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Abstract

We present a modified tuning of the algorithm of Zimmert and Seldin [2020]
for adversarial multiarmed bandits with delayed feedback, which in addi-
tion to the minimax optimal adversarial regret guarantee shown by Zim-
mert and Seldin simultaneously achieves a near-optimal regret guarantee in
the stochastic setting with fixed delays. Specifically, the adversarial re-
gret guarantee is O(

√
TK +

√
dT logK), where T is the time horizon, K

is the number of arms, and d is the fixed delay, whereas the stochastic
regret guarantee is O

(∑
i ̸=i∗(

1
∆i

log(T ) + d
∆i logK ) + dK1/3 logK

)
, where

∆i are the suboptimality gaps. We also present an extension of the algo-
rithm to the case of arbitrary delays, which is based on an oracle knowl-
edge of the maximal delay dmax and achieves O(

√
TK +

√
D logK +

dmaxK
1/3 logK) regret in the adversarial regime, where D is the total delay,

and O
(∑

i̸=i∗(
1
∆i

log(T ) + σmax

∆i logK ) + dmaxK
1/3 logK

)
regret in the stochas-

tic regime, where σmax is the maximal number of outstanding observations. Finally,
we present a lower bound that matches the refined adversarial regret upper bound
achieved by the skipping technique of Zimmert and Seldin [2020] in the adversarial
setting.

1 Introduction

Delayed feedback is a common challenge in many online learning problems, including multi-armed
bandits. The literature studying multi-armed bandit games with delayed feedback builds on prior
work on bandit problems with no delays. The researchers have traditionally separated the study
of bandit games in stochastic environments [Thompson, 1933, Robbins, 1952, Lai and Robbins,
1985, Auer et al., 2002] and in adversarial environments[Auer et al., 2002b]. However, in practice
the environments are rarely purely stochastic, whereas they may not be fully adversarial either.
Furthermore, the exact nature of an environment is not always known in practice. Therefore, in recent
years there has been an increasing interest in algorithms that perform well in both regimes with no
prior knowledge of the regime [Bubeck and Slivkins, 2012, Seldin and Slivkins, 2014, Auer and
Chiang, 2016, Seldin and Lugosi, 2017, Wei and Luo, 2018]. The quest for best-of-both-worlds
algorithms for no-delay setting culminated with the Tsallis-INF algorithm proposed by Zimmert
and Seldin [2019], which achieves the optimal regret bounds in both stochastic and adversarial
environments. The algorithm and analysis were further improved by Zimmert and Seldin [2021] and
Masoudian and Seldin [2021], who, in particular, derived improved regret bounds for intermediate
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regimes between stochastic and adversarial, while Ito [2021] removed an assumption on uniqueness
of the best arm, which was used in the early works.

Our goal is to extend best-of-both-worlds results to multi-armed bandits with delayed feedback.
So far the literature on multi-armed bandits with delayed feedback has followed the traditional
separation into stochastic and adversarial. In the stochastic regime Joulani et al. [2013] showed that
if the delays are random (generated i.i.d), then compared to the non-delayed stochastic multi-armed
bandit setting, the regret only increases additively by a factor that is proportional to the expected
delay. In the adversarial setting Cesa-Bianchi et al. [2019] have studied the case of uniform delays
d. They derived a lower bound Ω(max(

√
KT,

√
dT logK)) and an almost matching upper bound

O(
√
KT logK +

√
dT logK). Thune et al. [2019] and Bistritz et al. [2019] extended the results to

arbitrary delays, achieving O(
√
KT logK +

√
D logK) regret bounds based on oracle knowledge

of the total delay D and time horizon T . Thune et al. [2019] also proposed a skipping technique based
on advance knowledge of the delays "at action time", which allowed to exclude excessively large
delays from D. Finally, Zimmert and Seldin [2020] introduced an FTRL algorithm with a hybrid
regularizer that achieved O(

√
KT +

√
D logK) regret bound, matching the lower bound in the case

of uniform delays and requiring no prior knowledge of D or T . The regularizer used by Zimmert and
Seldin was a mix of the negative Tsallis entropy regularizer used in the Tsallis-INF algorithm for
bandits and the negative entropy regularizer used in the Hedge algorithm for full information games,
mixed with separate learning rates:

Ft(x) = −2η−1
t

(
K∑
i=1

√
xi

)
+ γ−1

t

(
K∑
i=1

xi(log xi − 1)

)
. (1)

Zimmert and Seldin [2020] also improved the skipping technique and achieved a refined regret bound
O(
√
KT +minS(|S|+

√
DS̄ logK)), where S is a set of skipped rounds and DS̄ is the total delay

in non-skipped rounds. The refined skipping technique requires no advance knowledge of the delays.
Their key step toward elimination of the need of advance knowledge of delays was to base the analysis
on the count of the number of outstanding observations rather than the delays. The great advantage
of skipping is that a few rounds with excessively large or potentially even infinite delays have a very
limited impact on the regret bound. One of our contributions in this paper is a lower bound for the
case of non-uniform delays, which matches the refined regret upper bound achieved by skipping.

Even though the hybrid regularizer used by Zimmert and Seldin [2020] was sharing the Tsallis entropy
part with their best-of-both-worlds Tsallis-INF algorithm from Zimmert and Seldin [2021], and even
though the adversarial analysis was partly similar to the analysis of the Tsallis-INF algorithm, Zimmert
and Seldin [2020] did not manage to derive a regret bound for their algorithm in the stochastic setting
with delayed feedback and left it as an open problem. The stochastic analysis of the Tsallis-INF
algorithm is based on the self-bounding technique [Zimmert and Seldin, 2021]. Application of this
technique in the no delay setting is relatively straightforward, but in presence of delays it requires
control of the drift of the playing distribution from the moment an action is played to the moment
the feedback arrives. Cesa-Bianchi et al. [2019] have bounded the drift of the playing distribution of
the EXP3 algorithm in the uniform delays setting with a fixed learning rate. But best-of-both-worlds
algorithms require decreasing learning rates [Mourtada and Gaïffas, 2019], which makes the drift
control much more challenging. The problem gets even more challenging in the case of arbitrary
delays, because it requires drift control over arbitrary long periods of time.

We apply an FTRL algorithm with the same hybrid regularizer as the one used by Zimmert and
Seldin [2020], but with a different tuning of the learning rates. The new tuning has a minor effect
on the adversarial regret bound, but allows us to make progress with the stochastic analysis. For
the stochastic analysis we use the self-bounding technique. One of our key contributions is a
general lemma that bounds the drift of the playing distribution derived from the time-varying hybrid
regularizer over arbitrary delays. Using this lemma we derive near-optimal best-of-both-worlds
regret guarantees for the case of fixed delays. But even with the lemma at hand, application of the
self-bounding technique in presence of arbitrary delays is still much more challenging than in the no
delays or fixed delay setting. Therefore, we resort to introducing an assumption of oracle knowledge
of the maximal delay, which limits the maximal period of time over which we need to keep control
over the drift. Our contributions are summarized below. To keep the presentation simple we assume
uniqueness of the best arm throughout the paper. Tools for eliminating the uniqueness of the best arm
assumption were proposed by Ito [2021].
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1. We show that in the arbitrary delays setting with an oracle knowledge of the maximal delay
dmax, our algorithm achievesO(

√
KT+

√
D logK+dmaxK

1/3 logK) regret bound in the
adversarial regime simultaneously with O

(∑
i ̸=i∗(

log T
∆i

+ σmax

∆i logK ) + dmaxK
1/3 logK

)
regret bound in the stochastic regime, where σmax is the maximal number of outstanding
observations. We note that σmax ≤ dmax, but it may potentially be much smaller. For
example, if the first observation has a delay of T and all the remaining observations have
zero delay, then dmax = T , but σmax = 1.

2. In the case of uniform delays the above bounds simplify to O(
√
KT +

√
dT logK +

dK1/3 logK) in the adversarial case and O
(∑

i ̸=i∗(
log T
∆i

+ d
∆i logK ) + dK1/3 logK

)
in the stochastic case. For T ≥ dK2/3 logK the last term in the adversarial re-
gret bound is dominated by the middle term, which leads to the minimax optimal
O(
√
KT +

√
dT logK) adversarial regret. The stochastic regret lower bound is triv-

ially Ω(min{d
∑

i̸=i∗ ∆i

K ,
∑

i ̸=i∗
log T
∆i
}) = Ω(d

∑
i̸=i∗ ∆i

K +
∑

i̸=i∗
log T
∆i

) and, therefore, our
stochastic regret upper bound is near-optimal.

3. We present an Ω
(√

KT +minS(|S|+
√
DS̄ logK)

)
regret lower bound for adversarial

multi-armed bandits with non-uniformly delayed feedback, which matches the refined regret
upper bound achieved by the skipping technique of Zimmert and Seldin [2020].

2 Problem setting

We study the multi-armed bandit with delays problem, in which at time t = 1, 2, . . . the learner
chooses an arm It among a set of K arms and instantaneously suffers a loss ℓt,It from a loss vector
ℓt ∈ [0, 1]K generated by the environment, but ℓt,It is not observed by the learner immediately. After
a delay of dt, at the end of round t+ dt, the learner observes the pair (t, ℓt,It), namely, the loss and
the index of the game round the loss is coming from. The sequence of delays d1, d2, . . . is selected
arbitrarily by the environment. Without loss of generality we can assume that all the outstanding
observations are revealed at the end of the game, i.e., t + dt ≤ T for all t, where T is the time
horizon, unknown to the learner. We consider two regimes, oblivious adversarial and stochastic. The
performance of the learner is evaluated using pseudo-regret, which is defined as

RegT = E

[
T∑

t=1

ℓt,It

]
− min

i∈[K]
E

[
T∑

t=1

ℓt,i

]
= E

[
T∑

t=1

(
ℓt,It − ℓt,i∗T

)]
,

where i∗T ∈ argmini∈[K] E
[∑T

t=t ℓt,i

]
is a best arm in hindsight in expectation over the loss

generation model and the randomness of the learner. In the oblivious adversarial setting the losses
are independent of the actions taken by the algorithm and considered to be deterministic, and the
pseudo-regret is equal to the expected regret.

Additional Notation: We use ∆n to denote the probability simplex over n + 1 points. The
characteristic function of a closed convex set A is denoted by IA(x) and satisfies IA(x) = 0 for
x ∈ A and IA(x) = ∞ otherwise. The convex conjugate of a function f : Rn → R is defined by
f∗(y) = supx∈Rn{⟨x, y⟩− f(x)}. We also use bar to denote that the function domain is restricted to

∆n, e.g., f̄(x) =
{
f(x), if x ∈ ∆n

∞, otherwise
. We denote the indicator function of an event E by 1(E) and

use 1t(i) as a shorthand for 1(It = i). The probability distribution over arms that is played by the
learner at round t is denoted by xt ∈ ∆K−1.

