for an RNA
stem sequence.

Binary Tree Construction For each sequence Q, where Q can
be either the stem sequence S or any pseudoknot sequence Pi, we
construct a binary tree tQ that preserves its nested structure. The
construction follows these rules:

1. Initialization: Begin with the first complete pair of matching
brackets in Q, denoted by positions i and j, where i < j. This
initial node is labeled as S to represent Start.

2. Directionality: Assign the nucleotide at position j as the head
and the nucleotide at position i as the dependent, forming an arc
(j, i) labeled appropriately (stem or pseudoknot).

3. Traversal Order: Proceed in a left-first, then right traversal
to recursively construct left and right subtrees, maintaining the
nested structures. Nodes are labeled with L and R to denote left
and right subtrees, respectively.

4. Arc Creation and Labeling: For nucleotides under the same
head node, we establish arcs to connect them in a right-to-left se-
quence. The arcs are labeled based on the structural relationship
between the nucleotides(e.g. Arrow lines in Figure 1(bottom).):

• Stem Arcs: If a pair of nucleotides is part of a stem structure, the connecting arc is labeled as
stem.

• Pseudoknot Arcs: If a pair of nucleotides is part of a pseudoknot structure, the arc is labeled
as pseudoknot.

• Connector Arcs: If the nucleotides are not part of either a stem or pseudoknot but are necessary
to maintain tree connectivity, the arc is labeled as connector.

Figure 2 illustrates the process of constructing a binary tree for a stem sequence example, where
numbers indicate the construction order. Here, S represents the Start pair, and L and R denote the
left and right subtrees, respectively. The pseudocode can be found in Appendix A, Algorithm 2.

ROOT Construction For RNA sequences that consist solely of stem structures, we select the overall
head node of the stem tree tS as the head node of the entire sequence, denoted as node g. We then
connect this node g directly to the ROOT node, forming the complete dependency tree z = τ(y).

For RNA sequences that include pseudoknot structures, we first identify node g, and connect it to
the ROOT node. We then integrate the stem tree tS with the pseudoknot trees tPi

to form a unified
tree structure. The steps are as follows:

1. Head Node Ordering: Identify the head nodes of the stem tree and all pseudoknot trees, denoted
as HS and HPi , respectively. Arrange these head nodes according to their positions in the original
RNA sequence from right to left.

2. ROOT Connection: Designate the rightmost head node in the sequence as the overall head node
of the entire sequence, node g. Connect this node g to the ROOT node.

3. Sequential Connection: Connect the remaining head nodes to node g using arcs labeled as
connector, following the right-to-left direction. This forms a larger tree structure t′.

By connecting the stem and pseudoknot trees in this manner, we ensure that the combined tree
accurately reflects the structural relationships and sequence ordering of the RNA molecule. The use
of connector arcs preserves the necessary dependencies between different structural components.

Tree Completion To ensure that every nucleotide in the sequence is connected and the dependency
tree is complete, we incorporate the loop nucleotides from L. For each nucleotide xk ∈ L, we add
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an arc (head(k), k), where: head(k) =
{
k + 1, if k < pos(g)

k − 1, if k > pos(g)
, where pos(g) denotes the position

index of a node g.

The arcs are labeled as loop, and this approach ensures that loop nucleotides are connected to their
immediate neighbors, maintaining sequential order and tree completeness.

The final output of our transformation is the dependency tree z ∈ Z , which encapsulates the com-
plete RNA secondary structure. This dependency tree is composed of two integral components:
(1) The set of arcs representing the structural connections between nucleotides, capturing both
base-pairings and necessary connectors for tree completeness. (2) The set of labels assigned to
each arc, indicating the type of relationship between nucleotides—such as stem, pseudoknot,
connector, or loop. Every nucleotide in the RNA sequence is connected directly or indirectly
to the ROOT node, ensuring that z is a fully connected and rooted dependency tree. The final set
of five labels we use is L = { loop, root, stem, connector, pseudoknot }.e.g. labels in
Figure 1(bottom).

This comprehensive representation allows us to reformulate RNA secondary structure predic-
tion as an optimization problem over dependency trees. Specifically, we aim to find the de-
pendency tree z that maximizes the conditional probability given the input RNA sequence x:
z∗ = argmaxz∈Z P (z | x), where z∗ is the predicted dependency tree, encompassing both the
nucleotide connections and their labels.

3.2 UNDERLYING DEPENDENCY MODEL

Based on the transformation in §3.1, we use a biaffine parser as the core of our model for task
parsing. Our proposed model, DEPfold, is composed of several key components. The overall archi-
tecture is illustrated in Figure 3.

C[CLS] [SEP]C G U C A G G U C

Figure 3: DEPfold Architecture.

Foundation Model We input an RNA sequence of
length N , x ∈ X , and embed it using a foundation
model to obtain a contextual representation for each
nucleotide in the sequence: ri = Embed(xi). The
foundation model can be a pretrained RNA foun-
dation model, such as RNA-fm (Chen et al., 2022),
or a general natural language foundation model like
RoBERTa (Liu, 2019).4 During this embedding
phase, each nucleotide’s representation is treated as
a word, obtaining its corresponding token represen-
tation, and then deriving its contextual representa-
tion in the entire sequence.

