
A Additional Background Work
Developing efficient algorithms for decentralized systems has been a popular research area in recent
years. Among them, gossiping algorithms have been proven to be successful [Scaman et al., 2017,
Duchi et al., 2011, Nedic and Ozdaglar, 2009]. In this approach, each client computes iteratively a
weighted average of local estimators and network-wide estimators obtained from neighbors. The goal
is to derive an estimator that converges to the average of the true values across the entire system. The
weights are represented by a matrix that respects the graph structure under certain conditions. The
gossiping-based averaging approach enables the incorporation of MAB methods in decentralized
settings. In particular, motivated by the success of the UCB algorithm [Auer et al., 2002a] in stochastic
MAB, [Landgren et al., 2016a,b, 2021, Zhu et al., 2020, 2021a,b, Martínez-Rubio et al., 2019, Chawla
et al., 2020, Wang et al., 2021] import it to various decentralized settings under the assumption of
sub-Gaussianity, including homogeneous or heterogeneous rewards, different graph assumptions,
and various levels of global information. The regret bounds obtained are typically of order log T .
However, most existing works assume that the graph is time-invariant under further conditions, which
is often not the case. For example, [Wang et al., 2021] provide a optimal regret guarantee for complete
graphs which are essentially a centralized batched bandit problem [Perchet et al., 2016]. Connected
graphs are also considered, but [Zhu et al., 2020] assume that the rewards are homogeneous and
graphs are time-invariant related to doubly stochastic matrices. In addition, [Martínez-Rubio et al.,
2019] propose the DDUCB algorithm for settings with time-invariant graphs and homogeneous
rewards, dealing with deterministically delayed feedback and assuming knowing the number of
vertices and the spectral gap of the given graph. Meanwhile, [Jiang and Cheng, 2023] propose an
algorithm C-CBGE that is robust to Gaussian noises and deals with client-dependent MAB, but
requires time-invariant regular graphs. [Zhu et al., 2021b] propose a gossiping-based UCB-variant
algorithm for time-invariant graphs. In this approach, each client maintains a weighted averaged
estimator by gossiping, uses doubly stochastic weight matrices depending on global information
of the graph, and adopts a UCB-based decision rule by constructing upper confidence bounds.
Recently, [Zhu and Liu, 2023], revisit the algorithm and add an additional term to the UCB rule for
time-varying repeatedly strongly connected graphs, assuming no global information. However, the
doubly stochasticity assumption excludes many graphs from consideration. Our algorithm builds
on the approach proposed by [Zhu et al., 2021b] with new weight matrices that do not require the
doubly stochasticity assumption. Our weight matrices leverage more local graph information, rather
than just the size of the vertex set as in [Zhu and Liu, 2023, Zhu et al., 2021b]. We introduce the
terminology of the stopping time for randomly delayed feedback, along with new upper confidence
bounds that consider random graphs and sub-exponentiality. This leads to smaller high probability
regret bounds, and the algorithm only requires knowledge of the number of vertices that can be
obtained at initialization or estimated as in [Martínez-Rubio et al., 2019].

In the context of bandits with heavy-tailed distributed rewards, the UCB algorithm continues to
play a significant role. [Dubey et al., 2020] are the first to consider the multi-agent MAB setting
with homogeneous heavy-tailed rewards. They develop a UCB-based algorithm with an instance-
dependent regret bound of order log T . They achieve this by adopting larger upper confidence bounds
and finding cliques of vertices, even though the graphs are time-invariant and known to clients. In a
separate line of work, [Jia et al., 2021] consider the single-agent MAB setting with sub-exponential
rewards, and propose a UCB-based algorithm that enlarges or pretrains the upper confidence bounds,
achieving a mean-gap independent regret bound of order

p
T log T . We extend this technique to

the decentralized multi-agent MAB setting with heterogeneous sub-exponential rewards, using a
gossiping approach, and establish both an optimal instance-dependent regret bound of O(log T ) and
a nearly optimal mean-gap independent regret bound of O(

p
T log T ), up to a log T factor.

Our work draws on the classical literature on random graphs. From the perspective of generating
random connected graphs, we build upon a numerically efficient algorithm introduced in [Gray et al.,
2019], which is based on the Metropolis-Hastings algorithm [Chib and Greenberg, 1995], despite
its lack of finite convergence rate for non-sparse graphs. We follow their algorithm and, in addition,
provide a new analysis on the convergence rate and mixing time of the underlying Markov chain.
In terms of the E-R model, it has been thoroughly examined in various areas, such as mean-field
games [Delarue, 2017] and majority vote settings [Lima et al., 2008]. However, these random graphs
have not yet been applied to the decentralized multi-agent MAB setting that is partially determined
by the underlying graphs. Our formulation and analyses bridge this gap, providing insights into the
dynamics of decentralized multi-agent MAB in the context of random graphs.
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B Future work
Recent advancements have been made in reducing communication costs with respect to the depen-
dency in multi-agent MAB with homogeneous rewards (in the generalized linear bandit setting [Li
and Wang, 2022], the ground truth of the unknown parameter is the same for all clients), such as
achieving O(

p
TM

2) in [Li and Wang, 2022] for centralized settings or O(M3 log T ) through Global
Information Synchronization (GIS) communication protocols assuming time-invariant graphs in [Li
and Song, 2022]. Likewise, [Sankararaman et al., 2019, Chawla et al., 2020] improve the communi-
cation cost of order log T or o(T ) through asynchronous communication protocols and balancing
the trade-off between regret and communication cost. More recently, [Wang et al., 2022] establish
a novel communication protocol, TCOM, which is of order log log T by means of concentrating
communication around sub-optimal arms and performing aggregation of estimators across time steps.
Furthermore, [Wang et al., 2020] develops a new leader-follower communication protocol, which
selects a leader that communicates to the followers. Here the communication cost is independent of
T which is much smaller. The incorporation of random graph structures and heterogeneous rewards
introduces its own complexities, which poses challenges to reductions in communication costs. These
great advancements introduce a promising direction for communication efficiency as a next step
within the context herein.

C Details on numerical experiments in Section 4
We report the experimental details in Section 4, including both benchmarking and regret properties
of the algorithms. The implementation details of the experiments are as follows, including the data
generation, benchmarks, and the evaluation metrics.

The process of data generation involves both reward generation and graph generation. First we
generate different numbers of arms and clients, denoted as K and M , respectively. Specifically, we
generate rewards using the Bernoulli distribution in the sub-Gaussian distribution family, varying the
mean values µm

i by introducing multiple levels of heterogeneity denoted as h = maxi,j,m |µm
i � µj |

and then for each arm k, partitioning the range [0.1, 0.1 + (k + 1) · h/K] into M intervals. In
terms of graph generation, we generate E-R models with varying values of c, to capture graph
complexity. Specifically, for the benchmarking experiment with time-invariant graphs, we set
K = 2,M = 5, h = 0.1, c = 1, i.e. complete graphs. For the benchmarking experiment with
time-varying graphs, we set K = 2,M = 5, h = 0.1, c = 0.9. For the regret experiments, the
parameters are h 2 {0.1, 0.2, 0.3}, M 2 {5, 8, 12}, c 2 {0.2, 0.5, 0.9, 1}, and K 2 {2, 3, 4}. We
selected the least positive number of arms K = 2 to keep computational times low and M = 5 to
have small graphs but still a variety of them.

We compare the new method DrFed-UCB with the classical methods, such as the Gossiping Insert-
Eliminate algorithm (GoSInE) in [Chawla et al., 2020] which focuses on deterministic graphs
and sub-Gaussian rewards and motivated our work. We also include the Gossip UCB algorithm
(Gossip_UCB) [Zhu et al., 2021b] as a benchmark. Meanwhile, in terms of time-varying graphs,
we implement the algorithm, Distributed UCB (Dist_UCB) in [Zhu and Liu, 2023] that has been
developed for time-varying graphs, and compare our algorithm to this benchmark.