3 Algorithm

The algorithm is based on Follow The Regularized Leader (FTRL) algorithm with the hybrid
regularizer used by Zimmert and Seldin [2020], stated in equation (1). At each time step t let
σt =

∑t−1
s=1 1(s + ds ≥ t) be the number of outstanding observations and Dt =

∑t
s=1 σt be the
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cumulative number of outstanding observations, then the learning rates are defined as

η−1
t =

√
t+ η0, γ−1

t =

√∑t
s=1 σs + γ0
logK

, (2)

where η0 = 10dmax + d2max/
(
K1/3 log(K)

)2
and γ0 = 242d2maxK

2/3 log(K). The update rule
for the distribution over actions played by the learner is

xt = ∇F̄ ∗
t (−L̂obs

t ) = arg min
x∈∆K−1

⟨L̂obs
t , x⟩+ Ft(x), (3)

where L̂obs
t =

∑t−1
s=1 ℓ̂s1(s+ ds < t) is the cumulative importance-weighted observed loss and ℓ̂s is

an importance-weighted estimate of the loss vector ℓs defined by

ℓ̂t,i =
ℓt,i1(It = i)

xt,i
.

At the beginning of round t the algorithm calculates the cumulative number of outstanding observa-
tions Dt and uses it to define the learning rate γt. Next, it uses the FTRL update rule defined in (3) to
define a distribution over actions xt from which to draw action It. Finally, at the end of round t it
receives the delayed observations and updates the cumulative loss estimation vector accordingly, so
that L̂obs

t+1 = L̂obs
t +

∑t
s=1 ℓ̂s1(s+ ds = t). The complete algorithm is provided in Algorithm 1.

Algorithm 1: FTRL with advance tuning for delayed bandit

1 Initialize D0 = 0 and L̂obs
1 = 0K (where 0K is a zero vector in RK)

2 for t = 1, . . . , n do
3 Set σt =

∑t−1
s=1 1(s+ ds > t)

4 Update Dt = Dt−1 + σt

5 Set xt = argminx∈∆K−1⟨L̂obs
t , x⟩+Ft(x) // Ft is defined in (1) and ηt and γt in (2)

6 Sample It ∼ xt

7 Observe (s, ℓs,Is) for all s that satisfy s+ ds = t

8 L̂obs
t+1 = L̂obs

t +
∑t

s=1 ℓ̂s1(s+ ds = t)

4 Best-of-both-worlds regret bounds for Algorithm 1

In this section we provide best-of-both-worlds regret bounds for Algorithm 1. First, in Theorem 1
we provide regret bounds for an arbitrary delay setting, where we assume an oracle access to dmax.
Then, in Corollary 2 we specialize the result to a fixed delay setting.
Theorem 1. Assume that Algorithm 1 is given an oracle knowledge of dmax. Then its pseudo-regret
for any sequence of delays and losses satisfies

RegT = O(
√
TK +

√
D logK + dmaxK

1/3 logK).

Furthermore, in the stochastic regime the pseudo-regret additionally satisfies

RegT = O

∑
i̸=i∗

(
1

∆i
log(T ) +

σmax

∆i logK
) + dmaxK

1/3 logK

 .

A sketch of the proof is provided in Section 5 and detailed constants are worked out in Appendix C.
For fixed delays Theorem 1 gives the following corollary.
Corollary 2. If the delays are fixed and equal to d, and T ≥ dK2/3 logK, then the pseudo-regret of
Algorithm 1 always satisfies

RegT = O(
√
TK +

√
dT logK)

and in the stochastic setting it additionally satisfies

RegT = O

∑
i ̸=i∗

(
1

∆i
log(T ) +

d

∆i logK
) + dK1/3 logK

 .
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In the adversarial regime with fixed delays d, regret lower bound is Ω
(√

KT +
√
dT logK

)
,

whereas in the stochastic regime with fixed delays the regret lower bound is trivially Ω(d
∑

i̸=i∗ ∆i

K +∑
i ̸=i∗

log T
∆i

). Thus, in the adversarial regime the corollary yields the minimax optimal regret bound
and in the stochastic regime it is near-optimal. More explicitly, it is optimal within a multiplicative
factor of

∑
i ̸=i∗

1
∆i logK + K4/3 logK∑

i̸=i∗ ∆i
in front of d.

If we fix a total delay budget D, then uniform delays d = D/T is a special case, and in this sense
Theorem 1 is also optimal in the adversarial regime and near-optimal in the stochastic regime,
although for non-uniform delays improved regret bounds can potentially be achieved by skipping.
We also note that having the dependence on σmax in the middle term of the stochastic regret bound
in Theorem 1 is better than having a dependence on dmax, since σmax ≤ dmax, and in some cases
it can be significantly smaller, as shown in the example in the Introduction and quantified by the
following lemma.
Lemma 3. Let dmax(S) = maxs∈S ds, where S ⊆ {1, . . . , T} is a subset of rounds. Let S̄ =
{1, . . . , T} \ S be the remaining rounds. Then

σmax ≤ min
S⊆{1,...,T}

{
|S|+ dmax(S̄)

}
.

A proof of Lemma 3 is provided in Appendix A.

Finally, we note that the result in Theorem 1 is easily extendable to the corrupted regime, because the
proof relies on the same self-bounding technique as the one used by Zimmert and Seldin [2021]. If
we denote by Bstoch

T the regret upper bound in the stochastic regime in Theorem 1 and by C the total

corruption budget, then in the corrupted regime the regret would be O(Bstoch
T +

√
Bstoch

T C). The
proof is straightforward, following the lines of Zimmert and Seldin [2021], and, therefore, left out.

5 A proof sketch of Theorem 1

In this section we provide a sketch of a proof of Theorem 1. We provide a proof sketch for the
stochastic bound in Section 5.1. Afterwards, in Section 5.2, we show how the analysis of Zimmert
and Seldin [2020] gives the adversarial bound stated in Theorem 1.

5.1 Stochastic Bound

We start by providing a key lemma (Lemma 4) that controls the drift of the playing distribution
derived from the time-varying hybrid regularizer over arbitrary delays. We then introduce a drifted
version of the pseudo-regret defined in (4), for which we use the key lemma to show that the drifted
version of the pseudo-regret is close to the actual one. As a result, it is sufficient to bound the drifted
version. The analysis of the drifted pseudo-regret follows by the standard analysis of the FTRL
algorithm [Lattimore and Szepesvári, 2020] that decomposes the pseudo-regret (drifted pseudo-regret
in our case) into stability and penalty terms. Thereafter, we proceed by using Lemma 4 again, this
time to bound the stability term in order to apply the self-bounding technique [Zimmert and Seldin,
2019], which yields logarithmic regret in the stochastic setting. Our key lemma is the following.
Lemma 4 (The Key Lemma). For any i ∈ [K] and s, t ∈ [T ], where s ≤ t and t− s ≤ dmax, we
have

xt,i ≤ 2xs,i.

A detailed proof of the lemma is provided in Appendix B. Below we explain the high level idea
behind the proof.

Proof sketch. We know that xt = ∇F̄ ∗
t (−L̂obs

t ) and xs = ∇F̄ ∗
s (−L̂obs

s ), so we introduce x̃ =

∇F̄ ∗
s (−L̂obs

t ) as an auxiliary variable to bridge between xt and xs. The analysis consists of two key
steps and is based on induction on (t, s).
Deviation Induced by the Loss Shift: This step controls the drift when we fix the learning rates and
shift the cumulative loss. We prove the following inequality:

x̃i ≤
3

2
xs,i.
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Note that this step uses the induction assumption for (s, s− dr) for all r < s : r + dr = s.
Deviation Induced by the Change of Regularizer: In this step we bound the drift when the
cumulative loss vector is fixed and we change the regularizer. We show that

xt,i ≤
4

3
x̃i.

Combining these two steps gives us the desired bound. A proof of these steps is provided in
Appendix B.

We use Lemma 4 to relate the drifted pseudo-regret to the actual pseudo-regret. Let At =
{s : s ≤ t and s+ ds = t} be the set of rounds for which feedback arrives at round t. We define the
observed loss vector at time t as ℓ̂obst =

∑
s∈At

ℓ̂s and the drifted pseudo-regret as

Reg
drift

T = E

[
T∑

t=1

(
⟨xt, ℓ̂

obs
t ⟩ − ℓ̂obst,i∗T

)]
. (4)

We rewrite the drifted regret as

Reg
drift

T = E

[
T∑

t=1

∑
s∈At

(
⟨xt, ℓ̂s⟩ − ℓ̂s,i∗T

)]

=

T∑
t=1

∑
s∈At

K∑
i=1

E[xt,i(ℓ̂s,i − ℓ̂s,i∗T )]

=

T∑
t=1

∑
s∈At

K∑
i=1

E[xt,i]∆i =

T∑
t=1

K∑
i=1

E[xt+dt,i]∆i,

where when taking the expectation we use the facts that ℓ̂s has no impact on the determination
of xt and that the loss estimators are unbiased. Using Lemma 4 we make a connection between
pseudo-regret and the drifted version:

Reg
drift

T =

T∑
t=1

K∑
i=1

E[xt+dt,i]∆i ≥
T−dmax∑

t=1

K∑
i=1

1

2
E[xt+dmax,i]∆i

=
1

2

T∑
t=dmax+1

K∑
i=1

E[xt,i]∆i

≥ 1

2

T∑
t=1

K∑
i=1

E[xt,i]∆i −
dmax

2
=

1

2
RegT −

dmax

2
,

where the first inequality follows by Lemma 4, and the second inequality uses
∑dmax

t=1 E[xt,i]∆i ≤
dmax. As a result, we have RegT ≤ 2Reg

drift

T + dmax and it suffices to upper bound Reg
drift

T . We
follow the standard analysis of FTRL, which decomposes the drifted pseudo-regret into stabiltiy and
penalty terms as

Reg
drift

T = E


T∑

t=1

⟨xt, ℓ̂
obs
t ⟩+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t )︸ ︷︷ ︸

stability

+E


T∑

t=1

F̄ ∗
t (−L̂obs

t )− F̄ ∗
t (−L̂obs

t+1)− ℓt,i∗T︸ ︷︷ ︸
penalty

 .