MLP Feature Extraction Dozat & Manning (2016)
first proposed using biaffine attention to compute de-
pendency relations. This method formulates the de-
pendency parsing task as labeling each edge in a di-
rected graph, decomposing it into two modules: one
predicting whether there is a directed edge between
two words, and another predicting the best label for
each potential edge. Similarly, we apply this ap-
proach to RNA secondary structure model prediction.

For each nucleotide, we use MLPs to obtain dependent and head representations, as in the formulae:

hdep
i = MLPdep(ri); hhead

i = MLPhead(ri).

where hdep
i and hhead

i are the representation vectors of xi as a dependent nucleotide and a head
nucleotide, respectively.

4While it may sound counter-intuitive to use a standard language model for RNA sequences, we found out
RoBERTa can be applied to RNA sequences effectively. We believe it is because the model is fine-tuned on the
RoBERTa’s representations, which carry some information.
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Biaffine Scorer We then use biaffine classifiers to predict scores for edges and labels separately.
The biaffine classifier is a generalization of linear classifiers, including multiplicative interactions
between two vectors:

Biaff(e1, e2) = e⊤1 Ue2 +W(e1 ⊕ e2) + b,

s(edge)(i, j) = Biaff(edge)
(
h
(edge-dep)
i , h

(edge-head)
j

)
; s(label)(i, j) = Biaff(label)

(
h
(label-dep)
i , h

(label-head)
j

)
.

In the above, s(label)(i, j) is a vector of length |L| ranging over labels. We denote by s(label)(i, j, ℓ) the
specific value for a label ℓ ∈ C. The tensor U can be chosen as a diagonal matrix (making ui,k,j = 0
when i ̸= j) to save parameters. For the labeled parser, U will be (d× c× d)-dimensional, where c
is the number of labels. This operation is highly computationally efficient on GPUs.

Training Loss The model training is based on simple head nucleotide selection, without considering
tree structure, and the losses for all words are accumulated in a mini-batch. For a standard head
dependent pair (xi, xj) with label ℓ∗in the training instance, the cross-entropy loss is:

L(edge)(i, j) = − log
exp

(
s(edge)(i, j)

)∑
0≤r≤n exp

(
s(edge)(r, j)

) ; L(label)(i, j, ℓ∗) = − log
exp

(
s(label)(i, j, ℓ∗)

)∑
ℓ∈L exp

(
s(label)(i, j, ℓ)

) .
In the overall system training, our goal is to minimize the sum of both losses over all dependency
structures in the training data D:

∑
z∈D

∑
(i→j,ℓ∗)∈z

L(edge)(i, j) + L(label)(i, j, ℓ∗).

Decoding After obtaining scores for all dependency relations, for the head selection of each nu-
cleotide, we use the first-order Eisner algorithm (Eisner 2000; for projective structures) or graph
spanning tree algorithms (Koo et al. 2007; for non-projective structures) to find the optimal tree z∗

without labels: z∗ = argmaxz

[∑
i→j∈z s(i, j)

]
. Based on the obtained optimal tree structure, we

select the corresponding maximum label for each pair as the predicted value, leading eventually to
the secondary structure y∗.

Post-processing RNA secondary structure only focuses on the connections we predict as stem and
pseudoknots, and must comply with the rule that each nucleotide can only connect with one nu-
cleotide, we first select those connections labeled as stem and pseudoknots from the predicted RNA
dependency parsing structure and convert them into a contact map M .

We then use Softmax on M to obtain probability distributions in the row and column directions:

C(M) =
exp(Mij)∑L

k=1 exp(Mkj)
; R(M) =

exp(Mij)∑L
k=1 exp(Mik)

.

Finally, we retain the maximum value in the row direction as the connection to obtain the final op-
timized contact matrix M∗, which ensures that the resulting connection structure is not conflicting:
M∗ = argmax(R(M)).

4 EXPERIMENTAL SETUP

Dataset We evaluate DEPfold on four widely-used RNA structure prediction benchmark datasets:

RNAStrAlign (Tan et al., 2017) contains 37,149 structures from 8 RNA families. Following E2Efold
(Chen et al., 2020) and MXfold2 (Sato et al., 2021), we processed the dataset, retaining 30,451 non-
redundant structures. ArchiveII (Sloma & Mathews, 2016), comprising 3,975 structures from 10
RNA families, serves as a standard benchmark for classical RNA folding methods. Both datasets
include sequences with pseudoknots.

bpRNA-1m (Singh et al., 2019) includes 102,318 structures from 2,588 RNA families. We pro-
cessed it following SPOT-RNA (Singh et al., 2019), using CD-HIT (Fu et al., 2012) for redundancy
removal and dataset splitting. bpRNA-new (Kalvari et al., 2017), derived from Rfam 14.2, contains
sequences from 1,500 novel RNA families and is used to assess cross-family generalization. Consis-
tent with UFold (Fu et al., 2022), we augmented the training data by randomly mutating bpRNA-new
sequences and generating structure predictions using RNAfold (Lorenz et al., 2011b). Sequences in
bpRNA-1m and bpRNA-new are shorter than 500 nucleotides and lack pseudoknots, contrasting
with the first two datasets. Table 1 summarizes the key characteristics of each dataset.
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Table 1: Summary of datasets used in
our experiments.