Evaluation The evaluation metric is the regret measure as defined in Section 4. More specifically,
for the experiments, we use the average regret over 50 runs for each benchmark and also report the
95% confidence intervals across the 50 runs. With respect to the communication cost as another
performance measure, it is computed explicitly. Additionally, the runtime can provide insights into
the time complexity of the models.

Benchmark comparison results The results for time-invariant and time-varying graphs are pre-
sented in Figure 1 (a) and Figure 1 (b), respectively. The x-axis represents time steps, while the
y-axis shows the average regret up to that time step. Figure 1 (a) demonstrates that DrFed-UCB
exhibits the smallest average regret among all methods in time-invariant graphs, with significant
improvements. More precisely, with respect to the Area Under the Curve (AUC) of the regret curve,
the improvements of DrFed-UCB over GoSInE, Gossip_UCB, and Dist_UCB are 132%, 158%, and
128%, respectively, showcasing the regret improvement of the newly proposed algorithm compared
to the benchmarks. Notably, both Dist_UCB and DrFed-UCB result in larger variances, primarily
observed in Dist_UCB. This phenomenon may be attributed to the communication mechanisms
designed for time-varying graphs. In Figure 1 (b), we observe that our regret is notably smaller
compared to Dist_UCB in settings with time-varying graphs. Specificaly, the AUC of Dist_UCB is
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(a) time-invariant graphs (b) time-varying graphs

Figure 1: The regret of different methods in settings with both time-invariant and time-varying graphs

(a) h (b) M

(c) c (d) K

Figure 2: The regret of the proposed algorithm in problem settings with different parameters

96.6% larger than that of our regret curve, which implies the significant improvement in this setting
with time-varying graphs. Furthermore, we perform a time complexity comparison, revealing that
DrFed-UCB and GoSInE are approximately six times faster than Dist_UCB. Lastly, communication
cost is directly computed by the total number of communication rounds and follows an explicit
formula. Specifically, the communication costs of DrFed-UCB, Gossip_UCB, and Dist_UCB are
of order T , whereas GoSInE exhibits only o(T ), suggesting a potential direction for optimizing
communication costs.

Regret dependency results Meanwhile, we illustrate how DrFed-UCB’s regret depends on several
factors: the number of clients (M ), the number of arms (K), the Bernoulli parameter (c) for the E-R
model, and heterogeneity measured by h. The regret metrics are presented as (a), (b), (c), and (d) in
Figure 2, respectively. We observe that regret monotonically increases with the level of heterogeneity
and the number of arms, while decreasing with connectivity, which is equivalent to an increase in
graph complexity. However, this monotonic trend does not apply to the number of clients. This is due
to the following considerations. On one hand, a large M implies a greater number of incident edges
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Figure 3: Flowchart of Algorithm 2

of each client, providing more global information access and potentially leading to smaller regret. On
the other hand, a large M also weakens the Chernoff-Hoeffding inequality for clients transmitting
information, which might result in larger regret.

D Algorithms and Tables in Section 3

The algorithm for generating random connected graphs is presented in Algorithm 3 as follows.

Algorithm 3: Generate a uniformly distributed connected graph
Initialization: Let ⌧1 be given; Generate a random graph G

init by selecting each edge with
probability 1

2 ;
Connectivity: make G

init connected by adding the least many edges to get G0 ;
for t = 0, 1, 2, . . . , ⌧1 do

Randomly sample an edge pair e = (i, j);
Denote the edge set of Gs as Es;
if e 2 Es then

Remove e from Es to get G0
s = (V,Es\{e});

if G0
s is connected then
Gs+1 = G

0
s;

else
reject G0

s and set Gs+1 = Gs;
end

else
Gs+1 = (V,Es [ {e});

end
end

The flowchart of Algorithm 2 is presented in Figure 3 to illustrate the information flow in the
algorithm. The table below displays the various settings we consider for the regret analysis.
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Table 1: Settings

E-R uniform M reward

s1 X any sub-g

s2 X [1, 10] sub-g

s3 X [11,1) sub-g

S1 X any sub-e

S2 X [1, 10] sub-e

S3 X [11,1) sub-e

E Remarks on the theoretical results in Section 3.2

E.1 Remarks on Theorem 2

Remark (The condition on the time horizon). Although the above regret bound holds for any T > L,
the same bound applies to T  L as follows. Assuming T  L, we obtain E[RT |A✏,�]  T  L

where the first inequality is by noting that the rewards are within the range of [0, 1].

Remark (The upper bound on the expected regret). Theorem 2 states a high probability regret
bound, while the expected regret is often considered in the existing literature. As a corollary of
Theorem 2, we establish the upper bound on E[RT ] if ✏ = log T

MT as follows. Note that

E[RT ] = E[RT |A✏,�]P (A✏,�) + E[RT |Ac
✏,�]P (Ac

✏,�)  P (A✏,�) · E[RT |A✏,�] + T · (1� P (A✏,�))

 (1� 7✏)(L+
X

i 6=i⇤

(max {[ 4C1 log T

�2
i

], 2(K2 +MK)}+ 2⇡2

3P (A✏,�)
+K

2 + (2M � 1)K)) + 7✏T

 l1 + l2 log T +
X

i 6=i⇤

(max {[ 4C1 log T

�2
i

], 2(K2 +MK)}+ 2⇡2

3(1� 7✏)
+K

2 + (2M � 1)K) + 7
log T

M

where the first inequality uses E[RT |A✏,�]  T and the second inequality follows by Theorem 1.
Here l1 and l2 are constants depending on K,M, �,mini 6=i⇤ �i, and �.

Remark (Comparison with previous work). A comparison to the regret bounds in the existing
literature considering sub-Gaussian rewards is as follows. Our regret bounds are consistent with
the prior works where the expected regret bounds are of order log T . Note that the regret bounds
in [Zhu and Liu, 2023] cannot be used here since the update rule and the settings are different. Their
update rule and analyses cannot carry over to our settings, which explains why we invent these
modifications and proofs. On the one hand, the time-varying graphs they consider do not include
the E-R model, and we can find counter-examples where their doubly stochastic weight matrices Wt

result in the divergence of W1 ·W2 . . .WT . This makes the key proof step invalid in our framework.
On the other hand, their time-varying graphs include the connected graphs when l = 1, but they
also make an additional assumption of doubly stochastic weight matrices, which is not applicable
to regular graphs. Furthermore, they study an expected regret upper bound, while we prove a high
probability regret bound that captures the dynamics in the random graphs. The graph assumptions in
other works, however, are stronger, such as [Zhu et al., 2021b] consider time-invariant graphs and
[Wang et al., 2021] assume graphs are complete [Perchet et al., 2016]. In contrast to some work that
focuses on homogeneous rewards in decentralized multi-agent MAB, we derive regret bounds of the
same order log T in a heterogeneous setting. If we take a closer look at the coefficients in terms of
K,M,�,�i, our regret bound is determined by O(max(K,

1+�
1�� ,

1
M2�i

) log T ). The work of [Zhu
and Liu, 2023] arrives at O(max{ log T

�i
,K1,K2}) where K1,K2 are related to T without explicit

formulas. Our regret is smaller when K�i  1 and 1+�
1���i  1, which can always hold by rescaling

�i, i.e. for many cases we get substantial improvement.
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E.2 Remarks on Theorem 4

Remark. Based on the expression of L1, we obtain that L1 is independent of the sub-optimality gap
�i. Meanwhile, we have C1 = 8�2 · 12M(M+2)

M4 and C2 = 3
2C1 = 12�2 · 12M(M+2)

M4 . This implies
that the established regret bound in Theorem 4 does not rely on �i but does depend on �

2. To this
end, we use the terminology, mean-gap independent bounds, to only represent bounds having no
dependency on �i, rather than instance independent that seems to be an overclaim in this case.