For the penalty term we have the following bound by Abernethy et al. [2015]

penalty ≤
T∑

t=2

(Ft−1(xt)− Ft(xt)) + FT (ei∗T )− F1(x1),

6



where ei∗T denotes a the unit vector in RK with the i∗T -th element being one and zero elsewhere. By
replacing the closed form of the regularizer in this bound and using the facts that η−1

t −η−1
t−1 = O(ηt),

γ−1
t − γ−1

t−1 = O(σtγt/ logK), and x
1
2

t,i∗T
− 1 ≤ 0, we obtain

penalty ≤ O

 T∑
t=2

∑
i ̸=i∗

ηtx
1
2
t,i +

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK

+ 2
√
η0(K − 1) +

√
γ0 logK.

(5)

In order to control the stability term we derive Lemma 5.

Lemma 5 (Stability). Let υt = |At|. For any αt ≤ γ−1
t we have

stability ≤
T∑

t=1

K∑
i=1

2f
′′

t (xt,i)
−1(ℓ̂obst,i − αt)

2.

Furthermore, αt =
∑K

j=1 f
′′
(xt,j)

−1ℓ̂obst,j∑K
j=1 f ′′ (xt,j)−1 satisfies αt ≤ γ−1

t and yields

E[stability] ≤
T∑

t=1

∑
i ̸=i∗

2γt(υt − 1)υtE[xt,i]∆i +

T∑
t=1

∑
s∈At

K∑
i=1

2ηtE[x3/2
t,i x−1

s,i (1− xs,i)]. (6)

A proof of the stability lemma is provided in Appendix A.3. We apply Lemma 4 to (6) to give bounds
υtxt,i =

∑
s∈At

xt,i ≤ 2
∑

s∈At
xs,i and x

3/2
t,i x−1

s,i (1 − xs,i) ≤ 23/2x
1/2
s,i (1 − xs,i). Moreover, in

order to remove the best arm i∗ from the summation in the later bound we use x
1/2
s,i∗(1 − xs,i∗) ≤∑

i ̸=i∗ xs,i ≤
∑

i ̸=i∗ x
1/2
s,i . These bounds together with the facts that we can change the order of the

summations and that each t belongs to exactly one As, gives us the following stability bound

E[stability] = O

 T∑
t=1

∑
i ̸=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

∑
i ̸=i∗

γt+dt(υt+dt − 1)E[xt,i]∆i

 . (7)

By combining (7), (5), and the fact that RegT ≤ 2Reg
drift

T + dmax, we show that there exist
constants a, b, c ≥ 0, such that

RegT ≤ E

a
T∑

t=1

∑
i̸=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+b

T∑
t=1

∑
i ̸=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B

+c

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C


+ 4
√
η0(K − 1) + 2

√
γ0 logK + dmax︸ ︷︷ ︸

D

. (8)

Self bounding analysis: We use the self-bounding technique to write RegT = 4RegT − 3RegT ,
and then based on (8) we have

RegT ≤ E
[
4aA−RegT

]
+ E

[
4bB −RegT

]
+ E

[
4cC −RegT

]
+ 4D. (9)

For D we can substitute the values of γ0 and η0 and get

D = O(dmax(K − 1)1/3 logK). (10)

Upper bounding A,B, and C requires separate and elaborate analysis, which we do in Lemmas 6, 7
and 8, respectively. Proofs of these lemmas are provided in Appendix A.2.

Lemma 6 (A bound for 4aA−RegT ). We have the following bound for any a ≥ 0:

4aA−RegT ≤
∑
i ̸=i∗

4a2

∆i
log(T/η0 + 1) + 1. (11)

7



Lemma 6 contributes the logarithmic (in T ) term to the regret bound.

Lemma 7 (A bound for 4bB −RegT ). Let υmax = maxt∈[T ] υt, then for any b ≥ 0:

4bB −RegT ≤ 64b2υmax logK. (12)

It is evident that υmax ≤ σmax ≤ dmax, so the bound in Lemma 7 contributes an O(dmax logK)
term to the regret bound.

Lemma 8 (A bound for 4cC −RegT ). For any c ≥ 0:

4cC −RegT ≤
∑
i ̸=i∗

128c2σmax

∆i logK
. (13)

Part of the pseudo-regret bound that corresponds to Lemma 8 comes from the penalty term related
to the negative entropy part of the regularizer. In this part, despite the fact that σmax can be much
smaller than dmax (Lemma 3), the

∑
i̸=i∗

σmax

∆i logK term could be very large when the suboptimality
gaps are small. In Appendix D we show how an asymmetric oracle learning rate γt,i ≃ γt/

√
∆i for

the negative entropy regularizer can be used to remove the
∑

i ̸=i∗ 1/∆i factor in front of σmax. The
possibility of removing this factor without the oracle knowledge is left as an open question.

Finally, by plugging (10),(11),(12),(13) into (9) we obtain the desired regret bound.

5.2 Adversarial bound

For the adversarial regime we use the final bound of Zimmert and Seldin [2021], which holds for any
non-increasing learning rates:

RegT ≤
T∑

t=1

ηt
√
K +

T∑
t=1

γtσt + 2η−1
T

√
K + γ−1

T logK.

It suffices to substitute the values of the learning rates and use Lemma 11 for function 1√
x

:

RegT ≤
T∑

t=1

√
K√

t+ η0
+

T∑
t=1

σt

√
logK√

Dt + γ0
+ 2
√
KT +Kη0 +

√
log(K)DT + γ0 log(K)

= O
(√

KT +
√
log(K)DT + dmaxK

1/3 logK
)
.

6 Refined lower bound

In this section, we prove a tight lower bound for adversarial regret with arbitrary delays. Thune et al.
[2019] have proposed a skipping technique to achieve refined regret upper bounds in the adversarial
regime with non-uniform delays. The technique was improved by Zimmert and Seldin [2020], but
it remained unknown whether the refined regret bounds for regimes with non-uniform delays are
tight. We answer this question positively by showing that the regret bound of Zimmert and Seldin
[2020] is not improvable without additional assumptions. We first derive a refined lower bound for
full-information games with variable loss ranges, which might be of independent interest. A proof is
provided in Appendix E.
Theorem 9. Let L1 ≥ L2 ≥ · · · ≥ LT ≥ 0 be a non-increasing sequence of positive reals and
assume that there exists a permutation ρ : [T ] → [T ], such that the losses at time t are bounded
in [0, Lρ(t)]

K . The minimax regret Reg∗ in the corresponding adversarial full-information game
satisfies

Reg∗ ≥ max

1

2

⌊log2(K)⌋∑
t=1

Lt,
1

32

√√√√ T∑
t=⌊log2(K)⌋

L2
t log(K)

 .

From here we can directly obtain a lower bound for the full-information game with variable delays.
This implies the same lower bound for bandits, since we have strictly less information available.
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Corollary 10. Let (dt)Tt=1 be a sequence of non-increasing delays, such that dt ≤ T + 1− t and
let an oblivious adversary select all loss vectors (ℓt)Tt=1 in [0, 1]K before the start of the game. The
minimax regret of the full-information game is bounded from below by

Reg∗ = Ω

(
min
S⊂[T ]

|S|+
√

DS̄ log(K)

)
, where DS̄ =

∑
t∈[T ]\S

dt .

Proof. We divide the time horizon greedily into M buckets, such that the actions for all timesteps
inside a bucket have to be chosen before the first feedback from any timestep inside the bucket is
received. In other words, let bucket Bm = {bm, . . . , bm+1 − 1}, then ∀t ∈ Bm : t+ dt > bm+1 − 1,
while ∃t ∈ Bm : t+ dt = bm+1. This division of buckets has the following properties:

(i) monotonically decreasing sizes: |B1| ≥ |B2| ≥ · · · ≥ |BM |.

(ii) upper bound on the sum of delays: ∀m ∈ [M − 1] : |Bm|2 ≥
∑

t∈Bm+1
dt.

Both properties follow directly from the non-decreasing nature of the delays.

|Bm| = bm+1 − bm ≤ bm + dbm − bm = dbm
|Bm| = min

t∈Bm

{dt + t− bm} ≥ dbm+1−1 + min
t∈Bm

{t− bm} ≥ dbm+1−1 .

Hence

|Bm| ≥ dbm+1−1 ≥ dbm+1
≥ |Bm+1| ,∑

t∈Bm+1
dt ≤ |Bm+1| · dbm+1

≤ |Bm+1| · |Bm| ≤ |Bm|2 .

Set S′ =
⋃⌊log2(K)⌋

m=1 Bm and let the adversary set all losses within a bucket to the same value, then
the game reduces to a full information game over M rounds with loss ranges |B1|, |B2|, . . . , |BM |.
Applying Theorem 9 yields

Reg∗ ≥ max

1

2

⌊log2(K)⌋∑
m=1

|Bm|,
1

32

√√√√ M∑
m=⌊log2(K)⌋

|Bm|2 log(K)


≥ max

1

2
|S′|, 1

32

√∑
t∈S̄′

dt log(K)

 = Ω

 min
S⊂[T ]

|S|+
√∑

t∈S̄

dt log(K)

 .

7 Discussion

We have presented a best-of-both-worlds analysis of a slightly modified version of the algorithm of
Zimmert and Seldin [2020] for bandits with delayed feedback. The key novelty of our analysis is the
control of the drift of the playing distribution over arbitrary, but bounded, time intervals when the
learning rate is changing over time. This control is necessary for best-of-both-worlds guarantees, but
it is much more challenging than the drift control over fixed time intervals with fixed learning rate
that appeared in prior work.

We also presented an adversarial regret lower bound matching the skipping-based refined regret upper
bound of Zimmert and Seldin [2020] within constants.

Our work leads to several exciting open questions. The main one is whether skipping can be used to
eliminate the need in oracle knowledge of dmax. If possible, this would remedy the deterioration
of the adversarial bound by the additive factor of dmax, because the skipping threshold would be
dominated by

√
DS̄ logK. Another open question is whether the σmax

∆i
term can be eliminated from

the stochastic bound. Yet another open question is whether the dmax factor in the stochastic bound
can be reduced to σmax and whether the multiplicative terms dependent on K can be eliminated. An
extension of the results to first order bounds, that depend on the cumulative loss of the best action
rather than T , and extension to arm dependent delays are also open questions. For now it was only
done in the adversarial setting [Gyorgy and Joulani, 2021, Van Der Hoeven and Cesa-Bianchi, 2022].
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A Proofs of the lemmas for the analysis of Algorithm 1

A.1 A proof of Lemma 3

Proof. Let S ⊆ {1, . . . , T} and S̄ = {1, . . . , T} \ S be an arbitrary split of the game rounds. Consider
the number of outstanding observations σt at an arbitrary round t. The number σt is bounded by the sum of
the number of outstanding observations from actions taken in the rounds in S and the number of outstanding
observations from actions taken in the rounds in S̄. The former is bounded by |S|, and the latter is bounded
by dmax(S̄), since by definition of dmax(S̄) any observation from an action taken in a round in S̄ can be
outstanding for at most dmax(S̄) rounds. Since this holds for any split of the rounds {1, . . . , T} into S and S̄,
we have σmax = maxt σt ≤ minS⊆{1,...,T}

(
|S|+ dmax(S̄)

)
.