Dataset Subset #Seq. Len. Range

RNAStrAlign Train 28,969 30–1581
Val 3,629 36–1693
Test 2,810 57–1672

ArchiveII - 3,975 28–2968

bpRNA-1m TR0 10,814 33–498
VL0 1,300 33–497
TS0 1,305 22–499

bpRNA-aug TR1 20,431 33-498

bpRNA-new - 5,401 33–489

Baseline Methods We compare our proposed DEPfold
with several baseline methods, including:

Energy-based folding methods: CONTRAfold (Do et al.,
2006b), RNAfold (Lorenz et al., 2011b), LinearFold
(Huang et al., 2019)(using the thermodynamic free en-
ergy model from Vienna RNAfold(Lorenz et al., 2011b)),
and RNAstructure (Reuter & Mathews, 2010)(using the
ProbKnot(Bellaousov & Mathews, 2010) algorithm when
predicting RNA datasets with pseudoknots). Learning-
based folding methods: E2Efold (Chen et al., 2020), MX-
fold2 (Sato et al., 2021), UFold (Fu et al., 2022), and
RFold (Tan et al., 2024).

Evaluation Metrics As standard in RNA structure pre-
diction, we evaluated performance using precision (or
PPV, Positive Predictive Value), recall (or SEN, sensitivity), and F1 score. More specifically, the
set of all aligned pairs are extracted from both the predicted structure and the reference structure,
and the macro-averaged statistics are calculated based on them.

5 RESULTS

To evaluate the performance of our DEPfold model relative to baseline models, we conducted two
sets of experiments, following a similar approach to that of Fu et al. (2022); Sato et al. (2021): (a)
training the model on the RNAStrAlign training set and testing on the RNAStrAlign test set and the
ArchiveII dataset; (b) training the same model on the bpRNA-1m training set (TR0) and testing on
the bpRNA-1m test set (TS0), as well as training on bpRNA-1m augmentation set (TR1) and testing
on the bpRNA-new (bpnew) dataset. For detailed information on the model training process, see
Appendix C.

5.1 PERFORMANCE ON RNASTRALIGN AND ARCHIVEII

Table 2: Performance comparison
on RNAStrAlign test set.

Method Precision Recall F1

DEPfold 0.988 0.983 0.985
UFold 0.959 0.965 0.962
RFold 0.942 0.780 0.797
E2Efold 0.866 0.788 0.821
ContraFold 0.600 0.647 0.621
LinearFold 0.523 0.576 0.547
RNAfold 0.515 0.568 0.539
RNAstructure 0.537 0.569 0.551

We assessed the performance of DEPfold on the RNAStrAlign
test set, and the results are presented in Table 2. DEP-
fold achieved the best performance across all evaluation met-
rics. Compared to traditional energy-based algorithms, DEP-
fold demonstrated significant advantages over both traditional
methods such as LinearFold and RNAfold and other deep
learning methods such as E2Efold and Ufold. In addition,
DEPfold surpassed other deep learning methods in both preci-
sion and recall. Finally, DEPfold can handle RNA sequences
of arbitrary lengths, whereas E2Efold, RFold and UFold are
constrained by a fixed maximum sequence length (e.g., 1,800
nucleotides).

Table 3: Evaluation of pseudoknot pre-
diction.

Method Set F1 TP FP TN FN

DEPfold 0.981 1258 20 1531 1
Ufold 0.838 159 111 1397 0
E2Efold 0.710 1312 242 1271 0
RNAstructure 0.474 975 306 1245 284
Rfold 0.447 685 55 1470 122

Pseudoknot Prediction To evaluate DEPfold’s ability to
handle complex RNA structures, particularly sequences
containing pseudoknots, we analyzed sequences with
pseudoknots in the RNAStrAlign test set. Following the
methodology of E2Efold (Chen et al., 2020), we calcu-
lated the average F1 score (Set F1) for these sequences
and counted the number of sequences where the presence
or absence of pseudoknots was correctly predicted. Ta-
ble 3 summarizes the evaluation results.

DEPfold achieved the highest F1 score of 0.981 on this
set, significantly outperforming other methods. It demonstrated high accuracy in identifying both
pseudoknotted and non-pseudoknotted sequences, while maintaining low false positive and false
negative rates. These results indicate that DEPfold exhibits exceptional capability in handling com-
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plex RNA structures containing pseudoknots, showcasing its potential to effectively capture the
intricacies of RNA structural complexity.

