
A Injective Flows are Manifold Learners

A.1 Densities on Manifolds

In this work we model a probability density p on a Riemannian manifold M. Here, we briefly review
what this means formally.

Consider a probability measure P on the space X = Rn. We say P admits a density with respect to a
base measure µ if P is absolutely continuous with respect to µ. If so, we let the density be p := dP

dµ
(the Radon-Nikodym derivative of P with respect to µ). The base measure µ is most commonly the
Lebesgue measure on X .

However, if P is supported on an m-dimensional Riemannian submanifold M ⇢ X , some adjustment
is required. P will not be absolutely continuous with respect to the Lebesgue measure on X , so we
require a different choice of base measure. In the literature involving densities on manifolds (see
Sec. 4), it is always assumed, but seldom explicitly stated, that the density’s base measure is the
Riemannian measure µ [55] of the submanifold M. Furthermore, the Riemmanian metric from which
µ arises is always inherited from the Euclidean metric of ambient space X . From this construction we
gather that, whenever a Riemannian submanifold M ⇢ X is specified, a unique natural base measure
µ follows.

Given an injective flow model f✓ : Z ! X with latent space Z = Rm, the goal is to make the
implied model manifold M✓ = f✓(Z) match the data manifold Md. As per the previous paragraph,
this task equates to learning the base measure on which the model’s density will be evaluated, which
is necessarily a separate objective from likelihood maximization. Below we discuss how minimizing
reconstruction loss achieves the goal of manifold matching.

A.2 Reconstruction Minimization for Manifold Learning

Let f✓ : Z ! X = Rn be an injective flow (m < n) with a smooth left-inverse f†✓ as described in Sec.
2.2. By construction, the image M✓ = f✓(Z) of the flow is a Riemannian submanifold of X ; we call
M✓ the model manifold. Let P be a data distribution supported by an m-dimensional Riemannian
submanifold Md; we call this the data manifold. Suppose furthermore that P admits a probability
density with respect to the Riemannian measure of Md.

Proposition 1 R(✓) := Ex⇠P ||x� f✓(f
†
✓ (x))||

2 = 0 if and only if Md ✓ cl (M✓).

Since the reconstruction loss R(✓) is continuous, we infer that R(✓) ! 0 will bring M✓ and Md

into alignment (except possibly for the P -null set Md \ @M✓).

Proof For the forward direction, suppose R(✓) = 0. For a single point x 2 Rn, by the definition
of f†✓ we have x = f✓(f

†
✓ (x)) if and only if x 2 f✓(Z) = M✓. Put differently, M✓ = {x 2 X : x =

f✓(f
†
✓ (x))}, so a reconstruction error of zero implies P (M✓) = 1. This means that P ’s support must

by definition be a subset of cl (M✓). It follows that Md ✓ cl (M✓).

For the reverse direction, note that if Md ✓ cl (M✓), then Md \ f✓(Z) has measure zero in Md, so
f✓(f

†
✓ (x)) = 0 P -almost surely. This fact yields R(✓) = 0.

A.3 Joint Training and Wasserstein Training

The Wasserstein-1 distance between the groundtruth and model distributions is another objective
motivated by the low-dimensional manifold structure of high-dimensional data. In some sense,
minimizing Wasserstein-1 distance is a more elegant approach than sequential or joint training
because it is a distance metric between probability distributions, whereas the sequential and joint
objectives involve separate terms for the support and the likelihood within. However, in practice the
Wasserstein distance cannot be estimated without bias in a polynomial number of samples [2], and it
must be estimated adversarially [1, 66].