A.2 Proofs of the lemmas supporting the proof of Theorem 1

We start with providing some auxiliary lemmas.

Lemma 11 (Integral inequality: Lemma 4.13 of Orabona [2019]). Let g(x) be a positive nonincreasing function,
then for any non-negative sequence {zn}n∈{0,...,N} we have

N∑
n=1

zng

(
n∑

i=0

zi

)
≤
∫ ∑N

i=0 zi

z0

g(x)dx.

Lemma 12. Let σt and υt be the number of outstanding observations and arriving observations at time t,
respectively, then the following inequality holds for all t

t∑
s=1

σs ≥
t∑

s=1

υ2
s − υs

2
.

Proof. Note that As = {r : r + dr = t}. We define Ds = {dr : r ∈ As} be the set of delays corresponding
to observations that arrive at round s, then Ds must have υs = |As| different number of elements, because
∀r ∈ As : r + dr = s. As a result, we have∑

r∈As

dr ≥ 0 + 1 + . . .+ (υs − 1) =
υs(υs − 1)

2
.

This gives us the following inequality

t∑
s=1

υ2
s − υs

2
≤

t∑
s=1

∑
r∈As

dr

=
∑

r:r+dr≤t

dr.

On the other hand,
∑t

s=1 σs ≥
∑

r:r+dr≤t dr , since every observation from an action taken at round r with
delay dr counts as outstanding over dr rounds, i.e., contributes 1 to σr+1, . . . , σr+dr , and observations that
have not arrived by round t contribute only to the left hand side of the inequality. Together with the preceding
inequality this completes the proof.

A.2.1 A proof of Lemma 6

Proof. We bound 4aA−RegT .

4aA−RegT =

T∑
t=1

∑
i̸=i∗

 4ax
1
2
t,i√

t+ η0
− xt,i∆i


≤

T∑
t=1

∑
i̸=i∗

4a2

(t+ η0)∆i
≤
∑
i ̸=i∗

4a2

∆i
log(T/η0 + 1) + 1, (14)

where the first inequality uses the AM-GM inequality, by which for any z and y we have z + y ≥ 2
√
zy ⇒

2
√
zy − y ≤ z. The second inequality follows by the integral bound on the harmonic series, by which∑T
t=1 1/(t+ η0) ≤ log(T + η0)− log(η0) + 1.
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A.2.2 Proof of Lemma 7

Proof. We have

4bB −RegT =

T∑
t=1

∑
i̸=i∗

xt,i∆i (4b(υt+dt − 1)γt+dt − 1) .

We define T0 to be the first round t with γ−1
t ≥ 4b(υmax − 1), where υmax = maxs∈[T ]{υs}. Then in the

summation over time, the rounds with t+ dt ≥ T0 provide a negative contribution, since 4b(υt+dt − 1)γt+dt −
1 ≤ 4b(υt+dt

−1)

4b(υmax−1)
− 1 ≤ 0. Therefore,

4bB −RegT ≤
∑

t+dt<T0

∑
i ̸=i∗

xt,i∆i (4b(υt+dt − 1)γt+dt − 1)

≤
∑

t+dt<T0

4b(υt+dt − 1)γt+dt =

T0−1∑
t=1

∑
s+ds=t

4b(υt − 1)γt =

T0−1∑
t=1

4bυt(υt − 1)γt, (15)

where the second inequality holds because
∑

i ̸=i∗ xt,i∆i ≤ 1 and υt+dt ≥ 1. For simplicity of notation, we
denote υ̃t = υt(υt − 1)/2, for which Lemma 12 gives us

∑t
s=1 υ̃t ≤

∑t
s=1 σs. Therefore, we have

T0−1∑
t=1

4bυt(υt − 1)γt ≤
T0−1∑
t=1

8b
√
logKυ̃t√∑t
s=1 υ̃t

≤ 16b

√√√√(logK)

T0−1∑
t=1

υ̃t ≤ 16b

√√√√(logK)

T0−1∑
t=1

σt ≤ 16b(logK)γ−1
T0−1, (16)

where the second inequality uses integral inequality Lemma 11 for g(x) = 1√
x

. Moreover, by the choice of T0

we have γ−1
T0−1 ≤ 4b(υmax−1). Combining this with (15) and (16) gives us 4bB−RegT ≤ 64b2υmax logK.

A.2.3 Proof of Lemma 8

Proof. First, we remove i∗ from the summation in C by using the following inequality

−xt,i∗ log(xt,i∗) ≤ (1− xt,i∗) =
∑
i̸=i∗

xt,i,

which follows by the fact that z log(z) + 1− z is a decreasing function for z ∈ [0, 1], and the minimum value is
zero, therefore, it is non-negative for z ∈ [0, 1]. By using this inequality we have

T∑
t=2

K∑
i=1

−4cσtxt,i log(xt,i)√
(St + γ0) logK

≤ 4c

T∑
t=1

∑
i ̸=i∗

−σtxt,i log(xt,i)√
(St + γ0) logK︸ ︷︷ ︸
C1

+4c

T∑
t=1

∑
i ̸=i∗

σtxt,i√
(St + γ0) logK︸ ︷︷ ︸
C2

,

where St =
∑t

s=1 σs. We break the expression 4cC − RegT , into 4
(
cC1 − αRegT

)
+ 4

(
cC2 − βRegT

)
,

where α+ β = 1/4.

Controlling cC2 − βRegT

Let σmax = maxt∈[T ]{σt} and let Ti be the first round t when St + γ0 ≥ c2σ2
max

β2∆2
i logK

. Then for all t ≥ Ti we
have

cσtxt,i√
(St + γ0) logK

− βxt,i∆i ≤ 0.
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Therefore, rounds after Ti provide negative contribution to the summation, and we have

cC2 − βRegT ≤ β
∑
i ̸=i∗

Ti−1∑
t=1

xt,i

(
cσt

β
√

(St + γ0) logK
−∆i

)

≤
∑
i ̸=i∗

Ti−1∑
t=1

cσt√
(St + γ0) logK

≤
∑
i ̸=i∗

2c(
√

STi−1 + γ0 −
√
γ0)√

logK

≤
∑
i ̸=i∗

2c2σmax

β∆i logK
, (17)

where the third inequality uses Lemma 11 for g(x) = 1√
x

and the last inequality follows by the choice of Ti,

which gives STi−1 + γ0 ≤ c2σ2
max

β2∆2
i logK

.

Controlling cC1 − αRegT

For cC1 − αRegT , let bt = cσt

α
√

(St+γ0) logK
, then

cC1 − αRegT = α

T∑
t=1

∑
i ̸=i∗

(−btxt,i log(xt,i)−∆ixt,i)

≤ α

T∑
t=1

∑
i ̸=i∗

max
z∈[0,1]

{−btz log(z)−∆iz} .

The function g(z) = −btz log(z)−∆iz is a concave function for z ∈ [0, 1] and the maximum occurs when

the derivative is zero. So we must have −bt log(z) − bt − ∆i = 0 ⇒ z = e
−∆i

bt
−1, and by substitution

maxz∈[0,1] g(z) = bte
−∆i

bt
−1. Therefore,

cC1 − αRegT ≤ α

T∑
t=1

∑
i ̸=i∗

bte
−∆i

bt
−1

=
∑
i ̸=i∗

T∑
t=1

cσt√
(St + γ0) logK

exp

(
−
α∆i

√
(St + γ0) logK

cσt
− 1

)

≤
∑
i ̸=i∗

T∑
t=1

σt ×
c√

(St + γ0) logK
exp

(
−
α∆i

√
(St + γ0) logK

cσmax
− 1

)
,

where σmax = maxt∈[T ]{σt}. Let gi(x) = c√
x logK

exp
(
−α∆i

√
x logK

cσmax
− 1
)

, then for each i we need to

upper bound
∑T

t=1 σtgi(St+γ0), which by Lemma 11 can be upper bounded by
∫ ST+γ0

γ0
gi(x)dx, because g is

nonincreasing. On the other hand, for any δ, a ≥ 0, we have
∫

a√
x
exp(− δ

√
x

a
−1)dx = − 2a2

δ
exp(− δ

√
x

a
−1).

So, using the closed form of
∫
gi(x)dx with δ = α∆i

σmax
, a = c√

logK
, we have

cC1 − αRegT ≤
∑
i ̸=i∗

∫ ST+γ0

γ0

gi(x)dx

=
∑
i ̸=i∗

−2c2σmax

α∆i logK
exp

(
−α∆i

√
x logK

cσmax
− 1

) ∣∣∣∣x=ST+γ0

x=γ0

=

2c2σmax

(
exp

(
−α∆i

√
γ0 logK

cσmax
− 1
)
− exp

(
−α∆i

√
(ST+γ0) logK

cσmax
− 1

))
α∆i logK

≤
∑
i ̸=i∗

2c2σmax

α∆i logK
. (18)
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Taking together (17) and (18) gives us

4cC −RegT ≤
∑
i ̸=i∗

8c2σmax

∆i logK

(
1

β
+

1

α

)
=
∑
i̸=i∗

8c2σmax

∆i logK

(
1

1/4− α
+

1

α

)

≤
∑
i̸=i∗

128c2σmax

∆i logK
, (19)

where the second inequality uses α = 1
8

.

A.3 Proof of the stability lemma

The lemma has two parts, the first part is the general bound for the stability term and the second is a special case
of that bound where we set α to a specific value to get the desirable bound.

Before starting the proof we provide one fact and one lemma that help us in the proof of the stability lemma. We
recall that our regularization function is Ft(x) =

∑K
i=1 ft(x), where ft(x) = −2η−1

t

√
x+ γ−1

t x(log x− 1).

Fact 13 ([Zimmert and Seldin, 2020]). f∗′
t (x) is a convex monotonically increasing function.