Generalization to ArchiveII To assess DEPfold’s generalization ability, we directly tested the
model trained on the RNAStrAlign training set on the ArchiveII dataset. Table 4 compares the
performance of DEPfold with other methods on the ArchiveII dataset. DEPfold achieved an F1

score of 0.920 on this dataset, significantly higher than other methods, and also obtained the highest
precision and recall. This demonstrates that DEPfold not only achieves strong results on specific
tasks but also has the capacity to adapt to a wide range of RNA secondary structure prediction tasks.
Table 4: Performance comparison on
ArchiveII set.

Method Precision Recall F1

DEPfold 0.941 0.907 0.920
RFold 0.931 0.899 0.911
UFold 0.876 0.890 0.881
MXfold2 0.825 0.780 0.796
E2Efold 0.734 0.660 0.686
ContraFold 0.593 0.649 0.617
LinearFold 0.549 0.609 0.575
RNAfold 0.550 0.611 0.577
RNAstructure 0.554 0.601 0.573

Table 5: Performance comparison on
bpRNA-TS0 set.

Method Precision Recall F1

DEPfold 0.730 0.656 0.676
RFold 0.676 0.625 0.633
UFold 0.587 0.711 0.630
MXfold2 0.519 0.646 0.558
ContraFold 0.482 0.655 0.541
LinearFold 0.447 0.633 0.510
RNAfold 0.446 0.631 0.508
RNAstructure 0.446 0.622 0.505

5.2 PERFORMANCE ON THE BPRNA DATASET

Table 6: Performance on long-range
base pair prediction (bpRNA-TS0)

Method Precision Recall F1

DEPfold 0.715 0.689 0.689
UFold 0.630 0.711 0.653
RFold 0.666 0.647 0.643
ContraFold 0.505 0.614 0.536
LinearFold 0.502 0.629 0.542
RNAfold 0.499 0.627 0.539
RNAstructure 0.490 0.603 0.523

Following prior studies (Sato et al., 2021; Fu et al., 2022),
we trained on bpRNA-TR0 and evaluated on bpRNA-TS0
using the best model obtained from bpRNA-VL0. Detailed
results are presented in Table 5. DEPfold significantly out-
performed UFold in terms of F1 score, with an improve-
ment of 7 percentage points, and achieved a 25% enhance-
ment over traditional methods.

Long-range Interaction Prediction To evaluate whether
DEPfold contributes to improved prediction of long-range
interactions, we adopted the same experimental approach
as UFold. We used the TS0 dataset as the test set because it contains diverse sequences of vary-
ing lengths from various RNA families. For a sequence of length L, we define base pairs with a
separation greater than L/2 as long-range base pairs. As shown in Table 6, DEPfold is able to pre-
dict long-range base pairs, outperforming UFold. Notably, DEPfold’s performance in predicting
long-range base pairs was comparable to, or even slightly better than, its performance in predicting
short-range base pairs.

Table 7: Performance comparison on
bpRNA-new.

Method Precision Recall F1

DEPfold 0.650 0.624 0.621
UFold 0.527 0.695 0.590
RFold 0.528 0.306 0.369
MXfold2 0.585 0.710 0.632
ContraFold 0.578 0.736 0.639
LinearFold 0.551 0.719 0.615
RNAfold 0.552 0.720 0.617
RNAstructure 0.542 0.703 0.604

Cross-family Evaluation on bpRNA-new The bpRNA-
new dataset is a cross-family benchmark dataset that poses
significant challenges to purely deep learning methods be-
cause these families are not represented in the training set.
To address this issue, MXfold2 proposed combining free
energy minimization with deep learning methods, achiev-
ing performance similar to the thermodynamics-based Con-
traFold. The purely deep learning method DEPfold, which
is based on data augmentation (TR1 dataset for training)
from RNAfold, achieved an F1 score of 0.621 on the
bpRNA-new dataset, exceeding RNAfold by 0.65 percent-
age points. This result indicates that DEPfold can learn
more useful structural information on top of what traditional methods capture. In contrast, UFold,
which also uses data augmentation, performed slightly worse than RNAfold on this dataset.

5.3 ABLATION STUDY

To gain deeper insight into the contributions of various components of DEPfold, we conducted a
series of ablation experiments.
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Table 8: Ablation Study on Pretrained
Models and Fine-Tuning (bpRNA-
TS0).

Method Precision Recall F1

DEPfold-Ro,FT 0.730 0.656 0.676
DEPfold-fm,FT 0.719 0.574 0.618
DEPfold-Ro,FrZ 0.428 0.174 0.217
DEPfold-fm,FrZ 0.644 0.422 0.470

Pretrained Models We compared the effectiveness of us-
ing RoBERTa and RNAfm as RNA sequence representa-
tion generators. which are denoted as DEPfold-Ro and
DEPfold-fm, respectively. RoBERTa is a general-purpose
large-scale language model, while RNAfm is a pretrained
model specifically designed for RNA sequences. Table
8 presents the results. The DEPfold model based on
RNAfm achieved an F1 score of 0.618 on TS0, slightly
lower than the version using RoBERTa. This suggests
that although RNAfm is specialized for RNA sequences, the general language representations pro-
vided by RoBERTa perform better in this task.