We compare our joint training method to Wasserstein training on 64000 points sampled from a
2D Gaussian mixture embedded as a plane in 3D space. The conformal embedding g is a simple
orthogonal transformation from 2 into 3 dimensions, which makes the manifold easy to plot. We let

15

Figure 7: Gaussian mixture on a 2D plane. From top to bottom: groundtruth distribution, the learned
distribution using affine coupling layers, and learned distribution using rational-quadratic coupling
layers. The results of joint training are shown on the left, while the results of Wasserstein adversarial
training are shown on the right.

h be a simple flow consisting of 3 LU-decomposed linear transformations interspersed with coupling
layers, where each layer has 2 residual blocks with 128 hidden features. Both affine coupling and
rational-quadratic coupling layers were tested.

Each architecture was separately trained with both the joint loss and with adversarially estimated
Wasserstein loss. The discriminator was a 16-hidden layer ReLU MLP with 512 hidden units each.
We enforce the Lipschitz constraint using gradient penalties [25]. Results are visible in Fig. 7.

When adversarially trained, the inductive bias of the generator appears to play a strong role, and
neither model learns the density well. These results suggest that training a flow jointly provides better
density estimation than estimating the Wasserstein loss. Our observations support those of Grover

16

et al. [24], who show that adversarial training can be counterproductive to likelihood maximization,
and Brehmer and Cranmer [6], who report poor results when their model is trained for optimal
transport.

B Details on Conformal Embeddings and Conformal Mappings

Let (U , ⌘u) and (X , ⌘x) be two Riemannian manifolds. We define a diffeomorphism f : U ! X to
be a conformal diffeomorphism if it pulls back the metric ⌘x to be some non-zero scalar multiple of
⌘u [43]. That is,

f⇤⌘x = �2⌘u (10)

for some smooth non-zero scalar function � on U . Furthermore, we define a smooth embedding
g : U ! X to be a conformal embedding if it is a conformal diffeomorphism onto its image
(g(U), ⌘x), where ⌘x is inherited from the ambient space X .

In our context, U ✓ Rm, X = Rn, and ⌘u and ⌘x are Euclidean metrics. This leads to an equivalent
property (Eq. (5)):

JT
g (u)Jg(u) = �2(u)Im. (11)

This also guarantees that det[JT
gJg] = �2m is tractable, even when g = gk � ... � g1 is composed

from several layers, as is needed for scalable injective flows.

To demonstrate that conformal embeddings are an expressive class of functions, we first turn to the
most restricted case where n = m; i.e. conformal mappings. In Apps. B.1 and B.2 we provide an
intuitive investigation of the classes of conformal mappings using infinitesimals. We then discuss
in App. B.3 why conformal embeddings in general are more challenging to analyze, but also show
intuitively why they are more expressive than dimension-preserving conformal mappings.

B.1 Infinitesimal Conformal Mappings

Consider a mapping of Euclidean space with dimension m � 3. Liouville’s theorem for conformal
mappings constrains the set of such maps which satisfy the conformal condition Eq. (11). Such
functions can be decomposed into translations, orthogonal transformations, scalings, and inversions.
Here we provide a direct approach for the interested reader, which also leads to some insight on
the general case of conformal embeddings [15]. First we will find all infinitesimal transformations
which satisfy the conformal condition, then exponentiate them to obtain the set of finite conformal
mappings.

Consider a transformation f : Rm
! Rm which is infinitesimally close to the identity function,

expressed in Cartesian coordinates as

f(x) = x+ ✏(x). (12)

That is, we only keep terms linear in the infinitesimal quantity ✏. The mappings produced will only
encompass transformations which are continuously connected to the identity, but we restrict our
attention to these for now. However, this simple form allows us to directly study how Eq. (11)
constrains the infinitesimal ✏(x):

JT
f (x)Jf (x) =

Im +

@✏

@x

�T
Im +

@✏

@x

�

= Im +
@✏

@x

T

+
@✏

@x
.