Proof. The proof is available in Section 7.3 of the supplementary material of Zimmert and Seldin [2020].

Lemma 14. Let DF (x, y) = F (x) − F (y) − ⟨x − y,∇F (y)⟩ be the Bergman divergence of a function F .
Then for any x ∈ dom(ft), and any ℓ such that ℓ ≥ −γ−1

t :

Df∗
t
(f

′
t (x)− ℓ, f

′
t (x)) ≤

ℓ2

2f
′′
t (ex)

.

Moreover, it is easy to see (f
′′
t (ex))−1 ≤ 4(f

′′
t (x))−1, which implies Df∗

t
(f

′
t (x)− ℓ, f

′
t (x)) ≤ 2ℓ2

f
′′
t (x)

.

Proof. By Taylor’s theorem there exists x̃ ∈
[
f∗′
t (f

′
t (x)− ℓ), f∗′

t (f
′
t (x))

]
, such that

Df∗
t
(f

′
t (x)− ℓ, f

′
t (x)) =

1

2
ℓ2f∗′′

t (f
′
t (x̃)) =

1

2
ℓ2f

′′
t (x̃)−1,

where the second equality is a property of the convex conjugate operation. We have two cases for ℓ:

1. If ℓ ≥ 0, then based on Fact 13 we know that f∗′
t is increasing, so x̃ ≤ x. On the other hand, f

′′
(x)−1

is increasing, so f
′′
t (x̃)−1 ≤ f

′′
t (x)−1 ≤ f

′′
t (ex)−1.

2. If ℓ < 0, then x̃ ∈
[
f∗′
t (f

′
t (x)), f

∗′
t (f

′
t (x)− ℓ)

]
. We show that f∗′

t (f
′
t (x) − ℓ) ≤ ex, which

by the choice of x̃ implies x̃ ≤ ex, and consequently, like in the other case, we end up having
f

′′
t (x̃)−1 ≤ f

′′
t (ex)−1.

Since f∗′ is increasing and ex = f∗′(f
′
(ex)), it suffices to prove that f

′
(ex) ≥ f

′
(x) − ℓ, or,

equivalently, f
′
(ex)− f

′
(x) ≥ −ℓ. So

f
′
(ex)− f

′
(x) =

(
−η−1

t (ex)−1/2 + γ−1
t log(ex)

)
−
(
−η−1

t x−1/2 + γ−1
t log(x)

)
= η−1

t x−1/2

(
1− 1√

2

)
+ γ−1

t ≥ γ−1
t ≥ −ℓ

Proof of the First Part of the Stability Lemma. We have xt = argminx∈∆K−1⟨L̂obs
t , x⟩ + Ft(x), so by the

KKT conditions there exists c0 ∈ R, such that −L̂obs
t = ∇Ft(xt)−c01K . On the other hand, F̄t(−L+c1K) =

F̄t(−L) + c for any c ∈ R and L ∈ RK and the equality holds iff c = 0. Therefore, using these two facts we
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can rewrite the stability term as

T∑
t=1

⟨xt, ℓ̂
obs
t ⟩+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t ) =

T∑
t=1

⟨xt, ℓ̂
obs
t − αt1K⟩+ F̄ ∗

t (−L̂obs
t+1 + (αt + c0)1K)− F̄ ∗

t (−L̂obs
t + c01K)

=

T∑
t=1

⟨xt, ℓ̂
obs
t − αt1K⟩+ F̄ ∗

t (∇Ft(xt)− (ℓ̂obst − αt1K))− F̄ ∗
t (∇Ft(xt))

≤
T∑

t=1

⟨xt, ℓ̂
obs
t − αt1K⟩+ F ∗

t (∇Ft(xt)− (ℓ̂obst − αt1K))− F ∗
t (∇Ft(xt))

=

K∑
i=1

Df∗
t

(
f

′
t (xt,i)− (ℓ̂obst,i − αt), f

′
t (xt,i)

)
, (20)

where the inequality holds because F̄ ∗
t (L) ≤ F ∗

t (L) for all L ∈ RK and F̄ ∗
t (∇Ft(x)) = F ∗

t (∇Ft(x)) for
all x ∈ RK . Hence, since αt ≤ γ−1

t , we have ℓ̂obst,i − αt ≥ −αt ≥ −γ−1
t . This implies that we can apply

Lemma 14 to get the following bound for (20)

stability ≤
K∑
i=1

2f
′′
t (xt,i)

−1(ℓ̂obst,i − αt)
2.

Proof of the Second Part of the Stability Lemma. First, we must check whether αt =
∑K

j=1 f
′′
(xt,j)

−1 ℓ̃t,j∑K
j=1 f

′′
(xt,j)−1

satisfies αt ≤ γ−1
t or not:

αt =

∑K
j=1 f

′′
(xt,j)

−1ℓ̃t,j∑K
j=1 f

′′(xt,j)−1

=

∑K
j=1 f

′′
(xt,j)

−1∑
s∈At

ℓ̂s,j∑K
j=1 f

′′(xt,j)−1

≤ 8|At|(K − 1)
1
3 ≤ 8dmax(K − 1)

1
3 ≤ γ−1

t ,

where the first inequality uses Lemma 17. To simplify the analysis, for all i let zi = f
′′
t (xt,i)

−1, then by
substitution of the value of αt in the stability expression we have

K∑
i=1

zi(ℓ̃t,i − αt)
2 =

K∑
i=1

ziℓ̃
2
t,i − 2

K∑
i=1

ziℓ̃t,iαt +

K∑
i=1

ziα
2
t

=

K∑
i=1

ziℓ̃
2
t,i −

(
∑K

i=1 ziℓ̃t,i)
2∑K

i=1 zi

=

K∑
i=1

ziℓ̃
2
t,i −

∑K
i=1 z

2
i ℓ̃

2
t,i∑K

i=1 zi
−
∑

i,j,i ̸=j zizj ℓ̃t,iℓ̃t,j∑K
i=1 zi

=

K∑
i=1

(
zi −

z2i∑K
j=1 zj

)(∑
s∈At

ℓ̂s,i

)2

−

∑
i,j,i ̸=j zizj

(∑
r,s∈At

ℓ̂r,iℓ̂s,j
)

∑K
i=1 zi

=

K∑
i=1

(
zi −

z2i∑K
j=1 zj

)(∑
s∈At

ℓ̂2s,i

)
(21)

+

K∑
i=1

(
zi −

z2i∑K
j=1 zj

) ∑
r,s∈At,r ̸=s

ℓ̂r,iℓ̂s,i

−

∑
i,j,i ̸=j zizj

(∑
r,s∈At

ℓ̂s,iℓ̂r,j
)

∑K
i=1 zi

.

(22)
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We call the term in line (21) Stab1 and the two terms in line (22) Stab2. We first bound the expectation of Stab1.

E[Stab1] = E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

ℓ̂2s,i

)]

= E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

Es[ℓ̂
2
s,i]

)]

= E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

ℓ2s,ix
−1
s,i

)]

≤
∑
s∈At

E

[
K∑
i=1

zix
−1
s,i −

∑K
i=1 z

2
i x

−1
s,i∑K

i=1 zi

]

≤
∑
s∈At

E

[
K∑
i=1

zix
−1
s,i (1− xs,i)

]

≤
∑
s∈At

E

[
K∑
i=1

2ηtx
3/2
t,i x−1

s,i (1− xs,i)

]
, (23)

where the first inequality bounds losses by one and changes the order of summations, the second inequality

uses Cauchy-Schwarz inequality
∑K

i=1 z
2
i x

−1
s,i =

(∑K
i=1 z

2
i x

−1
s,i

)( K∑
i=1

xs,i

)
︸ ︷︷ ︸

=1

≥
(∑K

i=1 zi
)2

, and the last

inequality uses the fact that zi = f
′′
t (xt,i)

−1 ≤ 2ηtx
3/2
t,i .

For Stab2 we have

E[Stab2] = E

 1∑K
i=1 zi

 K∑
i=1

∑
r,s∈At,r ̸=s

∑
j ̸=i

zizj ℓ̂r,iℓ̂s,i −
∑

i,j,i ̸=j

∑
r,s∈At

zizj ℓ̂s,iℓ̂r,j


= E

 1∑K
i=1 zi

 K∑
i=1

∑
r,s∈At,r ̸=s

∑
j ̸=i

zizjµ
2
i −

∑
i,j,i ̸=j

∑
r,s∈At

zizjµiµj


= E

 1∑K
i=1 zi

υt(υt − 1)

K∑
i=1

∑
j ̸=i

zizjµ
2
i − υ2

t

∑
i,j,i ̸=j

zizjµiµj

 (24)

≤ E

υt(υt − 1)∑K
i=1 zi

 K∑
i=1

zi(

K∑
j=1

zj)µ
2
i −

K∑
i=1

z2i µ
2
i −

∑
i,j,i ̸=j

zizjµiµj


= E

[
υt(υt − 1)∑K

i=1 zi

(
(

K∑
i=1

ziµ
2
i )(

K∑
i=1

zi)− (

K∑
i=1

ziµi)
2

)]

≤ E

[
υt(υt − 1)∑K

i=1 zi

(
(

K∑
i=1

ziµ
2
i )(

K∑
i=1

zi)− (

K∑
i=1

zi)
2µ2

i∗

)]

= E

[
υt(υt − 1)(

K∑
i=1

ziµ
2
i −

K∑
i=1

ziµ
2
i∗)

]

≤ E

υt(υt − 1)(
∑
i̸=i∗

2zi∆i)


≤ E

∑
i ̸=i∗

2υt(υt − 1)γtxt,i∆i

 , (25)

where the second equality follows by the fact that for all s ∈ At, xs has no impact on xt, and for all different
elements of At, such as r, s ∈ At and r < s, xr has no impact on xs. Regarding the inequalities, the first
one follows by υ2

t ≥ υt(υt − 1), the second one holds because for all i we have µ∗
i ≤ µi, the third inequality

follows by µi + µi∗ ≤ 2 and µi − µi∗ = ∆i, and the last one substitutes zi = f
′′
(xt,i)

−1 ≤ γtxt,i.
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Combining (23) and (25) completes the proof.

B Proof of the Key Lemma

B.1 Auxiliary results for the proof of the key lemma

First, we provide two facts and a lemma, which are needed for the proof of the key lemma. We recall that
ft(x) = −2η−1

t

√
x+ γ−1

t x(log x− 1).

Fact 15. f
′
t (x) is a concave function.