Fine-Tuning vs. Freezing Pretrained Models We further investigated the impact of fine-tuning
versus freezing the pretrained models on DEPfold’s performance. As shown in Table 8, fine-tuning
the pretrained models (FT) significantly enhances the model’s ability to predict RNA secondary
structures. In contrast, freezing the pretrained models (FrZ) leads to substantial performance degra-
dation, with the model nearly failing to learn meaningful representations for RNA secondary struc-
ture prediction. Interestingly, under frozen conditions, the model using RNAfm performed slightly
better than the one with RoBERTa, possibly because RNAfm, being specifically pretrained on RNA
sequences, had already captured some RNA-specific features during its pretraining phase.

Table 9: Ablation Study on Optimal Tree Decoding
(bpRNA).

Dataset Method Precision Recall F1

TS0 DEPfold 0.730 0.656 0.676
DEPfold w/o OT 0.676 0.686 0.671

bpRNA-new DEPfold 0.650 0.624 0.621
DEPfold w/o OT 0.632 0.613 0.607

Optimal Tree Decoding We evaluated the
impact of the optimal tree decoding algo-
rithm on DEPfold’s performance by compar-
ing the model with and without this strat-
egy. The results are presented in Table 9,
where “DEPfold w/o OT” denotes the DEP-
fold model without the Optimal Tree decod-
ing strategy. The findings show that incor-
porating Optimal Tree decoding consistently
enhances performance across both datasets. On TS0, the F1 score increases from 0.671 to 0.676
when optimal tree decoding is used, primarily due to an increase in precision from 0.676 to 0.730.
Similarly, on bpRNA-new, the F1 score improves from 0.607 to 0.621. These enhancements demon-
strate that optimal tree decoding effectively enforces valid RNA structural constraints during decod-
ing, leading to more accurate and biologically plausible predictions.

6 RELATED WORK

Traditional Methods Traditional approaches include alignment-based and single-sequence predic-
tion methods. Alignment-based methods like the Sankoff algorithm (Sankoff, 1985) and its vari-
ants—Dynalign (Mathews & Turner, 2002) and Carnac (Touzet & Perriquet, 2004)—predict struc-
tures by identifying conserved motifs among homologous sequences. However, their effectiveness is
limited by the limited number of RNA families in databases like Rfam (Kalvari et al., 2021) and low
sequence conservation. Single-sequence methods, such as Vienna RNAfold (Lorenz et al., 2011a)
and Mfold (Zuker, 2003), predict structures by minimizing free energy based on thermodynamic
models. While effective for short sequences, they struggle with efficiency and accuracy on com-
plex structures, particularly pseudoknots, which pose NP-complete challenges (Lyngsø & Pedersen,
2000). Tools like RNAstructure (Reuter & Mathews, 2010) extend capabilities to include pseudo-
knot prediction and external constraints but face computational bottlenecks with long sequences.

Machine Learning and Deep Learning Methods Deep learning models have been introduced for
RNA structure prediction. SPOT-RNA (Singh et al., 2019) combines ResNet (Koonce & Koonce,
2021) and bidirectional LSTM (Hochreiter, 1997) but lacks constraints to ensure valid structures, af-
fecting generalization (Amos & Kolter, 2017). E2Efold (Chen et al., 2020) uses convex optimization
and algorithm unrolling to constrain outputs. UFold (Fu et al., 2022) uses convolutional networks on
image representations of sequences, enhancing pseudoknot prediction. MXfold2 (Sato et al., 2021)
combines deep learning with thermodynamic models, generalizing well across families. However,
these models generally struggle with long sequences; for example, SPOT-RNA supports up to 2000
nucleotides, E2Efold up to 1800, UFold up to 600, and MXfold2 up to 1000 nucleotides.
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NLP-Inspired Methods NLP techniques have been applied to RNA structure prediction. Linear-
Fold (Huang et al., 2019) reduces prediction time from quadratic to linear using beam pruning
(Huang et al., 2012), a popular heuristic widely used in computational linguistics, but cannot predict
pseudoknots. ContextFold (Zakov et al., 2011) and CONTRAfold (Do et al., 2006b) use context-
free grammars for base-pair dependencies, improving accuracy but still struggling with complex
structures like pseudoknots. Matsui et al. proposed a new structural alignment algorithm based on
pair stochastic tree adjoining grammars (PSTAGs) to align and predict RNA secondary structures,
including pseudoknots. NLP methods improve computational efficiency and handle some com-
plex structures, but integrating deep learning for RNA secondary structure prediction, especially for
pseudoknots and long sequences, remains challenging.