(13)

By Eq. (11), the symmetric sum of @✏/@x must be proportional to the identity matrix. Let us call the
position-dependent proportionality factor ⌘(x). We can start to understand ⌘(x) by taking a trace

@✏

@x

T

+
@✏

@x
= ⌘(x)Im, (14)

2

m
tr
✓
@✏

@x

◆
= ⌘(x). (15)

17

Taking another derivative of Eq. (14) proves to be useful, so we switch to index notation to handle
the tensor multiplications,

@

@xk

@✏j
@xi

+
@

@xk

@✏i
@xj

=
@⌘

@xk
�ij , (16)

where the Kronecker delta �ij is 1 if i = j, and 0 otherwise. On the left-hand-side, derivatives can be
commuted. By taking a linear combination of the three permutations of indices we come to

2
@

@xk

@✏i
@xj

=
@⌘

@xj
�ik +

@⌘

@xk
�ij �

@⌘

@xi
�jk. (17)

Summing over elements where j = k gives the Laplacian of ✏i, while picking up only the derivatives
of ⌘ with respect to xi, so we can switch back to vector notation where

2r2✏ = (2�m)
@⌘

@x
. (18)

Now we have two equations (14) and (18)4 involving derivatives of ✏ and ⌘. To eliminate ✏, we can
apply r

2 to (14), while applying @/@x to (18)

r
2 @✏

@x

T

+r
2 @✏

@x
= r

2⌘Id (19)

2r2 @✏

@x
= (2�m)

@2⌘

@x@x
. (20)

Since Eq. (20) is manifestly symmetric, the left-hand-sides are actually equal. Equating the right-
hand-sides, we can again sum the diagonal terms, giving the much simpler form

(m� 1)r2⌘ = 0. (21)

Ultimately, revisiting Eq. (20) shows that the function ⌘(x) is linear in the coordinates

@2⌘

@x@x
= 0 =) ⌘(x) = ↵+ � · x, (22)

for constants ↵,�. This allows us to relate back to the quantity of interest ✏. Skimming back over the
results so far, the most general equation where having the linear expression for ⌘(x) helps is Eq. (17)
which now is

2
@

@xk

@✏i
@xj

= �j�ik + �k�ij � �i�jk. (23)

The point is that the right-hand-side is constant, meaning that ✏(x) is at most quadratic in x. Hence,
we can make an ansatz for ✏ in full generality, involving sets of infinitesimal constants

✏ = a+Bx+ x
$

Cx, (24)

where
$

C 2 Rm⇥m⇥m is a 3-tensor.

So far we have found that infinitesimal conformal transformations can have at most quadratic
dependence on the coordinates. It remains to determine the constraints on each set of constants a, B,
and

$

C, and interpret the corresponding mappings. We consider each of them in turn.

All constraints on ✏ involve derivatives, so there is nothing more to say about the constant term. It
represents an infinitesimal translation

f(x) = x+ a. (25)

On the other hand, the linear term is constrained by Eqs. (14) and (15) which give

B+BT =
2

m
tr(B)Im. (26)

4We note that the steps following Eq. (18) are only justified for m � 3 which we have assumed. In two
dimensions the conformal group is much larger and Liouville’s theorem no longer captures all conformal
mappings.

18

Hence, B has an unconstrained anti-symmetric part BAS = 1
2 (B�BT) representing an infinitesimal

rotation
f(x) = x+BASx, (27)

while its symmetric part is diagonal as in Eq. (26),

f(x) = x+ �x, � =
1

m
tr(B), (28)

which is an infinitesimal scaling. This leaves only the quadratic term for interpretation which is
more easily handled in index notation, i.e. ✏i =

P
lm Cilmxlxm. The quadratic term is significantly

restricted by Eq. (23),

2
@2

@xk@xj

X

lm

Cilmxlxm = 2Cijk = �j�ik + �k�ij � �i�jk. (29)

This allows us to isolate �k in terms of Cijk, specifically from the trace over C’s first two indices,

2
X

i=j

Cijk = �k + �km� �k = �km. (30)

Hereafter we use bk = �k/2 =
P

i=j Cijk/m. Then with Eq. (29) the corresponding infinitesimal
transformation is

fi(x) = xi +
X

jk

Cijkxjxk

= xi +
X

jk

(bj�ik + bk�ij � bi�jk)xjxk

= xi + 2xi

X

j

bjxj � bi
X

j

(xj)
2,

f(x) = x+ 2(b · x)x� kxk2b.