Remark (Comparison with previous work). For decentralized multi-agent MAB with homogeneous
heavy-tailed rewards and time-invariant graphs, [Dubey et al., 2020] provide an instance-dependent
regret bound of order log T . In contrast, our regret bound has the same order for heterogeneous
settings with random graphs, as shown in Theorem 3. Additionally, we provide a mean-gap inde-
pendent regret bound as in Theorem 4. In the single-agent MAB setting, [Jia et al., 2021] consider
sub-exponential rewards and derive a mean-gap independent regret upper bound of order

p
T log T .

Our regret bound of
p
T log T is consistent with theirs, up to a logarithmic factor. Furthermore, our

result is consistent with the regret lower bound as proposed in [Slivkins et al., 2019], up to a log T
factor, indicating the tightness of our regret bound.

Remark. The discussion regarding the conditions on T , the expected regret E[RT ], and the parame-
ter specifications follow the same logic as those in Theorem 2. We omit the details here.

F Proof of results in Section 3.2
F.1 Lemmas and Propositions
Lemma 1. For any m, i, t > L, we have

nm,i(t) � Nm,i(t)�K(K + 2M)

Proof of Lemma 1. The proof is referred to [Zhu and Liu, 2023].

Lemma 2. For any m, i, t > L, if nm,i(t) � 2(K2 +KM +M) and graph Gt is connected, then
we have

nm,i(t)  2min
j

nj,i(t).

where the min is taken over all clients, not just the neighbors.

Proof of Lemma 2. The proof is referred to [Zhu and Liu, 2023].

Lemma 3 (Generalized Holder’s inequality). For any r > 0 and measurable functions hi for
i = 1, . . . , n, if

Pn
i=1

1
pi

= 1
r , then

||⇧n
i=1hi||r  ⇧n

i=1||hi||pk .

The proof follows from the Young’s inequality for products.

Lemma 4. Suppose that random variables X1, X2, . . . , Xn are such that Yi =
E[(X1, . . . , Xn)|(X1, . . . , Xi�1, Xi+1, . . . , Xn)] are sub-Gaussian distributed with variance
proxy �1,�2, . . . ,�n, respectively. Then the sum of these sub-Gaussian random variables,

Pn
i=1 Xi,

is again sub-Gaussian with variance proxy (
Pn

i=1 �i)2.

Proof. First, without loss of generality, let us assume E[Xi] = 0. Otherwise, we can always construct
a random variable Xi � E[Xi] which has the same variance proxy with a difference up to a constant.
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Defining pi =
Pn

k=1 �k

�i
gives

Pn
i=1

1
pi

= 1. Let µ be the distribution function of random vector
(X1, . . . , Xn). By specifying hi(x) = exp (�x) and r = 1, we obtain that for any � > 0 we have

E[exp{�(
nX

i=1

Xi)}]

= E[⇧n
i=1 exp{�Xi}]

=

Z 1

0
⇧n

i=1 exp{�Xi}dµ

 ⇧n
i=1|| exp{�Xi}||Pn

k=1
�k

�i

= ⇧n
i=1(

Z 1

0
exp{�Xi}

Pn
k=1 �k
�i dµ)

�iPn
k=1

�k

= ⇧n
i=1(EYi [exp{�Xi

Pn
k=1 �k

�i
}]

�iPn
k=1

�k

 ⇧n
i=1[exp{

1

2
�
2
i �

2 (
Pn

k=1 �k)2

�2
i

}]
�iPn

k=1
�k

= [exp{1
2
�
2(

nX

k=1

�k)
2}]

Pn
i=1

�iPn
k=1

�k

= exp{1
2
�
2(

nX

k=1

�k)
2}

where the first inequality is by Lemma 3 and the second inequality follows the definition of sub-
Gaussian random variables.

Lemma 5. Suppose that random variables X1, X2, . . . , Xn are independent sub-Gaussian dis-
tributed with variance proxy �1,�2, . . . ,�n, respectively. Then we have that the sum of these
sub-Gaussian random variables,

Pn
i=1 Xi, is again sub-Gaussian with variance proxy

Pn
i=1 �

2
i .

Proof. For any � > 0 note that

E[exp{�(
nX

i=1

Xi)}]

= E[⇧n
i=1 exp{�Xi}].

Since X1, X2, . . . , Xn are independent random variables, we further have

E[exp{�(
nX

i=1

Xi)}]

= ⇧n
i=1E[exp�Xi]

 ⇧n
i=1 exp{

1

2
�
2
�
2
i }

= exp{1
2
�
2
X

i=1

�
2
i }

where the inequality is by the definition of sub-Gaussian random variables.

This concludes the proof.

Proposition 1. Under E-R, for any 1 > �, ✏ > 0, and any fixed t, t � Ls1, the maintained matrix Pt

satisfies

||Pt � cE||1  �
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with probability 1� ✏
T . This implies that with probability at least 1� ✏ for any t � Ls1 , we have

||Pt � cE||1  �.

Proof. We start with the convergence rate of matrix Pt for fixed t.

We recall that in E-R, the indicator function X
s
i,j for edge (i, j) at time step s follows a Bernoulli

distribution with mean value c. This implies that {Xs
i,j}s are i.i.d. random variables which allows us

to use the Chernoff-Hoeffding inequality

P (|
Pt

s=1 X
s
i,j

t
� c| > �)  2 exp{�2t�2}.

For the probability term, we note that for any t � Ls1 ,

2 exp{�2t�2}  ✏

T

since t � Ls1 � ln T
2✏

2�2 by the choice Ls1 of the burn-in period in setting 1.

As a result, the maintained matrix Pt satisfies with probability at least 1� ✏
T that

||Pt � cE||1

= max
i,j

|
Pt

s=1 X
s
i,j

t
� c|

 �

which concludes the first part of the statement.

Subsequently, consider the probability P (||Pt � cE||1 < �, 8t > Ls1). We obtain

P (||Pt � cE||1 < �, 8t > Ls1)

= 1� P ([t�Ls1
||Pt � cE||1 < �)

� 1�
X

t�Ls1

P (||Pt � cE||1 < �)

� 1� (T � Ls1)
✏

T
� 1� ✏

where the first inequality uses the Bonferroni’s inequality.

This completes the second part of the statement.

We next pin down the Markov chain governing Algorithm 1. Its states compound to all connected
graphs if G and G

0 are connected, then the transition probability is defined by

⇡(G0|G) =

8
><

>:

0 if |E(G0)�E(G)| > 1
2

M(M�1) if |E(G0)�E(G)| = 1

1� 2↵(G)
M(M�1) if G0 = G.

Here � denotes the symmetric difference and ↵(G) is the number of all connected graph that differ
with G by at most one edge. Algorithm 1 is a random walk in the Markov chain denoted as CG�MC.
The intriguing question is if the stationary distribution corresponds to the uniform distribution on
all connected graphs on M nodes and if it is rapidly mixing. The next paragraph gives affirmative
answers.

Proposition 2. In CG�MC, for any time step n � 1 and initial connected graph G
init, we have

||⇡n(·|Ginit)� ⇡
⇤(·)||TV  2(p⇤)n

where p
⇤ = p

⇤(M) < 1 and ⇡
⇤ is the uniform distribution on all connected graphs.
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Proof. Based on the definition of ⇡⇤, we have

⇡
⇤ =

1

#{connected graphs} .

Therefore, there exists a constant 0 < Cf < 1 such that for any two connected graphs G, G0 with
|E(G)�E(G0)| = 1 we have

⇡(G|G0) � Cf⇡
⇤
.

In essence Cf = 1
⇡⇤ minG,G0 ⇡(G|G0) < 1.

If G = G
0, then there are two possible cases. First, if ↵(G) < (M(M�1)

2 , then ⇡(G|G) > 2
M(M�1) >

⇡
⇤ and ⇡(G|G) > 0. Otherwise, we have ⇡(G|G) = 0. In other words, the set G 62 {G0 : ⇡(G0|G) 

⇡
⇤(G0),⇡(G0|G) > 0}.