7 CONCLUSION

In this work, we introduced DEPfold, a novel RNA secondary structure prediction framework that
reformulates the task as dependency parsing by leveraging advanced NLP techniques. DEPfold
transforms RNA structures into labeled dependency trees, uses a biaffine attention mechanism for
accurate base pairing prediction, and uses optimal tree decoding to ensure biologically valid struc-
tures. Our approach significantly outperforms traditional energy-based methods and state-of-the-art
deep learning models, achieving an F1 score of 0.985 on the RNAStrAlign dataset (which we note,
though, is a within-family dataset) and effectively capturing complex features such as pseudoknots
and long-range interactions. Furthermore, DEPfold demonstrates robust cross-family generalization
on the bpRNA-new dataset, identifying structural nuances that conventional models miss. Ablation
studies highlight the unexpected efficacy of general-purpose models like RoBERTa in fine-tuning,
indicating potential for specialized pretraining strategies in RNA biology. While DEPfold marks
a significant advancement, future work will address challenges in enhancing cross-family general-
ization and model interpretability by expanding training data diversity, optimizing computational
efficiency, and improving interpretability to broaden DEPfold’s applicability in diverse biological
research contexts.

LIMITATIONS

Our experiments on within-family datasets, such as RNAStrAlign and bpRNA-TS0, show that DEP-
fold achieves high F1 score, indicating effective learning from the training data. However, when
evaluated on cross-family datasets like bpRNA-new—which includes RNA families not represented
in the training set—DEPfold’s performance shows a smaller margin of improvement (outperforming
RNAfold by only 0.65 percentage points). This suggests that while DEPfold can capture structural
information beyond traditional methods, its ability to generalize to entirely new RNA families is still
limited. See discussion by Szikszai et al. (2022) and Bernett et al. (2024).

Our data augmentation strategy, which uses RNAfold-predicted structures, while beneficial, may
reinforce existing biases in traditional energy-based models. While effective in increasing training
data, this approach may limit DEPfold’s ability to learn non-traditional structural patterns. Future
work should explore more diverse data augmentation techniques that introduce a wider range of
structural variations. Additionally, scaling DEPfold to larger model sizes and datasets, and incorpo-
rating neural dependency parsing models like stack-pointer (Ma, 2018) and TreeCRF (Zhang et al.,
2020a;b), could enhance its ability to learn from diverse syntactic representations and improve over-
all capabilities.

An interesting finding from our ablation studies is the superior performance of RoBERTa over RNA-
fm in the fine-tuning stage. This result prompts us to rethink the optimal pretraining strategy for
RNA structure prediction. RoBERTa’s general language patterns seem to provide more valuable
context for structure prediction than RNA-fm’s RNA-specific features. This suggests that current
RNA-specific models may not fully capture the characteristics needed for accurate structure predic-
tion. Our findings suggest the need for developing more effective pretraining approaches specifically
designed for RNA biology, which could potentially improve the accuracy and generalization capa-
bilities of models like DEPfold.
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A PSEUDOCODE FOR RNA SECONDARY STRUCTURE TO DEPENDENCY
STRUCTURE

To clearly explain the algorithmic logic for converting RNA secondary structures into dependency
structures, we present the following pseudocode. Algorithm 1 is the main program, which uses the
get pair function defined in Algorithm 2 to generate binary tree structures from stem and pseudo-
knot sequences. The Get Pair function, during its processing, utilizes the Is Connect function
defined in Algorithm 3 for decision-making. When handling unpaired structures, the algorithm em-
ploys the get pairs function defined in Algorithm 4.

The primary input to the algorithm consists of the RNA sequence, the base pairs of stems and
pseudoknots, and a list of indices representing unpaired dots. Through this algorithm, one can
derive the arc connections and labels of the dependency structure for the given RNA sequence.

Algorithm 1: Algorithm for Converting RNA Secondary Structure to Dependency Structure
Input: RNA sequence length n, stem base pairs S, pseudoknot base pairs P , unpaired base

indices D, dot-bracket notation dot, connectivity table ctList
Output: Tree structure arcs and labels(’stem’, ’pseudoknot’, ’loop’, ’connector’, ’root’)

1 Initialize empty lists: last node list← [ ], Sp ← [ ], Pp ← [ ], Lp ← [ ];
2 Initialize dot indices← {i | dot[i] =′ .′};
// Process Stem Pairs

3 if S is not empty then
4 Initialize dot← [′.′]× n;
5 foreach (l, r) in S do
6 dot[l − 1]←′ (′ , dot[r − 1]←′)′;
7 end
8 Convert dot to a string;
9 Identify stem indices← {i | dot[i] ∈ {′(′,′ )′}};

10 Sp ← get pair(dot[stem indices], stem indices);
11 Append stem indices[−1] to last node list;
12 end
// Process Pseudoknot Pairs

13 if P is not empty then
14 foreach set in P do
15 Initialize dot← [′.′]× n;
16 foreach (l, r) in set do
17 dot[l − 1]←′ (′ , dot[r − 1]←′)′;
18 end
19 Convert dot to a string;
20 Identify pse indices← {i | dot[i] ∈ {′(′,′ )′}};
21 have pair← get pair(dot[pse indices], pse indices);
22 Extend Pp with have pair;
23 Append pse indices[−1] to last node list;
24 end
25 end
// Combine Trees Together

26 Sort last node list in decreasing order;
27 connect pair← {(last node list[i], last node list[i+ 1]) | i = 0 to |last node list| − 2};
28 Extend Sp with connect pair;