(31)

We postpone the interpretation momentarily.

Thus we have found all continuously parametrizable infinitesimal conformal mappings connected
to the identity and showed they come in four distinct types. By composing infinitely many such
transformations, or “exponentiating" them, we obtain finite conformal mappings. Formally, this is the
process of exponentiating the elements of a Lie algebra to obtain elements of a corresponding Lie
group.

B.2 Finite Conformal Mappings

As an example of obtaining finite mappings from infinitesimal ones we take the infinitesimal rotations
from Eq. (27) where we note that f only deviates from the identity by an infinitesimal vector field
BASx. By integrating the field we get the finite displacement of any point under many applications of
f , i.e. the integral curves x(t) defined by

ẋ(t) = BASx(t), x(0) = x0. (32)
This differential equation has the simple solution

x(t) = exp(tBAS)x0. (33)

Finally we recognize that when a matrix A is antisymmetric, the matrix exponential eA is orthogonal,
showing that the finite transformation given by t = 1, f(x0) = exp(BAS)x0, is indeed a rotation.
Furthermore, it is intuitive that infinitesimal translations and scalings also compose into finite
translations and scalings. Examples are shown in Fig. 8 (a-c)

The infinitesimal transformation in Eq. (31) is non-linear in x, so it does not exponentiate easily
as for the other three cases. It helps to linearize with a change of coordinates y = x/kxk2 which
happens to be an inversion:

ẋ(t) = 2(b · x)x� kxk2b, (34)

ẏ(t) =
ẋ

kxk2
� 2

x · ẋ

kxk4
x = �b. (35)

19

(a) (b)

(c) (d)

(e)

Figure 8: Effects of conformal mappings on gridlines, and their corresponding vector fields showing
local displacements. Mappings are: (a) translation by a = [1, 1]; (b) orthogonal transformation (2D
rotation) by angle ✓ = ⇡/12; (c) scaling by � = 1.5; (d) SCT by b = [�0.1,�0.1]; (e) inversion,
also showing the unit circle. The interior of the circle is mapped to the exterior, and vice versa.

We now get the incredibly simple solution y(t) = y0 � tb, a translation, after which we can undo
the inversion

x(t)

kxk2
=

x0

kx0k
2
� tb. (36)

This form is equivalent to a Special Conformal Transformation (SCT) [15], which we can see by
defining the finite transformation as f(x0) = x(1), and taking the inner product of both sides with
themselves

kf(x0)k
2 =

kx0k
2

1� 2b · x0 + kbk2kx0k
2
, (37)

and finally isolating

f(x0) =
kf(x0)k2

kx0k
2

x0 � kf(x0)k
2b =

x0 � kx0k
2b

1� 2b · x0 + kbk2kx0k
2
. (38)

An example SCT is shown in Fig. 8 (d), demonstrating their non-linear nature. In the process of this
derivation we have learned that SCTs can be interpreted as an inversion, followed by a translation
by �b, followed by an inversion, and the infinitesimal Eq. (31) is recovered when the translation is
small.

By composition, the four types of finite conformal mapping we have encountered, namely translations,
rotations, scalings, and SCTs, generate the conformal group - the group of transformations of
Euclidean space which locally preserve angles and orientation. The infinitesimal transformations we
derived directly give the corresponding elements of the Lie algebra.