This implies that for G0 2 {G0 : ⇡(G0|G)  ⇡
⇤(G0),⇡(G0|G) > 0}, we have |E(G)�E(G0)| = 1

and subsequently ⇡(G|G0) � Cf⇡
⇤.

We start with the one-step transition and obtain

||⇡(·|G)� ⇡
⇤(·)||TV

= 2 sup
A

|
Z

A
(⇡(G0|G)� ⇡

⇤(G0))dG0 |

 2

Z

{G0:⇡(G0|G)�⇡⇤(G0)0}
(�⇡(G0|G) + ⇡

⇤(G0))dG0

 2

Z

{G0:⇡(G0|G)=0}
(�⇡(G0|G) + ⇡

⇤(G0))dG0+

2

Z

{G0:⇡(G0|G)>0,⇡(G0|G)�⇡⇤(G0)0}
(�⇡(G0|G) + ⇡

⇤(G0))dG0

= 2

Z

{G0:⇡(G0|G)=0}
(⇡⇤(G0))dG0 + 2(1� Cf )

Z

{G0:⇡(G0|G)>0,⇡(G0|G)�⇡⇤(G0)0}
(⇡⇤(G0))dG0

 2P ({G0 : ⇡(G0|G) = 0}) + 2(1� Cf )(1� P ({G0 : ⇡(G0|G) = 0}))

 2(1� 1

#{connected graphs} ) + 2(1� Cf )(1� (1� 1

#{connected graphs} ))
.
= 2p0 + 2(1� Cf )(1� p

0) = 2(p0 + (1� Cf )(1� p
0))

.
= 2p⇤

where we denote the term 1� 1
#{connected graphs} and the term p

0 + (1� Cf )(1� p
0) by p

0 and
p
⇤, respectively. It is worth noting that p⇤ = p

⇤(M) and p
⇤
< 1 since p

0
, Cf < 1. Here the third

inequality uses the above argument on the graphs in the set {G0 : ⇡(G0|G)  ⇡
⇤(G0),⇡(G0|G) > 0},

and the last inequality uses the following result. By definition,

P ({G0 : ⇡(G0|G) = 0})
= 1� P ({G0 : ⇡(G0|G) > 0})
 1� P ({G0 : |E(G)�E(G0)| = 1})

= 1� ↵(G)

#{connected graphs}  1� 1

#{connected graphs}

where the last inequality uses ↵(G) � 1 by the definition of ↵(G).

Suppose at time step n, the result holds, i.e. for any G

||⇡n(·|G)� ⇡
⇤(·)||TV  2(p⇤)n.
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Then we consider the transition kernel at the n+ 1 step. Note that

||⇡n+1(·|G)� ⇡
⇤(·)||TV

= 2 sup
A

|
Z

A
(⇡n+1(G0|G)� ⇡

⇤(G0))dG0 |

 2 sup
A

|
Z

S

Z

A
(⇡n(G0|S)� ⇡

⇤(G0))(⇡(S|G)� ⇡
⇤(S))dG0dS |

= 2 sup
A

|
Z

S
(⇡(S|G)� ⇡

⇤(S))(

Z

A
(⇡n(G0|S)� ⇡

⇤(G0))dG0)dS |

 2 · 1
2
||⇡n(·|S)� ⇡

⇤(·)||TV · 1
2
||⇡(·|G)� ⇡

⇤(·)||TV

=
1

2
||⇡n(·|S)� ⇡

⇤(·)||TV ||⇡(·|G)� ⇡
⇤(·)||TV

 1

2
· 2(p⇤)n · 2p⇤ = 2(p⇤)n+1

where the second inequality is by using the definition of || · ||TV and the last inequality holds by
the results in the basis step and the induction step, respectively. The first inequality requires more
arguments as follows. Consider the integral

Z

S

Z

A
(⇡n(G0|S)� ⇡

⇤(G0))(⇡(S|G)� ⇡
⇤(S))dG0dS

=

Z

S

Z

A
(⇡n(G0|S)� ⇡

⇤(G0))⇡(S|G)dG0dS � (⇡n(G0|S)� ⇡
⇤(G0))⇡⇤(S)dG0dS

=

Z

S

Z

A
⇡
n(G0|S)⇡(S|G)dG0dS �

Z

S

Z

A
⇡
⇤(G0)⇡n(S|G)dG0dS�

Z

S

Z

A
⇡
n(G0|S)⇡⇤(S)dG0dS +

Z

S

Z

A
⇡
⇤(G0)⇡⇤(S)dG0dS

�
Z

A
⇡
n+1(G0|G)dG0 �

Z

A
⇡
⇤(G0)dG0�

Z

S
⇡
⇤(S)dS +

Z

S
⇡
⇤(G0)dG0

=

Z

A
⇡
n+1(G0|G)dG0 �

Z

A
⇡
⇤(S)dS =

Z

A
(⇡n+1(G0|G)� ⇡

⇤(G0))dG0

where the results hold by exchanging the orders of the integrals as a result of Funibi’s Theorem and
the inequality uses the fact that

R
A ⇡

n(G0|S)dG0  1.

This completes the proof by concluding the mathematical induction.

Proposition 3. For any 1 > �, ✏ > 0, we obtain that for setting 2, for any fixed t � Ls2 , the
maintained matrix Pt satisfies with probability 1� 2 ✏

T

||Pt � cE||1  �.

Meanwhile, the graph generated by Algorithm 3 converges to the stationary distribution with

||⇡t(·|G)� ⇡
⇤(·)||TV  1�

5
,

where ⇡
⇤ is the uniform distribution on all connected graphs.

Proof. Suppose we run the rapidly mixing markov chain for a time period of length ⌧1 =
ln ⇣

2
ln p⇤ where

⇣ <
�
5 . By applying Proposition 2, we obtain that for any time step t > ⌧1,

||⇡t(·|G)� f(·)||TV  2(p⇤)⌧1 .
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For the second phase, we reset the counter of time step and denote the starting point t = ⌧1 + 1

as t = 1. Based on the definition of Pt, we have Pt = (
Pt

s=1 Xs
i,j

t )1i 6=jM where X
s
i,j is the

indicator function for edge (i, j) on Graph Gs that follows the distribution ⇡
⌧1+s(G, ·). Let us

denote Y
s
i,j the indicator function for edge (i, j) on Graph G

obj
s following the distribution ⇡

⇤(·) and

P
obj
t = (

Pt
s=1 Y s

i,j

t )1i 6=jM .

By the Chernoff-Hoeffding inequality and specifying ⇣ = 2(p⇤)⌧1 , we derive

P (|E[Y 1
i,j ]�

Pt
s=1 Y

s
i,j

t
| � ⇣)  2 exp{�2t⇣2}, (3)

i.e.

||P obj
t � cE||1  ⇣

holds with probability 1� 2 exp{�2t⇣2}.

Consider the difference between Pt and P
obj
t and we obtain that

Pt � P
obj
t

= (

Pt
s=1 X

s
i,j �

Pt
s=1 Y

s
i,j

t
)1i 6=jM

= (

Pt
s=1 X

s
i,j

t
� E[X1

i,j ] + E[X1
i,j � Y

1
i,j ] + E[Y 1

i,j ]�
Pt

s=1 Y
s
i,j

t
)1i 6=jM

where the last term is bounded by (3).