Proof. f
′
t (x) = −η−1x−1/2 + γ−1

t log x, so the second derivative is − 3
4
η−1x−5/2 − γ−1

t x−2 ≤ 0.

Fact 16. f
′′
t (x)−1 is a convex function.

Proof. Let g(x) = f
′′
t (x)−1 = (

η−1
t x−3/2

2
+ γ−1

t x−1)−1, then the second derivative of g(x) is

g
′′
(x) =

ηtγ
2
t ·
(
2ηtx

7
2 + 3γtx

3
)

2
√
x
(
2ηtx

3
2 + γtx

)3 ,

which is positive.

Lemma 17. Fix t and s where t ≥ s, and assume that there exists α, such that xt,i ≤ αxs,i for all i ∈ [K],
and let f(x) =

(
−2η−1

t

√
x+ γ−1

t x(log x− 1)
)
, then we have the following inequality∑K

j=1 f
′′
(xt,j)

−1ℓ̂s,j∑K
j=1 f

′′(xt,j)−1
≤ 2α(K − 1)

1
3 .

Proof for Lemma 17. We begin the proof as the following∑K
i=1 f

′′
(xt,i)

−1ℓ̂s,i∑K
i=1 f

′′(xt,i)−1
=

f
′′
(xt,is)

−1x−1
s,is

ℓs,is∑K
i=1 f

′′(xt,i)−1

≤
f

′′
(xt,is)

−1x−1
t,is

(xt,is/xs,is)∑K
i=1 f

′′(xt,i)−1

≤
f

′′
(xt,is)

−1αx−1
t,is∑K

i=1 f
′′(xt,i)−1

≤
αf

′′
(xt,is)

−1x−1
t,is

(K − 1)f ′′
(

1−xt,is
K−1

)−1

+ f ′′(xt,is)
−1

Define z := xt,is

=
α
(
η−1
t z−3/2 + 2γ−1

t z−1
)−1

z−1

(K − 1)
(
η−1
t ( 1−z

K−1
)−3/2 + 2γ−1

t ( 1−z
K−1

)−1
)−1

+
(
η−1
t z−3/2 + 2γ−1

t z−1
)−1

= α

(
(1− z)

η−1
t z−1/2 + 2γ−1

t

η−1
t

√
K − 1(1− z)−1/2 + 2γ−1

t

+ z

)−1

, (26)

where the first inequality follows by ℓs,is ≤ 1, the second one uses the assumption of the lemma that xt,i ≤
αxs,i, and the third inequality is due to convexity of f

′′
(x)−1 from Fact 16. We consider two cases for z:

z < 1
K

and z ≥ 1
K

.

a) z ≤ 1
K

: This case implies

1− z

z
=

1

z
− 1 ≥ K − 1 ⇒ (1− z)−1/2

√
K − 1 ≤ z−1/2

⇒ 1 ≤ η−1
t z−1/2 + 2γ−1

t

η−1
t

√
K − 1(1− z)−1/2 + 2γ−1

t

. (27)

18



Plugging (27) into (26) gives∑K
i=1 f

′′
(xt,i)

−1ℓ̂s,i∑K
i=1 f

′′(xt,i)−1
≤ α (1− z + z)−1 = α.

b) z ≥ 1
K

: Similar to the previous case, z ≥ 1
K

implies η−1
t z−1/2 ≤ η−1

t

√
K − 1(1− z)−1/2, so the

minimum of η−1
t z−1/2+2γ−1

t

η−1
t

√
K−1(1−z)−1/2+2γ−1

t

occurs when 2γ−1
t = 0. Substitution of 2γ−1

t = 0 in (26)

gives ∑K
i=1 f

′′
(xt,i)

−1ℓ̂s,i∑K
i=1 f

′′(xt,i)−1
≤ α

(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1

. (28)

Here we have the following two subcases

b1) z ≥ 1

(K−1)1/3+1
: This gives

α
(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1

≤ αz−1 ≤ α
(
(K − 1)1/3 + 1

)
≤ 2α(K−1)1/3.

b2) z ≤ 1

(K−1)1/3+1
: This implies (1 − z) ≥ (K−1)1/3

(K−1)1/3+1
≥ 1

2
and we can use it in (28) in the

following way

α
(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1

≤ α

(
z−1/2(K − 1)−1/2

√
8

+ z

)−1

= α

(
z−1/2(K − 1)−1/2

2
√
8

+
z−1/2(K − 1)−1/2

2
√
8

+ z

)−1

≤ α

3

(
(K − 1)−1

32

)−1/3

≤ 2α(K − 1)1/3,

where the second inequality is by the AM-GM inequality.

Combining the results for all cases and setting α = 4 we obtain the upper bound 8(K − 1)1/3.

B.2 Proof of the key lemma

Proof of Lemma 4. To show xt,i ≤ 2xs,i for all i we do induction on valid pairs (t, s), where we call a pair
(t, s) valid if s ≤ t and t− s ≤ dmax. The induction step for (t, s) uses the induction assumption for all valid
pairs (t′, s′), such that s′, t′ < t, and all valid pairs (t′, s′), such that t′ = t and s < s′ ≤ t. Thus, the induction
base would be all the pairs of (t′, t′) for all t′ ∈ [T ], for which the statement xt′,i ≤ 2xt′,i trivially holds.
Hence, it suffices to prove the induction step for the valid pair (t, s).

As we mentioned in the proof sketch, we have xt = F̄ ∗
t (−L̂obs

t ) and xs = F̄ ∗
s (−L̂obs

s ), and we introduce
x̃ = F̄ ∗

s (−L̂obs
t ) as an auxiliary variable to bridge from xt and xs. We bridge from xt to xs via x̃ in the

following way.

Deviation Induced by the Loss Shift: This step controls the drift when we fix the regularization (more precisely,
the learning rates) and shift the cumulative loss. We prove the following inequality:

x̃i ≤
3

2
xs,i.

Note that this step uses the induction assumption for (s, s− dr) for all r < s : r + dr = s.
Deviation Induced by the Change of Regularizer: In this step we bound the drift when the cumulative loss
vector is fixed and we change the regularizer. We show that

xt,i ≤
4

3
x̃i.

Deviation induced by the change of regularizer

The regularizer at any round r is Fr(x) =
∑K

i=1 fr(xi) =
∑K

i=1

(
−2η−1

r

√
xi + γ−1

r xi(log xi − 1)
)
. Since

xt = ∇F̄ ∗
t (−L̂obs

t ) and x̃ = ∇F̄ ∗
s (−L̂obs

t ), by the KKT conditions ∃µ, µ̃ s.t. ∀i:

f
′
s(x̃i) = −Lobs

s,i + µ,

f
′
t (xt,i) = −Lobs

t,i + µ̃.
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We also know that ∃j : x̃j ≥ xt,j which leads to

−Lobs
t,j + µ̃ = f

′
t (xt,j) ≤ f

′
s(xt,j) ≤ f

′
s(x̃j) = −Lobs

s,j + µ,

where the first inequality holds because the learning rates are decreasing, and the second inequality is due to the
fact that f

′
s(x) is increasing. This implies that µ̃ ≤ µ, which gives us the following inequality for all i:

f
′
t (xt,i) = − 1

ηt
√
xt,i

+
log(xt,i)

γt
≤ − 1

ηs
√
x̃i

+
log(x̃i)

γs
= f

′
s(x̃i).

Define α = xt,i/x̃i. Using the above inequality we have

1

ηs
√
x̃i

− log(x̃i)

γs
≤ 1

ηt
√
αx̃i

− log(x̃i)

γt
− log(α)

γt
(multiply both sides by ηt

√
x̃i and rearrange)

⇒ 1√
α

≥ ηt
ηs

+ 2
√
x̃i log(

√
x̃i)

(
ηt
γt

− ηt
γs

)
+ log(α)

ηt
γt

√
x̃i

≥ ηt
ηs

+ min
0≤z≤1

{
2z log(z)

(
ηt
γt

− ηt
γs

)
+ log(α)

ηt
γt

z

}
(a)
=

ηt
ηs

− 2

e

(
ηt
γt

− ηt
γs

)(
1√
α

) γ
−1
t

γ
−1
t −γ

−1
s

(b)

≥ ηt
ηs

−
(
ηt
γt

− ηt
γs

)
1√
α
,

where (a) holds because the minimized function is convex and equating the first derivative to zero gives

z =
(

1√
α

) γ
−1
t

γ
−1
t −γ

−1
s , and (b) follows by γ−1

t

γ−1
t −γ−1

s
≥ 1 and e ≥ 2. Rearranging the above result gives

α ≤
(
ηs
γt

− ηs
γs

+
ηs
ηt

)2

=

(
ηs(γ

−1
t − γ−1

s ) +
ηs
ηt

)2

. (29)

Now we need to substitute the closed form of learning rates to obtain an upper bound for α. As a reminder, the
learning rates are

γ−1
s =

1√
logK

√√√√ s∑
r=1

σr + γ0, η
−1
s =

√
s+ η0,

γ−1
t =

1√
logK

√√√√s+d∑
r=1

σr + γ0, η
−1
t =

√
s+ d+ η0,

where d = t− s, η0 = 10dmax + d2max/
(
K1/3 log(K)

)2
, and γ0 = 242d2maxK

2/3 log(K). Therefore, in
(29) we have

ηs
(
γ−1
t − γ−1

s

)
≤ ηs

∑s+d
r=s+1 σr√

log(K)
(∑s+d

r=1 σr + γ0
)

≤ ηs

∑s+d
r=s+1 σr√
log(K)γ0

≤ d2max√
log(K)γ0η0

≤ d2max√
242d4max

=
1

24
, (30)

where the third inequality follows by d, σr ≤ dmax for all r and ηs ≤ 1√
η0

, and the last inequality holds because

η0 ≥ 16d2max/K
2/3. On the other hand, for ηs

ηt
in (29) we have

ηs
ηt

=

√
s+ d+ η0
s+ η0

=

√
1 +

d

s+ η0

≤
√

1 +
d

10dmax

≤
√

1 +
dmax

10dmax
=

√
11

10
, (31)
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where the first and the second inequalities hold because η0 ≥ 10dmax and d ≤ dmax, respectively.
Plugging (30) and (31) into (29) gives us the following bound for α:

α ≤

(√
11

10
+

1

24

)2

≤ 4

3
. (32)

Deviation Induced by the Loss Shift

We have xs = ∇F̄ ∗
s (−Lobs

s ) and x̃ = ∇F̄ ∗
s (−Lobs

t ). Since they both share the same regularizer Fs(x) =∑K
i=1 fs(xi), to simplify the notation we drop s and use f(x) to refer to fs(x). By the KKT conditions ∃µ, µ̃

s.t. ∀i:

f
′
(xs,i) = −Lobs

s,i + µ,

f
′
(x̃i) = −Lobs

t,i + µ̃.