Eq. (11) also admits non-orientation preserving solutions which are not generated by the infinitesimal
approach. Composing the scalings in Eq. (28) only produces finite scalings by a positive factor,

20

i.e. f(x) = e�x. Similarly, composing infinitesimal rotations does not generate reflections -
non-orientation preserving orthogonal transformations that are not connected to the identity. The
conformal group can be extended by including non-orientation preserving transformations, namely
inversions (Fig. 8 (e)), negative scalings, and reflections as in Table 1. All of these elements still
satisfy Eq. (11), as do their closure under composition. By Liouville’s theorem, these comprise all
possible conformal mappings.

The important point for our discussion is that any conformal mapping can be built up from the
simple elements in Table 1. In other words, a neural network can learn any conformal mapping by
representing a sequence of the simple elements.

B.3 Conformal Embeddings

Whereas conformal mappings have been exhaustively classified, conformal embeddings have not.
While the defining equations for a conformal embedding g : U ! X , namely

JT
g (u)Jg(u) = �2(u)Im, (39)

appear similar to those of conformal mappings, we cannot apply the techniques from Apps. B.1
and B.2 to enumerate them. Conformal embeddings do not necessarily have identical domain
and codomain. As such, finite conformal embeddings can not be generated by exponentiating
infinitesimals.

The lack of full characterization of conformal embeddings hints that they are a richer class of
functions. For a more concrete understanding, we can study Eq. (39) as a system of PDEs. This
system consists of m(m+1)/2 independent equations (noting the symmetry of JT

gJg) to be satisfied
by n+1 functions, namely g(u) and �(u). In the typical case that n < m(m+1)/2�1, i.e. n is not
significantly larger than m, the system is overdetermined. Despite this, solutions do exist. We have
already seen that the most restricted case n = m of conformal mappings admits four qualitatively
different classes of solutions. These remain solutions when n > m simply by having g map to a
constant in the extra n�m dimensions.

Intuitively, adding an extra dimension for solving the PDEs is similar to introducing a slack variable
in an optimization problem. In case it is not clear that adding additional functions gi, i > m enlarges
the class of solutions of Eq. (39), we provide a concrete example. Take the case n = m = 2 for a
fixed �(u1, u2). The system of equations that g(u) must solve is

✓
@g1
@u1

◆2

+

✓
@g2
@u1

◆2

= �2(u1, u2),

✓
@g1
@u2

◆2

+

✓
@g2
@u2

◆2

= �2(u1, u2),

@g1
@u1

@g1
@u2

+
@g2
@u1

@g2
@u2

= 0.

(40)

Suppose that for the given �(u1, u2) no complete solution exists, but we do have a g(u) which
simultaneously solves all but the first equation. Enlarging the codomain X with an additional
dimension (n = 3) gives an additional function g3(u) to work with while �(u1, u2) is unchanged.
The system of equations becomes

✓
@g1
@u1

◆2

+

✓
@g2
@u1

◆2

+

✓
@g3
@u1

◆2

= �2(u1, u2),

✓
@g1
@u2

◆2

+

✓
@g2
@u2

◆2

+

✓
@g3
@u2

◆2

= �2(u1, u2),

@g1
@u1

@g1
@u2

+
@g2
@u1

@g2
@u2

+
@g3
@u1

@g3
@u2

= 0.

(41)

Our partial solution can be worked into an actual solution by letting g3 satisfy
✓
@g3
@u1

◆2

= �2(u1, u2)�

✓
@g1
@u1

◆2

�

✓
@g2
@u1

◆2

, (42)

21

with all other derivatives of g3 vanishing. Hence g3 is constant in all directions except the u1 direction
so that, geometrically speaking, the u1 direction is bent and warped by the embedding into the
additional x3 dimension.

To summarize, compared to conformal mappings, with dimension-changing conformal embeddings
the number of equations in the system remains the same but the number of functions available to
satisfy them increases. This allows conformal embeddings to be much more expressive than the fixed
set of conformal mappings, but also prevents an explicit classification and parametrization of all
conformal embeddings.