For the second quantity E[(Xs
i,j � Y

s
i,j)], we have that for any s, i, j

E[(Xs
i,j � Y

s
i,j)|Gs, G

obj
s ]

= 1Gs contains edge (i,j)&Gobj
s does not contain edge (i,j) � 1(Gs does not contain edge (i,j)&Gobj

s contains edge (i,j))
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and subsequently by the law of total expectation, we further obtain

E[(Xs
i,j � Y

s
i,j)]

= E[E[(Xs
i,j � Y

s
i,j)|Gs, G

obj
s ]]

= E[1Gs contains edge (i,j)&Gobj
s does not contain edge (i,j) � 1(Gs does not contain edge (i,j)&Gobj

s contains edge (i,j))]

= E[1Gs contains edge (i,j)] · E[1Gobj
s does not contain edge (i,j)]�

E[1(Gs does not contain edge (i,j)] · E[1Gobj
s contains edge (i,j))] since Gs and G

obj
s are independent

=

Z

A
1S contains edge (i,j)⇡

⌧1+s(S|G)dS ·
Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS�
Z

A
1S does not contain edge (i,j)⇡

⌧1+s(S|G)dS ·
Z

A
1S contains edge (i,j)⇡

⇤(S)dS

=

Z

A
1S contains edge (i,j)⇡

⌧1+s(S|G)dS ·
Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS�
Z

A
1S contains edge (i,j)⇡

⇤(S)dS ·
Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS+
Z

A
1S contains edge (i,j)⇡

⇤(S)dS ·
Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS�
Z

A
1S does not contain edge (i,j)⇡

⌧1+s(S|G)dS ·
Z

A
1S contains edge (i,j)⇡

⇤(S)dS

=

Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS(

Z

A
1S contains edge (i,j)(⇡

⌧1+s(S|G)� ⇡
⇤(S))dS)+

Z

A
1S contains edge (i,j)⇡

⇤(S)dS(

Z

A
1S contains edge (i,j)(�⇡

⌧1+s(S|G) + ⇡
⇤(S))dS)


Z

A
1S does not contain edge (i,j)⇡

⇤(S)dS · ||⇡⌧1+s(·|G)� ⇡
⇤(·)||TV +

Z

A
1S contains edge (i,j)⇡

⇤(S)dS · ||⇡⌧1+s(·|G)� ⇡
⇤(·)||TV

= ||⇡⌧1+s(·|G)� ⇡
⇤(·)||TV

 2(p⇤)⌧1 .

In like manner, we achieve

E[(�X
s
i,j + Y

s
i,j)]

 2(p⇤)⌧1 . (4)

We now proceed to the analysis on the first term. Though {Xs
i,j}s are neither independent or

identically distributed random variables, the difference
Pt

s=1 Xs
i,j

t �E[X1
i,j ] can be upper bounded

by the convergence property of ⇡n. Note that Xs
i,j is only different from X

s+1
i,j when edge (i, j) is

sampled at time step s and the generated graph is accepted.

We observe that

P (Gs+1|Gs, Gs�1, . . . , G1)

= P (Gs+1|Gs).

Meanwhile, we can write Xs+1
i,j = 1Xs+1

i,j =1 = 1Gs+1 contains edge (i,j) and similarly, Xs
i,j = 1Xs

i,j=1 =

1Gs contains edge (i,j). Denote event E as E = {connected graph G contains edge (i, j)}. This gives us

X
s+1
i,j = 1Gs+12E ,

X
s
i,j = 1Gs2E .
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Furthermore, the quantity
R
A 1S2E⇡

⇤(S)dS can be simplified as

E[Y 1
i,j ] = E[1Gobj

s 2E ]

=

Z

A
1S2E⇡

⇤(S)dS

since G
obj
s follows a distribution with density ⇡

⇤(·).
A new Hoeffding lemma for markov chains has been recently shown as follows in [Fan et al., 2021].
Let a(�) = 1+�

1�� where � is the spectrum of the Markov chain CG�MC and by the Theorem 2.1
in [Fan et al., 2021], we obtain that

P (|
tX

s=1

1Gs2E � tE[Y 1
i,j ]| > t⇣)  2 exp{�2a(�)�1

t⇣
2}

i.e.P (|
Pt

s=1 X
s
i,j

t
� E[Y 1

i,j ]| > ⇣)  2 exp{�2a(�)�1
t⇣

2} (5)

since X
s
i,j = 1Gs2E satisfies 0  1Gs2E  1, i.e. the values are within the range of [0, 1].

By the result E[X1
i,j ]� ⇣  E[Y 1

i,j ]  E[X1
i,j ] + ⇣, we obtain

P (|
Pt

s=1 X
s
i,j

t
� E[X1

i,j ]| > 2⇣)  2 exp{�2a(�)�1
t⇣

2}. (6)

Putting the results (3), (4) and (6) together, we derive

||Pt � P
obj
t ||1

= max
i,j

|
Pt

s=1 X
s
i,j

t
� E[X1

i,j ] + E[X1
i,j � Y

1
i,j ] + E[Y 1

i,j ]�
Pt

s=1 Y
s
i,j

t
|

 max
i,j

(|
Pt

s=1 X
s
i,j

t
� E[X1

i,j ]|+ |E[X1
i,j � Y

1
i,j ]|+ |E[Y 1

i,j ]�
Pt

s=1 Y
s
i,j

t
|

 2⇣ + ⇣ + ⇣ = 4⇣

which holds with probability at least 1� 2 exp{�2a(�)�1
t⇣

2}� 2 exp{�2t⇣2}.

For the probability term 1� 2 exp{�2a(�)�1
t⇣

2}� 2 exp{�2t⇣2}, we have

2 exp{�2a(�)�1
t⇣

2}  ✏

T
,

2 exp{�2t⇣2}  ✏

T

which holds by

t � Ls2 � ⌧1 = a(�)
ln T

2✏

2⇣2
.

Therefore, the distance between the empirical matrix and the constant matrix reads as with probability
at least 1� 2 ✏

T ,

||Pt � cE||1
 ||Pt � P

obj
t ||1 + ||P obj

t � cE||1
 4⇣ + ⇣ = 5⇣ < �

where ⇣ = 2(p⇤)⌧1 <
1
5� by the choice of parameter � and ⇣ . This completes the proof of Proposition

3.

Next, we proceed to explicitly characterize the spectrum of CG �MC which plays a role in the
length of burning period Ls2 and Ls3 .
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Proposition 4. In setting 2, the spectral gap 1� � of CG�MC satisfies that for ✓ > 1,

1� � � 1

2 ln ✓
ln 2p⇤ ln 2✓ + 1

.

Proof. It is worth noting that for G 6= G
0 and |E(G)�E(G0)| = 1, we have

⇡
⇤(G)⇡(G0|G) = ⇡

⇤(G0)⇡(G|G0)

by the fact that ⇡⇤(G) = ⇡
⇤(G0) and ⇡(G0|G) = ⇡(G|G0) = 2

M(M�1) .

For G 6= G
0 and |E(G)�E(G0)| > 1 or |E(G)�E(G0)| = 0, we have ⇡

⇤(G)⇡(G0|G) =
⇡
⇤(G0)⇡(G|G0) since ⇡(G0|G) = ⇡(G|G0) = 0.

For G = G
0, we have ⇡

⇤(G)⇡(G0|G) = ⇡
⇤(G0)⇡(G|G0) by the expression.

As a result, CG�MC is reversible. Meanwhile, it is ergodic since it has a stationary distribution ⇡
⇤

as stated in Proposition 2.

Henceforth, by the result of Theorem 1 in [McNew, 2011] that holds for any ergodic and reversible
Markov chain, we have

1

2 ln 2e

�2

1� �2
 ⌧(e)

where ⌧(e) is the mixing time for an error tolerance e and �2 is the second largest eigenvalue of
CG�MC. Choosing e >

1
2 immediately gives us

�2 
2⌧(e) ln 2 1

5�

2⌧(e) ln 2e+ 1
. (7)

Again by Proposition 2, we have

||⇡⌧(e)(·|G)� ⇡
⇤(·)||TV  2(p⇤)⌧(e) = e.

Consequently, we arrive at

⌧(e) =
ln e

ln 2p⇤

and subsequently

�2 
2 ln e
ln 2p⇤ ln 2e

2 ln e
ln 2p⇤ ln 2e+ 1

.

by plugging ⌧(e) into (7).

This completes the proof of the lower bound on the spectral gap 1� �2.

In the following proposition, we show the sufficient condition for graphs generated by the E-R model
being connected.