Let ℓ̃ = Lobs
t − Lobs

s , then by the concavity of f
′
(x) from Fact 15, we have

(xs,i − x̃i)f
′′
(xs,i) ≤ f

′
(xs,i)− f

′
(x̃i)︸ ︷︷ ︸

µ−µ̃+ℓ̃i

≤ (xs,i − x̃i)f
′′
(x̃i). (33)

Since f
′′
(xs,i) ≥ 0, from the left side of (33) we get xs,i− x̃i ≤ f

′′
(xs,i)

−1
(
µ− µ̃+ ℓ̃i

)
. Taking summation

over all i and using the fact that both vectors xs and x̃ are probability vectors, we have

0 =

K∑
i=1

xs,i − x̃i ≤
K∑
i=1

f
′′
(xs,i)

−1
(
µ− µ̃+ ℓ̃i

)
⇒ µ̃− µ ≤

∑K
i=1 f

′′
(xs,i)

−1ℓ̃i∑K
i=1 f

′′(xs,i)−1
. (34)

Combining the right hand sides of (33) and (34) gives

(x̃i − xs,i)f
′′
(x̃i) ≤ µ̃− µ− ℓ̃i ≤

∑K
j=1 f

′′
(xs,j)

−1ℓ̃j∑K
j=1, f

′′(xs,j)−1

and by rearrangement

x̃i ≤ xs,i + f
′′
(x̃i)

−1 ×
∑K

j=1 f
′′
(xs,j)

−1ℓ̃j∑K
j=1 f

′′(xs,j)−1

≤ xs,i + γsx̃i ×
∑K

j=1 f
′′
(xs,j)

−1ℓ̃j∑K
j=1 f

′′(xs,j)−1
, (35)

where the last inequality holds because f
′′
(x̃i)

−1 =
(
η−1
s

1
2
x̃
−3/2
i + γ−1

s x̃−1
i

)−1

. The next step for bounding

x̃i is to bound
∑K

j=1 f
′′
(xs,j)

−1 ℓ̃j∑K
j=1 f

′′
(xs,j)−1

in (35), where ℓ̃j =
∑

r∈A ℓ̂r,j and A = {r : s ≤ r + dr < t}.

If there exists r ∈ A, such that r > s and 2xr,i ≤ xs,i, then combining it with the induction assumption for
(t, r), i.e., xt,i ≤ 2xr,i, leads to xt,i ≤ 2xr,i ≤ xs,i, which completes the proof. Otherwise, that for all r ∈ A
we have either r ≤ s or xs,i ≤ 2xr,i. If r ≤ s, we can use the induction assumption for (s, r), which gives
xs,i ≤ 2xr,i. Consequently, in either case, the inequality xs,i ≤ 2xr,i holds for all r ∈ A, and we can plug it
into Lemma 17 to get the following bound for all r ∈ A:

∑K
j=1 f

′′
(xs,j)

−1ℓ̂r,j∑K
j=1 f

′′(xs,j)−1
≤ 4(K − 1)

1
3 . (36)
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We then proceed by doing a summation over all r ∈ A on both sides of the above inequality and get∑K
j=1 f

′′
(xs,j)

−1 ℓ̃j∑K
j=1 f

′′
(xs,j)−1

≤ 4|A|(K − 1)
1
3 . Now it suffices to plug this result into (35):

x̃i ≤ xs,i + 4|A|γsx̃i(K − 1)
1
3 ⇒

x̃i ≤ xs,i ×
(

1

1− 4|A|γs(K − 1)1/3

)
(37)

≤ xs,i ×
(

1

1− 8γsdmax(K − 1)1/3

)
≤ xs,i ×

(
1

1− 8
√

logK/γ0dmax(K − 1)1/3

)
=

xs,i

1− 1/3
=

3

2
xs,i, (38)

where the third inequality uses |A| ≤ dmax + t − s ≤ 2dmax, and the last one uses the facts that γs ≤√
log(K)/γ0 and γ0 = 242d2max(K − 1)2/3 log(K).

Combining (38) and (32) completes the proof.

C Detailed constant factors in the regret bound for Algorithm 1

In this section we provide a detailed regret bound for Algorithm 1.
As we proved in Section 5 we have the following inequality for the drifted regret:

RegT ≤ 2Reg
drift

T + dmax (39)

We first derive a bound for the drifted regret by splitting the drifted regret into stability and penalty terms, as
mentioned in Section 5. Following the general analysis of the penalty term for FTRL [Abernethy et al., 2015],
we have

penalty ≤
T∑

t=2

(Ft−1(xt)− Ft(xt)) + FT (x
∗)− F1(x1),

which gives us

penalty =

T∑
t=2

(
2(

K∑
i=1

x
1
2
t,i − 1)(η−1

t − η−1
t−1)−

K∑
i=1

xt,i log(xt,i)(γ
−1
t − γ−1

t−1)

)
− 2η−1

1 + 2
√
Kη−1

1 + γ−1
1 logK

≤
T∑

t=2

2
∑
i ̸=i∗

x
1
2
t,i(η

−1
t − η−1

t−1)−
K∑
i=1

xt,i log(xt,i)(γ
−1
t − γ−1

t−1)

+ 2
√

η0(K − 1) +
√

γ0 logK

≤
T∑

t=2

2
∑
i ̸=i∗

ηtx
1
2
t,i −

K∑
i=1

σtγtxt,i log(xt,i)√
logK

+ 2
√

η0(K − 1) +
√

γ0 logK, (40)

where the first inequality holds because x
1
2
t,i∗ ≤ 1 and the second inequality follows by

η−1
t − η−1

t−1 =
√
t+ η0 −

√
t− 1 + η0 ≤ 1√

t+η0
= ηt and γ−1

t − γ−1
t−1 =

γ−2
t −γ−2

t−1

γ−1
t +γ−1

t−1

≤ γ−2
t −γ−2

t−1

γ−1
t

.

For the stability term, we start from the bound given by Lemma 5:

E[stability] ≤
T∑

t=1

∑
i ̸=i∗

2γt(υt − 1)υtE[xt,i]∆i +

T∑
t=1

∑
s∈At

K∑
i=1

ηtE[x3/2
t,i x−1

s,i (1− xs,i)]. (41)

In above inequality, we know that υtxt,i =
∑

s∈At
xt,i, and by Lemma 4 we have xt,i ≤ 2xs,i for s ∈ At.

Then for the first term in (41):

T∑
t=1

∑
i ̸=i∗

2γt(υt − 1)υtxt,i∆i ≤
T∑

t=1

∑
i ̸=i∗

∑
s∈At

4γt(υt − 1)υtxs,i∆i =

T∑
t=1

∑
i̸=i∗

4γt+dt(υt+dt − 1)xt,i∆i.

(42)
Furthermore, we can bound x

3/2
t,i x−1

s,i (1− xs,i) ≤ 23/2x
1/2
s,i (1− xs,i). Moreover, in order to remove the best

arm i∗ from the summation in the later bound we use x
3/2
t,i∗x

−1
s,i∗(1− xs,i∗) ≤ 2

∑
i̸=i∗ xs,i ≤

∑
i ̸=i∗ 2x

1/2
s,i .
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For the second term in (41) we have
T∑

t=1

∑
s∈At

K∑
i=1

ηtx
3/2
t,i x−1

s,i (1− xs,i) ≤
T∑

t=1

∑
s∈At

K∑
i=1

ηt2
3/2x

1/2
s,i (1− xs,i)

≤
T∑

t=1

∑
s∈At

∑
i ̸=i∗

√
8ηtx

1/2
s,i +

T∑
t=1

∑
s∈At

∑
i̸=i∗

2ηtx
1/2
s,i

≤
T∑

t=1

∑
i ̸=i∗

5ηtx
1/2
t,i , (43)

where the last inequality follows by the facts that we can change the order of the summations and that each t
belongs to exactly one As. Plugging (42) and (43) into (41) we have

E[stability] ≤ E

 T∑
t=1

∑
i̸=i∗

4γt+dt(υt+dt − 1)xt,i∆i +

T∑
t=1

∑
i ̸=i∗

5ηtx
1/2
t,i

 . (44)

Now it suffices to combine (44), (40), and (39) to get

RegT ≤ E

14
T∑

t=1

∑
i ̸=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+8

T∑
t=1

∑
i ̸=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B

+2

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C


+ 4
√

η0(K − 1) + 2
√

γ0 logK + dmax︸ ︷︷ ︸
D

. (45)

We rewrite the regret as

RegT = 4RegT − 3RegT ≤ 4× 14A−RegT + 4× 8B −RegT + 4× 2C −RegT + 4D,

where by applying Lemmas 6, 7, and 8 we achieve

4× 14A−RegT ≤
∑
i ̸=i∗

282

∆i
log(T/η0 + 1)

4× 8B −RegT ≤ 642υmax logK

4× 2C −RegT ≤
∑
i ̸=i∗

512σmax

∆i logK
.

Therefore, the final regret bound is

RegT ≤
∑
i ̸=i∗

282

∆i
log(T/η0 + 1) + 642υmax logK +

∑
i̸=i∗

512σmax

∆i logK

+ 16
√

η0(K − 1) + 8
√

γ0 logK + 4dmax.

D Removing the multiplicative factor 1/∆i from σmax/∆i in the regret bound

In this section we discuss how an asymmetric oracle learning rate γt,i ≃ γt/
√
∆i for negative entropy regularizer

can be used to remove the factor
∑

i ̸=i∗ 1/∆i in front of σmax in the regret bound.

In the analysis of Algorithm 1 we divided the regret into stability and penalty expressions. Moreover, in each of
the bounds for stability and penalty we have two terms which correspond to negative entropy and Tsallis parts of
the hybrid regularizer. The terms related to negative entropy part in both stability and penalty bounds are

T∑
t=1

∑
i̸=i∗

γt+dt(υt+dt − 1)E[xt,i]∆i︸ ︷︷ ︸
B

+

K∑
i=1

E[xt,i log(1/xt,i)](γ
−1
t − γ−1

t−1)︸ ︷︷ ︸
C

,

where B and C, as we have seen in Section 5, are due to stability and penalty terms,respectively. The idea here
is to scale-up γt to decrease C, however increasing γt increases B. Hence, we are facing a trade off here. To
deal with this trade-off we change the learning rates for negative entropy from symmetric γt to asymmetric
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γt,i, and we expect this change only affect the parts of regret bound come from the negative entropy part of the
regularizer, which are B and C. This change results in to having two following terms instead,

T∑
t=1

∑
i̸=i∗

γt+dt,i(υt+dt − 1)E[xt,i]∆i︸ ︷︷ ︸
Bnew

+

K∑
i=1

E[xt,i log(1/xt,i)](γ
−1
t,i − γ−1

t−1,i)︸ ︷︷ ︸
Cnew

.