C Experimental Details

Table 5: Network parameters for each embedding g and low-dimensional flow h

METHOD
DATASET

SHIP m = 64 SHIP m = 512 MNIST CELEBA

CEF g 270,918 1,647,174 139,460 23,649
MF g 2,276,508 2,276,508 3,135,428 2,311,212
h 16,978,432 49,381,376 21,410,816 418,136,600

C.1 Synthetic Spherical Distribution

Model. The conformal embedding g was composed of a padding layer, SCT, orthogonal transfor-
mation, translation, and scaling (see App. B.2 for the definition of SCT). The base flow h used two
coupling layers backed by rational quadratic splines with 16 hidden units.

Training. The CEF components were trained jointly on the mixed loss function in Eq. (7) with an
end-to-end log-likelihood term for 45 epochs. The reconstruction loss had weight 10000, and the
log-likelihood had weight 10. We used a batch size of 100 and a learning rate of 5⇥ 10�3 with the
Adam optimizer.

Data. For illustrative purposes we generated a synthetic dataset from a known distribution on a
spherical surface embedded in R3. The sphere is a natural manifold with which to demonstrate
learning a conformal embedding with a CEF, since we can analytically find suitable maps g : R2

!

R3 that embed the sphere5 with Cartesian coordinates describing both spaces. For instance consider

g =

✓
2r2z1

z21 + z22 + r2
,

2r2z2
z21 + z22 + r2

, r
z21 + z22 � r2

z21 + z22 + r2

◆
, (43)

where r 2 R is a parameter. Geometrically, this embedding takes the domain manifold, viewed as the
surface x3 = 0 in R3, and bends it into a sphere of radius r centered at the origin. Computing the
Jacobian directly gives

JT
gJg =

4r4

(z21 + z22 + r2)2
I2, (44)

which shows that g is a conformal embedding (Eq. (5)) with �(z) = 2r2

z2
1+z2

2+r2
. Of course, this g is

also known as a stereographic projection, but here we view its codomain as all of R3, rather than the
2-sphere.

With this in mind it is not surprising that a CEF can learn an embedding of the sphere, but we would
still like to study how a density confined to the sphere is learned. Starting with a multivariate Normal
N (µ, I3) in three dimensions we drew samples and projected them radially onto the unit sphere. This
yields the density given by integrating out the radial coordinate from the standard Normal distribution:

pM(�, ✓) =

Z 1

0

1

(2⇡)3/2
exp

n
�

1

2

�
r2 � 2r (cos� sin ✓, sin� sin ✓, cos ✓) · µ+ kµk2

�o
r2dr.

(45)
5Technically the “north pole" of the sphere (0, 0, 1) is not in the range of g, which leaves a manifold

S2\{north pole} that is topologically equivalent to R2.

22

With the shorthand t = (cos� sin ✓, sin� sin ✓, cos ✓) for the angular direction vector, the integra-
tion can be performed

pM(�, ✓) =
1

25/2⇡3/2
e�kµk2/2

⇣
2t · µ +

p
2⇡

�
(t · µ)2 + 1

�
e(t·µ)2/2

⇣
erf

⇣
t · µ/

p
2
⌘
+ 1

⌘⌘
.

(46)

This distribution is visualized in Fig. 2 for the parameter µ = (�1,�1, 0).

C.2 Synthetic CIFAR-10 Ship Manifolds

Dataset. To generate the 64- and 512-dimensional synthetic datasets, we sample from ship class
of the pretrained class-conditional StyleGAN2-ADA provided in PyTorch by Karras et al. [33]. To
generate a sample of dimension m, we first randomly sample entries for all but m latent dimensions,
fix these, then repeatedly sample the remaining m to generate the dataset. We use a training size of
20000 for m = 64 and 50000 when m = 512 of which we hold out a tenth of the data for validation
when training. We generate an extra 10000 samples from each distribution for testing.