Proposition 5. Assume c in setting 1 meets the condition

1 � c � 1

2
+

1

2

r
1� (

✏

MT
)

2
M�1 ,

where 0 < ✏ < 1. Then, with probability 1 � ✏, for any t > 0, Gt following the E-R model is
connected.
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Proof. For 1  j  M , we denote the degree of client j as dj .

It is straightforward to have 1)
PM

j=1 dj = 2 · total number of edegs, 2) E[total number of edges] =
c · M(M�1)

2 and 3) random variables d1, d2, . . . , dM are dependent but follow the same distribution.

Note that dj follows a binomial distribution with E[dj ] = c · (M � 1) where c is the probability of
an edge. Then by the Chernoff Bound inequality, we have

P (dj <
M � 1

2
)  exp {�(M � 1) ·KL(0.5||c)}

where KL(0.5||c) denotes the KL divergence between Bernoulli(0.5) and Bernoulli(c).

For the term KL(0.5||c), we can further show that

KL(0.5||c) = 1

2
log

1
2

c
+

1

2
log

1
2

1� c
=

1

2
log

1

4c(1� c)

which leads to P (dj <
M�1

2 )  exp {(M � 1) · 1
2 log 4c(1� c)}.

Meanwhile, we have specified the choice of c as

1

2
+

1

2

r
1� (

✏

MT
)

2
M�1 }  c < 1

which guarantees exp {(M � 1) · 1
2 log 4c(1� c)}  ✏

MT as follow. We observe that

c � 1

2
+

1

2

r
1� (

✏

MT
)

2
M�1

=) 4c(1� c)  (
✏

MT
)

2
M�1

=) log 4c(1� c) 
2 log ✏

MT

M � 1

=) (M � 1) · 1
2
log 4c(1� c)  log

✏

MT

=) exp{(M � 1) · 1
2
log 4c(1� c)}  ✏

MT
.

This is summarized as for any j

P (dj <
M � 1

2
)  exp {(M � 1) · 1

2
log 4c(1� c)}  ✏

MT
. (8)

Meanwhile, it is known as if �(Gt) � M�1
2 , then we have that graph Gt is connected where

�(Gt) = minm dm.

As a result, consider the probability and we obtain that
P (graph Gt is connected)

� P (min
j

dj �
M � 1

2
)

= P (
\

j

{dj �
M � 1

2
})

= 1� P (
[

j

{dj <
M � 1

2
})

� 1�
X

j

P (dj <
M � 1

2
)

= 1�MP (dj <
M � 1

2
)

� 1�M
✏

MT
= 1� ✏

T
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where the second inequality holds by the Bonferroni’s inequality and the third inequality uses (8).

Consequently, we obtain

P (graph Gt is connected)
= P (\t{Gt is connected})

� 1�
X

t

P (Gt is not connected)

= 1�
X

t

(1� P (Gt is connected))

� 1�
X

t

(1� (1� ✏

T
) = 1� ✏

where the first inequality holds again by the Bonferroni’s inequality and the second inequality results
from the above derivation.

This completes the proof.

On graphs with the established properties, we next show the results on the transmission gap between
two consecutive rounds of communication for any two clients and the number of arm pulls for all
clients.

Proposition 6. We have that with probability 1� ✏, for any t > L and any m, there exists t0 such
that

t+ 1�min
j

tm,j  t0, t0  c0 min
l

nl,i(t+ 1)

where c0 = c0(K,mini 6=i⇤ �i,M, ✏, �).

Proof. The edges in setting 1 follow a Bernoulli distribution with a given parameter c by definition.
Though setting 2 does not explicitly define the edge distribution, the probability of an edge existing
in a connected graph, denoted as c, is deterministic, independent of time since graphs are i.i.d. over
time and homogeneous among edges.

Henceforth, it is straightforward that c satisfies

M(M � 1)

2
c = E(N)

and equivalently c = 2E(N)
M(M�1) where N denotes the number of edges in a random connected graph.

We observe that 0  N  M(M�1)
2 . Furthermore, the existing result in [Trevisan] yields

E[N ] = M logM.

Consequently, the probability term c has an explicit expressions c = 2E[N ]
M(M�1) =

2 logM
M�1 .

For setting s2, S2 we have c = 2 logM
M�1 � 1

2 since M < 10, while in setting s1, S1, the condition on c

guarantees c > 1
2 . Note that t+ 1� tm,j follows a geometric distribution since each edge follows a

Bernoulli distribution, which holds by

P (t+ 1� tm,j = 1|tm,j)

=
P (there is an edge between m and j at time step t+1 and tm,j)

P (there is an edge between m and j at time step tm,j)

=
(c)2

c
= c
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and

P (t+ 1� tm,j = k|tm,j)

=
P (there is an edge between m and j at time step t+k and tm,j , no edge at time stept+ 1, . . . , t+ k � 1)

P (there is an edge between m and j at time step tm,j)

=
(1� c)k�1

c
2

c
= c(1� c)k�1

.

Note that P (t+ 1�minj tm,j � t0) which denotes the tail of a geometric distribution depends on
the choice of c. More precisely, the tail probability P0 is monotone decreasing in c.

When c = 1
2 , we obtain that

P0 = P (t+ 1�min
j

tm,j > t0) 
X

s>t0

(
1

2
)s  (

1

2
)t0 . (9)

Choosing t0 =
ln M2T

✏
ln 2 leads to P0 = 1� ( 12 )

t0 = 1� ✏
M2T and

c0 min
l

nl,i(t+ 1) � c0 min
l

nl,i(L)

� c0
L

K
� c0

ln M2T
✏

c0 ln 2
=

ln M2T
✏

ln 2
= t0

where the last inequality holds by the choice of L. This implies minl nl,i(t + 1) � t0 � (1 �
c0)minl nl,i(t+ 1), i.e. t0  c0 minl nl,i(t+ 1).

Therefore, with probability 1� ✏
M2T ,

min
l

nl,i(tm,l)

� min
l

nl,i(min
j

tm,j)

� min
l

nl,i(t+ 1� t0)

� min
l

nl,i(t+ 1)� t0

� (1� c0) ·min
l

nl,i(t+ 1)

where the first inequality results from the fact tm,l � minj tm,j , the second inequality uses the fact
from (9), the third inequality applies the definition of n, and the last inequality holds by the choice of
t0.

Consider setting s3, S3 where M > 10. Generally, for a given parameter c, we obtain

P (t+ 1�min
j

tm,j = 1) = c,

P (t+ 1�min
j

tm,j = 2) = c(1� c),

. . . ,

P (t+ 1�min
j

tm,j = n) = c(1� c)n�1

and subsequently

P0 = P (t+ 1�min
j

tm,j > t0) 
X

s>t0

c(1� c)s�1  c(
1

c
� 1� (1� c)t0

c
) = (1� c)t0 .

For the probability term P0, we further arrive at

P0 � 1� ✏

M2T

by the choice of t0 � ln( ✏
M2T

)

ln(1�c) .
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Meanwhile, we claim that the choice of t0 satisfies

t0  c0 min
l

nl,i(t+ 1)

since
ln( ✏

M2T
)

ln(1�c)  c0 minl nl,i(t+ 1) holds by noting nl,i(t+ 1) � nl,i(L) � L
K and

L �
K ln( ✏

M2T )

c0 ln(1� c)
=

K ln(M
2T
✏ )

c0 ln(
1

1�c )
.

To summarize, in all the settings, we have that with probability at least 1� ✏
M2T ,

t+ 1�min
j

tm,j  t0,

t0  c0 min
l

nl,i(t+ 1). (10)

Therefore, we obtain that in setting s1, S1

P (8m, t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1))

.
= (1� P0)

M � 1�MP0 = 1� ✏

MT
(11)

where the inequality is a result of the Bernoulli’s inequality.