Here if we could choose γt,i = γt/
√
∆i, then using the definition of γt we would be able to rewrite Bnew and

Cnew as

Bnew = O

 T∑
t=1

∑
i̸=i∗

γt+dt(υt+dt − 1)E[xt,i]
√
∆i


Cnew = O

(
K∑
i=1

σtγtE[xt,i log(1/xt,i)]
√
∆i√

logK

)
.

Now we must see what is the result of applying the self-bounding technique on these new terms. For Bnew and
Cnew, following the similar analysis as Lemma 7 and Lemma 8 we can get

4Bnew −RegT = O(υmax logK) = O(dmax logK)

4Cnew −RegT = O(
σmax

logK
).

This implies that injecting
√

1/∆i in the negative entropy learning rates removes the factor
∑

i ̸=i∗
1
∆i

in front
of the σmax. More interestingly this comes without having any significant changes in the other terms of regret
bound.
As a result, we conjecture that replacing a good estimation of the suboptimal gaps namely ∆̂i in γt,i as
γt,i = γt/

√
∆̂i might be also helpful to remove the multiplicative factors related to suboptimal gaps in front of

the σmax. We leave this problem to future work.

E Lower bounds

Algorithm 2: Adversarial choice of ℓ
Input: x

1 Initialize I = {argmaxi xi} while
∑

i∈I xi +mini∈Ī xi ≤ 2
3 do

2 Update I ← I ∪ {argmini∈Ī xi}

3 return ℓi =

min{1,
∑

i∈Ī xi∑
i∈I xi

} for i ∈ I

max{−1,−
∑

i∈I xi∑
i∈Ī xi

} for i ∈ Ī

Lemma 18. For any x ∈ ∆([K]), such that maxi xi ≤ 2
3

, the vector ℓ returned by Algorithm 2 satisfies
ℓ ∈ [−1, 1], ⟨x, ℓ⟩ = 0, and

∑K
i=1 xiℓ

2
i ≥ 1

2
.

Proof. The first two properties follow directly by construction. For the third property we bound the ratio of the
two sets. Assume that

∑
i∈I xi <

1
3

, then argmini∈Ī xi <
1
3

and the algorithm does not return yet, so at the
end

∑
i∈I xi ∈ [ 1

3
, 2
3
]. Let p = max{

∑
i∈I xi, 1−

∑
i∈I xi}, then p ∈ [ 1

3
, 2
3
] and the quantity in question is

bounded by

K∑
i=1

xiℓ
2
i =

∑
i∈I

xiℓ
2
i +

∑
i∈Ī

xiℓ
2
i = p+ (1− p)

(
p

1− p

)2

=
p

1− p
≥ 1

2
.

Claim 19. For the negentropy potential F (x) = η−1∑K
i=1 log(xi)xi, it holds that

−F
∗
(−L)−min

i
Li = η−1 log(max

i
∇F

∗
(−L)i) .
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Proof. Denote i∗ = argmini∈[K] Li. It is well known that the exponential weights distribution is
(∇F

∗
(−L))i = exp(−ηLi)/(

∑
j∈[K]) exp(−ηLj). Therefore, the negentropy has an explicit form of the

constrained convex conjugate:

F
∗
(−L) =

〈
∇F

∗
(−L),−L

〉
− F (∇F

∗
(−L)) = η−1 log(

K∑
i=1

exp(−ηLi)) .

Hence

−F
∗
(−L)− Li∗ = −η−1 log

(
K∑
i=1

exp(−ηLi)

)
+ η−1 log(exp(−ηLi∗))

= −η−1 log

(∑K
i=1 exp(−ηLi)

exp(−ηLi∗)

)
= η−1 log

(
∇F

∗
(−L)i∗

)
.

Proof of Theorem 9. For ease of presentation, we will work with loss ranges [−Lt/2, Lt/2], which is equivalent
to loss ranges of [0, Lt] in full-information games. Assume that

1

2

⌊log2(K)⌋∑
t=1

Lt ≥
1

32

√√√√ T∑
t=⌊log2(K)⌋

L2
t log(K) .

Define the active set A1 = [K]. At any time t, if ρ(t) ̸∈ [⌊log2(K)⌋], we set ℓt to 0 and proceed with At+1 =
At. Otherwise, if ρ(t) ∈ [⌊log2(K)⌋], we randomly select half of the arms in At to assign ℓt,i = −Lρ(t)/2,
and the other half ℓt,i = Lρ(t)/2. (In case of an uneven number |At| we leave one arm at 0.) All other losses are
0. We reduce At+1 = {i ∈ At | ℓt,i < 0} to the set of arms that were negative. The set An will not be empty
since we can repeat halving the action set exactly ⌊log2(K)⌋ many times. The expected loss of any player is
always 0, while the loss of the best arm is mina

∑T
t=1 ℓt,a = −

∑⌊log2(K)⌋
t=1 Lt/2, hence

R∗ ≥
⌊log2(K)⌋∑

t=1

Lt/2 .

It remains to analyse the case

1

2

⌊log2(K)⌋∑
t=1

Lt <
1

32

√√√√ T∑
t=⌊log2(K)⌋

L2
t log(K) .

In this case, note that we have√√√√ T∑
t=⌊log2(K)⌋

L2
t/ log(K) >

16

log(K)

⌊log2(K)⌋∑
t=1

Lt > 16
⌊log2(K)⌋
log(K)

L⌊log2(K)⌋ > 8L⌊log2(K)⌋ . (46)

The high level idea is now to create a sequence of losses adapted to the choices of the algo-
rithm. Let xti = E [It = i|ℓt−1, . . . , ℓ1] be the expected trajectory of the algorithm and let zti =

exp(−ηLti)/
∑K

j=1 exp(−ηLtj) for Lt =
∑t−1

s=1 ℓt be the trajectory of EXP3. Let the adversary follow
Algorithm 3 for the selection of losses, then based on Lemma 18 we have 0 = ⟨zt, ℓt⟩ and also it is easy to see
0 ≤ ⟨xt, ℓt⟩, therefore we have 0 = ⟨zt, ℓt⟩ ≤ ⟨xt, ℓt⟩. This implies that the regret of the algorithm cannot be
smaller than that of EXP3, so the regret of algorithm A can be bounded as

RegT (A) =

T∑
t=1

⟨xt, ℓt⟩ − min
a∗∈∆([K])

⟨a∗, LT+1⟩ ≥
T∑

t=1

⟨zt, ℓt⟩ − min
a∗∈∆([K])

⟨a∗, LT+1⟩ = − min
a∗∈∆([K])

⟨a∗, LT+1⟩ ,

Let F (x) = η−1∑K
i=1 xi log(xi) then we have

− min
a∗∈∆([K])

⟨a∗, LT+1⟩ =
T∑

t=1

[
F

∗
(−Lt+1)− F

∗
(−Lt)

]
+ F

∗
(−L1)− F

∗
(−LT+1)− min

a∗∈∆([K])
⟨a∗, LT+1⟩

=

T∑
t=1

η−1 log

(
K∑
i=1

exp(−ηLt+1,i)

)
− η−1 log

(
K∑
i=1

exp(−ηLt,i)

)
+ η−1 log(K) + η−1 log(max

i∈[K]
zT+1,i)

=

T∑
t=1

η−1 log

(
K∑
i=1

zti exp(−ηℓti)

)
+ η−1 log(K) + η−1 log(max

i∈[K]
zT+1,i),
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where the second equality uses Claim 19 for L = LT+1 and the fact for any L ∈ RK , F
∗
(−L) =

η−1exp(
∑K

i=1 −ηLi) . Now we choose the learning rate for EXP3 to be η =
√

log(K)/(
∑T

t=⌊log2(K)⌋ L
2
t ),

that based on (46) together with the fact that we set losses to zero for ρ(t) ∈ [⌊log2 K⌋] in Algorithm 3 ensures
|ηℓti| ≤ 1

2
ηL⌊log2(K)⌋ ≤ 1

2
. Using that, by Taylor’s theorem and the monotonicity of the second derivative of

exp, we have for all x ≥ − 1
2

: exp(x) ≥ 1 + x+ 1
2
exp′′(− 1

2
)x2 ≥ 1 + x+ 3

10
x2, as well as by concavity of

log for all 0 ≤ x ≤ 1
4

we have log(1 + x) ≥ 4 log(5/4)x ≥ 5
6
x, we get for any t ∈ [T ] by Lemma 18

η−1 log(

K∑
i=1

zti exp(−ηℓti)) ≥ η−1 log(1 + η2 3

10

K∑
i=1

ztiℓ
2
ti) ≥

η

4

K∑
i=1

ztiℓ
2
ti ≥ I{max

i
zti ≤

2

3
} η

32
L2

ρ−1(t) .

Now we have two possible events, either ∀t ∈ [T ] : maxi zti ≤ 2
3

and

RegT (A) ≥ η

32

∑
t=⌊log2(K)⌋

L2
t =

1

32

√ ∑
t=⌊log2(K)⌋

L2
t log(K) ,

or there exists s ∈ [T ] such that maxi zs,i > 2
3

, then from Algorithm 3 we infer that ∀t ≥ s : ℓt = 0 and
consequently ∀t ≥ s : zt = zs, so maxi zT+1,i >

2
3

and

RegT (A) ≥ η−1(log(K) + log(2/3)) ≥ 1

32
η−1 log(K) =

1

32

√ ∑
t=⌊log2(K)⌋

L2
t log(K) .

Algorithm 3: Adversary
Input: Actor A, learning rate η

1 for t = 1, . . . , n do
2 Set ∀i : zti = exp(−ηLti)/

∑K
j=1 exp(−ηLtj)

3 if maxi∈[K] zti >
2
3 or ρ(t) ≤ ⌊log2(K)⌋ then

4 ℓt = 0

5 else
6 Get ℓ from Algorithm 2 with x = zt.
7 Determine xt = E

[
A((ℓs)t−1

s=1)
]

8 Set ℓt = sign(⟨xt, ℓ⟩)Lρ−1(t)ℓ/2
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