Models. All models for each dimension m 2 {64, 512} use the same architecture for their h
components: a simple 8-layer rational-quadratic neural spline flow with 3 residual blocks per layer
and 512 hidden channels each. It is applied to flattened data of dimension m.

The baseline’s embedding g is a rational-quadratic neural spline flow network of 3 levels, 3 steps
per level, and 3 residual blocks per step with 64 hidden channels each. The output of each scale is
reshaped into 8⇥ 8, and the outputs of all scales are concatenated. We then apply an invertible 1⇥ 1
convolution, and project and flatten the input down to m dimensions.

On the other hand, both CEFs use the same conformal architecture for g. The basic architecture
follows, with input and output channels indicated in brackets. Between every layer, trainable scaling
and shift operations were applied.

x (3⇥ 64⇥ 64) ! 8⇥ 8 Householder Conv (3, 192)

! 1⇥ 1 Conditional Orthogonal Conv (192, 192)

! Squeeze (192, 3072)

! Orthogonal Transformation (3072,m)

! u (m)

Training. The sequential baseline for m = 64 required a 200-epoch manifold-warmup phase for
the reconstruction loss to converge. Otherwise, for the sequential baseline and sequential CEF, g
was trained with a reconstruction loss in a 50-epoch manifold-warmup phase. We then trained h in
all cases to maximize likelihood for 1000-epochs. The joint CEF was trained with the mixed loss
function in Eq. (7) for 1000 epochs. All models used weights of 0.01 for the likelihood and 100000
for the reconstruction loss.

Each model was trained on a single Tesla V100 GPU using the Adam optimizer [34] with learning
rate 1⇥ 10�3, a batch size of 512, and cosine annealing [47].

C.3 MNIST

Models. All MNIST models use the same architecture for their h components: a simple 8-layer
rational-quadratic neural spline flow with 3 residual blocks per layer and 512 hidden channels each.
It is applied to flattened data of dimension 128.

The baseline’s embedding g is a rational-quadratic neural spline flow network of 3 levels, 3 steps
per level, and 3 residual blocks per step with 64 hidden channels each. The output is flattened and
transformed with an LU-decomposed linear layer, then projected to 128 dimensions.

Both CEFs use the same conformal architecture for g. The basic architecture follows, with input and
output channels indicated in brackets. Between every layer, trainable scaling and shift operations

23

were applied.

x (3⇥ 64⇥ 64) ! 8⇥ 8 Householder Conv (1, 64)

! 1⇥ 1 Conditional Orthogonal Conv (64, 64)

! Squeeze (64, 1024)

! Orthogonal Transformation (1024, 128)

! u (128)

Training. For the sequential baseline and sequential CEF, g was trained with a reconstruction
loss in a 50-epoch manifold-warmup phase, and then h was trained to maximize likelihood for
1000-epochs. The joint CEF was trained with the mixed loss function in Eq. (7) for 1000 epochs. All
models used weights of 0.01 for the likelihood and 100000 for the reconstruction loss.

Each model was trained on a single Tesla V100 GPU using the Adam optimizer [34] with learning
rate 1⇥ 10�3, a batch size of 512, and cosine annealing [47].

C.4 CelebA

Models. All CelebA models use the same architecture for their h components: a 4-level multi-scale
rational-quadratic neural spline flow 7 steps per level, and 3 residual blocks per step with 512 hidden
channels each. It takes squeezed inputs of 24⇥ 8⇥ 8, so we do not squeeze the input before the first
level in order to accommodate an extra level.

The baseline’s embedding g is a rational-quadratic neural spline flow network of 3 levels, 3 steps
per level, and 3 residual blocks per step with 64 hidden channels each. The output of each scale is
reshaped into 8⇥ 8, and the outputs of all scales are concatenated. We then apply an invertible 1⇥ 1
convolution, and project the input down to 1536 dimensions. Since this network is not conformal,
joint training is intractable, so it must be trained sequentially.