In setting s2, S2, s3, S3, {t+1�minj t1,j , . . . , t+1�minj tM,j} follow the same distribution, but
are dependent since they construct a connected graph. However, we have the following result

P (8m, t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1))

= 1� P ([m{t+ 1�min
j

tm,j � t0})

� 1�
X

m

P (t+ 1�min
j

tm,j � t0)

= 1�MP0 = 1� ✏

MT
(12)

by the Bonferroni’s inequality.

As a consequence, we arrive at that in setting s1, S1, s2, S2, s3, S3,

P (8t, 8m, t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1))

� 1�
X

t

X

m

P (t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1))

� 1�MT (1� (1� ✏

MT
)) = 1� ✏

where the first inequality again uses the Bonferroni’s inequality and the second inequality holds by
applying (11) and (12).

After establishing the transmissions among clients, we next proceed to show the concentration
properties of the network-wide estimators maintained by the clients.

The first is to demonstrate the unbiasedness of these estimators with respect to the global expected
rewards.

Proposition 7. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). For any arm i and
any client m, at every time step t, we have

E[µ̃m
i (t)|A✏,�] = µi.
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Proof. The result can be shown by induction as follows. We start with the basis step by considering
any time step t  L+ 1. By the definition of µ̃m

i (t) = µ̃
m
i (L+ 1), we arrive at

E[µ̃m
i (t)|A✏,�]

= E[µ̃m
i (L+ 1)|A✏,�]

= E[
MX

j=1

P
0
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)|A✏,�] (13)

where P 0
m,j(L) =

⇢
1
M , if PL(m, j) > 0
0, else

. The definition of A✏,� and the choice of � guarantee that

|PL � cE| < � < c on event A✏,� , i.e. we have for any t � L, Pt > 0 and thereby obtaining

P
0
m,j(L) =

1

M
. (14)

Therefore, we continue with (13) and have

(13) = E[
MX

j=1

1

M
ˆ̄µm
i,j(h

L
m,j)|A✏,�]

=
1

M

MX

j=1

E[µ̄j
i (h

L
m,j)|A✏,�]

=
1

M

MX

j=1

E[

P
s r

j
i (s)

nj,i(hL
m,j)

|A✏,�]

=
1

M

MX

j=1

E[E[

P
s r

j
i (s)

nj,i(hL
m,j)

|�(nj,i(l))lhL
m,j

, A✏,�|A✏,�]

where the last equality uses the law of total expectation.

With the derivations, we further have

(13) =
1

M

MX

j=1

E[
1

nj,i(hL
m,j)

E[
X

s:nj,i(s)�nj,i(s�1)=1

r
j
i (s)|�(nj,i(l))lhL

m,j
, A✏,�|A✏,�]

=
1

M

MX

j=1

E[
1

nj,i(hL
m,j)

X

s:nj,i(s)�nj,i(s�1)=1

E[rji (s)|�(nj,i(l))lhL
m,j

, A✏,�|A✏,�] (15)

=
1

M

MX

j=1

E[
1

nj,i(hL
m,j)

X

s:nj,i(s)�nj,i(s�1)=1

µ
j
i |A✏,�] (16)

=
1

M

MX

j=1

E[µj
i |A✏,�] = µi (17)

where the second equality (15) uses the fact that {s : nj,i(s) � nj,i(s � 1) = 1} is contained in
�(nj,i(l))lLm,j and the third equality (16) results from that rji (s) is independent of everything else
given s and E[rji (s)] = µ

j
i .

The induction step follows a similar analysis as follows. Suppose that for any s  t we have
E[µ̃m

i (s)|A✏,�] = µi.
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For time step t+ 1, we first write it as

E[µ̃m
i (t+ 1)|A✏,�]

= E[
MX

j=1

P
0
t (m, j)ˆ̃µm

i,j(tm,j) + dm,t

X

j2Nm(t)

ˆ̃µm
i,j(t) + dm,t

X

j 62Nm(t)

ˆ̄µm
i,j(tm,j)|A✏,�]

= E[E[
MX

j=1

P
0
t (m, j)µ̃j

i (tm,j) + dm,t

X

j2Nm(t)

µ̄
j
i (t) + dm,t

X

j 62Nm(t)

µ̄
j
i (tm,j)|�(nj,i(t))j,i,t, A✏,�|A✏,�]

(18)

where P
0
t (m, j) and d are constants since Pt(m, j) > 0 for t � L on event A✏,� and the last equality

is again by the law of total expectation.

This gives us that by the law of total expectation

(18) = E[
MX

j=1

P
0
t (m, j)E[µ̃j

i (tm,j)|�(nj,i(t))j,i,t, A✏,�+

dm,t

X

j2Nm(t)

E[µ̄j
i (t)|�(nj,i(t))j,i,t, A✏,�+

dm,t

X

j 62Nm(t)

E[µ̄j
i (tm,j)|�(nj,i(t))j,i,t, A✏,�|A✏,�]

=
MX

j=1

P
0(m, j)E[E[µ̃j

i (tm,j)|�(nj,i(t))j,i,t, A✏,�|A✏,�]+

E[dm,t

X

j2Nm(t)

E[µ̄j
i (t)|�(nj,i(t))j,i,t, A✏,�+

dm,t

X

j 62Nm(t)

E[µ̄j
i (tm,j)|�(nj,i(t))j,i,t, A✏,�|A✏,�]

=
MX

j=1

P
0(m, j)E[µ̃j

i (tm,j)|A✏,�] + E[dm,t

X

j

E[µ̄j
i (tm,j)|�(nj,i(t))j,i,t, A✏,�|A✏,�]

=
MX

j=1

P
0(m, j)E[µ̃j

i (tm,j)|A✏,�]+

dm,t

X

j

E[E[
1

nj,i(tm,j)

X

s:nj,i(s)�nj,i(s�1)=1

E[rji (s)|�(nj,i(t))j,i,t, A✏,�|A✏,�]

=
MX

j=1

P
0(m, j)µi + dm,tMµi = (

MX

j=1

P
0(m, j) +Mdm,t)µi = µi

where the first equality uses P 0
t (m, j) and d are constants on event A✏,� , the second equality is derived

by re-organizing the terms, the third equality again uses the law of total expectation and integrates
the second term by tm,j , the fourth equality elaborate the second term and the equality in the last line
follows from the induction and (15, 16 17).

This completes the induction step and thus shows the unbiasedness of the network-wide estimators
conditional on event A✏,� .

Then we characterize the moment generating functions of the network-wide estimators and conclude
that they have similar properties as their local rewards.

Proposition 8. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). In setting s1, s2, s3

where rewards follow sub-gaussian distributions, for any m, i,� and t > L where L is the length of
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the burn-in period, the global estimator µ̃m
i (t) is sub-Gaussian distributed. Moreover, the conditional

moment generating function satisfies that with P (A✏,�) = 1� 7✏,

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

 exp {�
2

2

C�
2

minj nj,i(t)
}

where �
2 = maxj,i(�̃

j
i )

2 and C = max{ 4(M+2)(1� 1�c0
2(M+2) )

2

3M(1�c0)
, (M + 2)(1 + 4Md

2
m,t)}.

Proof. We prove the statement on the conditional moment generating functions by induction. Let us
start with the basis step.

Note that the definition of A✏,� and the choice of � again guarantee that for t � L, |Pt � cE| < � < c

on event A✏,� . This implies that for any t � L, m and j, Pt(m, j) > 0, and if t = L

P
0
t (m, j) =

1

M
(19)

and if t > L

P
0
t (m, j) =

M � 1

M2
. (20)

Consider the time step t  L+ 1. The quantity satisfies that

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)

= E[exp {�(µ̃m
i (L+ 1)� µi)}1A✏,� |�({nm,i(t)}t,i,m)

= E[exp {�(
MX

j=1

P
0
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�(
MX

j=1

1

M
ˆ̄µm
i,j(h

L
m,j)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�
MX

j=1

1

M
(ˆ̄µm

i,j(h
L
m,j)� µ

j
i )}1A✏,� |�({nm,i(t)}t,i,m)]

 ⇧M
j=1(E[(exp {(� 1

M
(µ̄j

i (h
L
m,j)� µ

j
i )}1A✏,�)

M |�({nm,i(t)}t,i,m))])
1
M (21)

where the third equality holds by (19), the fourth equality uses the definition µi =
1
M

PM
i=1 µ

j
i , and

the last inequality results from the generalized hoeffding inequality as in Lemma 3 and the fact that
ˆ̄µm
i,j(h

L
m,j) = µ̄

j
i (h

L
m,j).