// Process Unpaired Bases
29 Initialize result list← [ ], temp list← [ ];
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1 Continue the algorithm from previous part;
2 for i from 0 to |dot indices| − 1 do
3 if i = 0 or dot indices[i] = dot indices[i− 1] + 1 then
4 Append dot indices[i] to temp list;
5 else
6 Append temp list to result list;
7 temp list← [dot indices[i]];

8 Append temp list to result list;
9 Lp ← get pairs(result list, last node list[0]);

// Arc Creation and Labeling
10 Adjust indices in Sp, Pp, Lp to be based-1 (if necessary);
11 Initialize arrays arc← [0]× (n+ 1), rel← [0]× (n+ 1);
12 Initialize empty dictionaries heads← {}, relations← {};
13 foreach (head, dep) in Sp do
14 heads[dep]← head;
15 if (head, dep) or (dep, head) in S then
16 relations[dep]← ’stem’;
17 else
18 relations[dep]← ’connector’;

19 foreach (head, dep) in Pp do
20 heads[dep]← head;
21 if (head, dep) or (dep, head) in P then
22 relations[dep]← ’pseudoknot’;
23 else
24 relations[dep]← ’connector’;

25 foreach (head, dep) in Lp do
26 heads[dep]← head;
27 relations[dep]← ’loop’;

28 for i from 1 to n do
29 if i is in heads then
30 arc[i]← heads[i];
31 rel[i]← relations[i];
32 else
33 arc[i]← 0;
34 rel[i]← ’root’;
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Algorithm 2: Function get pair for binary tree construction in stem/pseudoknot Structures
Input: Sequence seq of symbols ′(′, ′)′, and indices idx
Output: Paired indices parse pair representing arcs

1 Initialize i← 0, parse pair← [ ];
2 while i ̸= −1 and |seq| > 1 do
3 index← i;

// Determine a, b, preindex, change idx based on seq[index]
4 if seq[index] == 1 then
5 a← seq[index− 1], b← seq[index];
6 preindex← index− 1, change idx← index;
7 else
8 if seq[index] == 0 and seq[index− 1] == 0 then
9 a← seq[index− 1], b← seq[index];

10 preindex← index− 1, change idx← index;
11 else
12 a← seq[index], b← seq[index + 1];
13 preindex← index, change idx← index + 1;

14 (c, d)← is connect(a, b);
15 if c ̸= 2 then
16 Append (idx[change idx], idx[preindex]) to parse pair;
17 seq[change idx]← c;
18 Remove seq[change idx− 1] and idx[change idx− 1];
19 i← i+ d;
20 return parse pair

Algorithm 3: Function is connect for Pairing Symbols
Input: Symbols a, b (can be ′(′, ′)′, 0, 1)
Output: New symbol c, index adjustment d

1 if a ==′ (′ then
2 if b ==′ (′ then
3 return (2, 1) // Keep processing
4 else
5 if b ==′)′ then
6 return (0, 0) // Pair formed
7 else
8 if b == 1 then
9 return (0,−1) // Pair formed, move back

10 else if a == 0 then
11 if b ==′)′ then
12 return (1, 0) // Pair formed
13 else
14 if b == 0 then
15 return (0,−1) // Pair formed, move back
16 else
17 if b ==′ (′ then
18 return (2, 1) // Keep processing
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Algorithm 4: Function get pairs for Generating Loop Pairs
Input: List of index sequences lst, last node index last node
Output: List of loop pairs result

1 Initialize result← [ ];
2 if lst is empty or all sublists in lst are empty then
3 return result;
4 foreach sub lst in lst do
5 if sub lst is empty then
6 continue;
7 if sub lst is the last sublist and last node < sub lst[0] then
8 for i← 0 to |sub lst| − 1 do
9 Append (sub lst[i]− 1, sub lst[i]) to result;

10 else
11 for i← 1 to |sub lst| − 1 do
12 Append (sub lst[i], sub lst[i− 1]) to result;
13 if sub lst[−1] < last node then
14 Append (sub lst[−1] + 1, sub lst[−1]) to result;

15 return result

B EXAMPLE WORKFLOW FOR CONVERTING RNA SECONDARY
STRUCTURES INTO DEPENDENCY STRUCTURES

To provide a more intuitive illustration of the RNA secondary structure conversion process, we
present an example depicted in Figure B1, which demonstrates the transformation through a series
of steps.

Step 1: Sequence Partitioning involves dividing the RNA sequence into stems (blue), pseudoknots
(red), and loops (black) based on its secondary structure.

Step 2: Binary Tree Construction for Stem Sequences entails building binary trees for each stem
sequence using the Get Pair function.

Step 3: Binary Tree Construction for Pseudoknot Sequences similarly constructs binary trees for
pseudoknot sequences using the same method. In the example sequence, only one pseudoknot set
is present. If multiple pseudoknots exist, separate binary trees are created for each set to accurately
represent their interactions.

Step 4: Integration of Binary Trees and Root Selection involves integrating the multiple binary
trees by selecting the last node of each tree as the root and connecting the remaining last nodes to
this root node, thereby forming a unified hierarchical structure.