On the other hand, both CEFs use the same conformal architecture for g. The basic architecture
follows, with input and output channels indicated in brackets. Between every layer, trainable scaling
and shift operations were applied.

x (3⇥ 64⇥ 64) ! 4⇥ 4 Householder Conv (3, 48)

! 1⇥ 1 Conditional Orthogonal Conv (48, 24)

! 2⇥ 2 Householder Conv (24, 96)

! 1⇥ 1 Conditional Orthogonal Conv (96, 96)

! 1⇥ 1 Householder Conv (96, 96)

! 1⇥ 1 Orthogonal Conv (96, 24)

! u (24⇥ 8⇥ 8)

Training. For the sequential baseline and sequential CEF, g was trained with a reconstruction loss
in a 30-epoch manifold-warmup phase, and then h was trained to maximize likelihood for 300-epochs.
The joint CEF was trained with the mixed loss function in Eq. (7) for 300 epochs. All models used
weights of 0.001 for the likelihood and 10000 for the reconstruction loss.

Each model was trained on a single Tesla V100 GPU using the Adam optimizer [34] with learning
rate 1⇥ 10�4, a batch size of 256, and cosine annealing [47].

D Reconstructions and Samples

D.1 Reconstructions

In this section we compare reconstructions from the remaining models omitted in the main text.
These were trained on the synthetic ship manifold with 64 dimensions (Fig. 9), and CelebA (Fig. 10).

24

Figure 9: Synthetic 64-dimensional Ship Manifold Reconstructions. From top to bottom: groundtruth
samples, joint CEF, sequential CEF, and sequential MF.

Figure 10: CelebA Reconstructions. From top to bottom: joint CEF, sequential CEF, and sequential
MF.

D.2 Samples

In this section we provide additional samples from all the image-based models we trained. Figs.
11-16 show the synthetic ship manifolds, Figs. 17-19 show MNIST, and lastly Figs. 20-22 show
CelebA.

25

Figure 11: Uncurated Synthetic 64-dimensional Ship Manifold Samples: Joint CEF

Figure 12: Uncurated Synthetic 64-dimensional Ship Manifold Samples: Sequential CEF

26

Figure 13: Uncurated Synthetic 64-dimensional Ship Manifold Samples: Sequential MF

Figure 14: Uncurated Synthetic 512-dimensional Ship Manifold Samples: Joint CEF

27

Figure 15: Uncurated Synthetic 512-dimensional Ship Manifold Samples: Sequential CEF

Figure 16: Uncurated Synthetic 512-dimensional Ship Manifold Samples: Sequential MF

28

Figure 17: Uncurated MNIST Samples: Joint CEF

Figure 18: Uncurated MNIST Samples: Sequential CEF

29

Figure 19: Uncurated MNIST Samples: Sequential MF

Figure 20: Uncurated CelebA Samples: Joint CEF

30

Figure 21: Uncurated CelebA Samples: Sequential CEF

Figure 22: Uncurated CelebA Samples: Sequential MF

31

	Introduction
	Background
	Normalizing Flows
	Injective Flows

	Conformal Embedding Flows
	Designing Conformal Embedding Flows
	Conformal Embeddings from Conformal Mappings
	Piecewise Conformal Embeddings

	Related Work
	Experiments
	Spherical Data
	Image Data

	Limitations and Future Directions
	Conclusion
	Injective Flows are Manifold Learners
	Densities on Manifolds
	Reconstruction Minimization for Manifold Learning
	Joint Training and Wasserstein Training

	Details on Conformal Embeddings and Conformal Mappings
	Infinitesimal Conformal Mappings
	Finite Conformal Mappings
	Conformal Embeddings

	Experimental Details
	Synthetic Spherical Distribution
	Synthetic CIFAR-10 Ship Manifolds
	MNIST
	CelebA

	Reconstructions and Samples
	Reconstructions
	Samples