Step 5: Loop Sequence Connections based on root position establishes connections among nu-
cleotides within loop sequences based on the position of the root node.

Step 6: Comprehensive Structure Integration and labeling consolidates all the constructed struc-
tures—stems, pseudoknots, and loops—and assigns appropriate labels, resulting in a comprehensive
dependency structure for the given RNA sequence.

This workflow ensures that the input RNA sequence, along with its stem and pseudoknot base pairs
and the list of unpaired dot indices, is systematically transformed into a dependency structure with
arc connections and labels.
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connectorloop loop loop

Step 6. Comprehensive Structure Integration and labeling

Figure B1: An example illustrating the workflow for converting RNA secondary structures into
dependency structures
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C TRAINING DETAILS

The code used in DEPfold primarily draws from parts of the SuPar (Zhang et al., 2020a;b) GitHub
repository (https://github.com/yzhangcs/parser.git). We implemented DEPfold
using PyTorch. The architecture uses RoBERTa-base as the encoder within a biaffine framework.
Specifically, the model uses the first four layers of RoBERTa-base, applying mean pooling to
generate a 768-dimensional representation. This encoded output is subsequently processed by two
dedicated multilayer perceptrons (MLPs).

• MLP of edges: Transforms the 768-dimensional input to a 500-dimensional output.
• MLP of lables: Transforms the 768-dimensional input to a 100-dimensional output.

The outputs from these MLPs are then fed into biaffine attention layers to perform the final predic-
tions. To mitigate overfitting, we applied a dropout rate of 0.1 to the encoder outputs and a dropout
rate of 0.33 to the MLP layers.

For optimization, we used the AdamW optimizer with a dual learning rate strategy: the encoder
parameters were assigned a learning rate of 5× 10−5, while the non-encoder parameters were set to
1×10−3. This approach effectively fine-tunes the pretrained encoder while allowing the task-specific
layers to adapt rapidly. The model was trained end-to-end using a cross-entropy loss function for
both arc and relation predictions, with a weight decay factor of 0.01 to further prevent overfitting.

During training, we used a batch size of 32 to maximize GPU use. The training process was capped
at 100 epochs, incorporating an early stopping mechanism based on the F1 score on the validation
set. Training was terminated when the validation F1 score ceased to improve, ensuring optimal
model performance and preventing overfitting. All experiments were conducted on four NVIDIA
A100-40GB GPUs, enabling efficient training and scalability.

D INFERENCE TIME COMPARISON

Table A1: Inference time on the ArchiveII
dataset

Method Time Is pseudoknot?

DEPfold w/o OT (Pytorch) 0.027s Yes
DEPfold (Pytorch) 1.072s Yes
Ufold (Pytorch) 0.071s Yes
MXfold2 (Pytorch) 0.477s No
RNAfold (C) 0.134s No
ContraFold (C++) 0.390s No
Linearfold (C++) 0.075s No
RNAstructure (C) 4.454s Yes

We evaluated the inference time of various RNA
secondary structure prediction methods on the
ArchiveII dataset, as summarized in Table A1.
DEPfold without Optimal Tree (OT) decoding,
achieved an average inference time of approximately
0.027 seconds per sequence, markedly outperform-
ing UFold (0.071 seconds) and LinearFold (0.075
seconds). However, the full version of DEPfold,
which incorporates OT, exhibited a significant in-
crease in inference time to 1.072 seconds per se-
quence, making it time-consuming among those
evaluated, though still within an acceptable range.

This disparity underscores the trade-off between prediction quality and computational efficiency in-
troduced by OT, primarily attributable to the increased complexity of parsing pseudoknot structures.
Despite the higher inference time, both versions of DEPfold retain the capability to handle pseudo-
knot structures, a feature absent in many traditional methods such as RNAfold and ContraFold. As
a result, DEPfold without OT offers maximum inference speed, ideal for rapid predictions. Con-
versely, the full DEPfold version, while slower, delivers higher predictive accuracy by effectively
modeling complex pseudoknots. This versatility makes DEPfold a robust tool for RNA secondary
structure prediction, allowing users to balance speed and accuracy according to their research needs.

E VISUALIZATION

To intuitively demonstrate DEPfold’s prediction performance, we visualized the predicted structures
of three representative RNA sequences using ViennaRNA (Lorenz et al., 2011a). As illustrated in
Figure E2, these sequences correspond to a short RNA, a medium-length RNA without pseudoknots,
and a long RNA with pseudoknots, respectively. DEPfold’s predicted results are highly consistent
with the ground truth structure. In contrast, the energy-based method ContraFold failed to effectively

21

https://github.com/yzhangcs/parser.git


Published as a conference paper at ICLR 2025

predict this secondary structure. Although UFold achieved a higher F1 score than other baseline
methods, its predicted results visually differed significantly from the ground truth and erroneously
predicted pseudoknots that should not exist. DEPfold accurately captured these complex structural
features.
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Figure E2: Comparison of RNA secondary structure predictions.
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