Note that for any client j, we have

E[(exp {(� 1

M
(µ̄j

i (h
L
m,j)� µ

j
i )}1A✏,�)

M |�({nm,i(t)}t,i,m))]

= E[exp {(�(µ̄j
i (h

L
m,j)� µ

j
i )}1A✏,�)|�({nm,i(t)}t,i,m)]

= E[exp {(�
P

s(r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,�)|�({nm,i(t)}t,i,m)]

= E[exp {
X

s

(�
(rji (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,�)|�({nm,i(t)}t,i,m)]. (22)
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It is worth noting that given s, rji (s) is independent of everything else, which gives us

(22) = ⇧sE[exp {� (r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,� |�({nm,i(t)}t,i,m)]

= ⇧sE[exp {� (r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}|�({nm,i(t)}t,i,m)] · E[1A✏,� |�({nm,i(t)}t,i,m)]

= ⇧sEr[exp {�
(rji (s)� µ

j
i )

nj,i(hL
m,j)

}] · E[1A✏,� |�({nm,i(t)}t,i,m)]

 ⇧s exp {
( �
nj,i(hL

m,j)
)2�2

2
} · E[1A✏,� |�({nm,i(t)}t,i,m)]

 (exp {
( �
nj,i(hL

m,j)
)2�2

2
})nj,i(h

L
m,j)

= exp {
�2

nj,i(hL
m,j)

�
2

2
}

 exp { �
2
�
2

2minj nj,i(hL
m,j)

} (23)

where the first inequality holds by the definition of sub-Gaussian random variables r
j
i (s) � µ

j
i

with an mean value 0, the second inequality results from 1A✏,�  1, and the last inequality uses
nj,i(hL

m,j) � minj nj,i(hL
m,j) for any j.

Therefore, we obtain that by plugging (23) into (21)

(21)  ⇧M
j=1(exp {

�
2
�
2

2minj nj,i(hL
m,j)

}) 1
M

= ((exp { �
2
�
2

2minj nj,i(hL
m,j)

}) 1
M )M

= exp { �
2
�
2

2minj nj,i(hL
m,j)

}

which completes the basis step.

Now we proceed to the induction step. Suppose that for any s < t+ 1 where t � L, we have

E[exp {�(µ̃m
i (s)� µi)}1A✏,� |�({nm,i(s)}s,i,m)]

 exp {�
2

2

C�
2

minj nj,i(s)
}. (24)
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The update rule of µ̃m
i implies that

E[exp {�(µ̃m
i (t+ 1)� µi)}1A✏,� |�({nm,i(s)}s,i,m)]

= E[exp{�(
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(25)
where the first inequality uses Lemma 3 and the second inequality applies (24) as the assumption for
the induction step and holds by exchanging the expectations with the multiplication since again given
s the reward (rji (s)� µ

j
i ) is independent of other random variables.

We continue bounding the last two terms by using the definition of sub-Gaussian random variables
(rji (s)� µ

j
i ) and obtain

(25)  (exp {�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

M
M+2 ·

⇧j2Nm(t)⇧s(exp
�
2
d
2
m,t(M + 2)2�2

2n2
j,i(t)

· E[1A✏,� |�({nm,i(t)}t,i,m)])
1

M+2 ·

⇧j 62Nm(t)⇧s(exp
�
2
d
2
m,t(M + 2)2�2

2n2
j,i(tm,j)

· E[1A✏,� |�({nm,i(t)}t,i,m)])
1

M+2

= (exp {�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

M
M+2 ·

⇧j2Nm(t) exp {
nj,i(t)

M + 2

�
2
d
2
m,t(M + 2)2�2

2n2
j,i(t)

} · E[1A✏,� |�({nm,i(t)}t,i,m)]·

⇧j 62Nm(t) exp {
nj,i(tm,j)

M + 2

�
2
d
2
m,t(M + 2)2�2

2n2
j,i(tm,j)

} · E[1A✏,� |�({nm,i(t)}t,i,m)]

36



Building on that, we establish

(25)  (exp {�
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where the first inequality uses the fact that for any j, nj,i(t) � minj nj,i(t) and nj,i(tm,j) �
minj nj,i(tm,j). For the second inequality, the first term is a result of minj nj,i(t)

minj nj,i(t+1) �
minj nj,i(t)

minj nj,i(t)+1 � L/K
L/K+1 since nj,i(t) > nj,i(L) = L/K and the ratio is monotone increasing

in n, and the second term is bounded based on the following derivations

min
j
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� min
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where the last inequality holds by applying Proposition 6 that holds on event A✏,� .

Therefore, we can rewrite the above expression as

(25) = E[(exp{ �
2
�
2
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2(1� c0)
+

d
2
m,t(M + 2)|Nm(t)|

L/K
L/K+1

+
d
2
m,t(M + 2)|M �Nm(t)|

(1� c0)
)}1A✏,� |�({nm,i(t)}t,i,m)]

 E[exp{ C�
2
�
2

2minj nj,i(t+ 1)
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 exp{ C�
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}

where the first inequality holds by the choice of P 0
t (m, j), dm,t, L, c0 and C and the second inequality

uses the fact that 1A✏,�  1 and minj nj,i(t+ 1) 2 �({nm,i(t)}t,i,m).

This completes the induction step and subsequently concludes the proof.

Proposition 9. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). In setting s1, s2, and
s3, for any m, i and t > L where L is the length of the burn-in period, µ̃m,i(t) satisfies that if if
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nm,i(t) � 2(K2 +KM +M), then with P (A✏,�) = 1� 7✏,

P (µ̃m,i(t)� µi �

s
C1 log t
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1

P (A✏,�)t2
.

Proof. By Proposition 7, we have E[µ̃m,i(t) � µi|A✏,�] = 0, which allows us to consider the tail
bound of the global estimator µ̃m

i (t) conditional on event A✏,� as follows.

Note that
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=
1

P (A✏,�)
E[1

exp{�(n)(µ̃m,i(t)�µi)}�exp{�(n)
r

C1 log t
nm,i(t)

}
1A✏,� ]

 1

P (A✏,�)
E[

exp{�(n)(µ̃m,i(t)� µi)}

exp{�(n)
q

C1 log t
nm,i(t)

}
1A✏,� ] (26)

where the last inequality is by the fact that 1
exp{�(n)(µ̃m,i(t)�µi)}�exp{�(n)

r
C1 log t
nm,i(t)

}


exp{�(n)(µ̃m,i(t)�µi)}

exp{�(n)
r

C1 log t
nm,i(t)

}
.

By the assumption that � < c, we have Proposition 8 holds. Subsequently, by Proposition 8 and
Lemma 2 which holds since nm,i(t) � 2(K2 +KM +M), we have for any �

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]  exp {�

2

2

C�
2

minj nj,i(t)
}

 exp {�
2

1

C�
2

nm,i(t)
}. (27)

Again, we utilize the law of total expectation and further obtain

(26) =
1

P (A✏,�)
E[E[

exp{�(n)(µ̃m,i(t)� µi)}

exp{�(n)
q

C1 log t
nm,i(t)

}
1A✏,� |�({nm,i(t)}m,i,t)]]

=
1

P (A✏,�)
E[E[

exp{�(n)(µ̃m,i(t)� µi)}

exp{�(n)
q

C1 log t
nm,i(t)

}
1A✏,� |�({nm,i(t)}m,i,t)]]

=
1

P (A✏,�)
E[

1

exp{�(n)
q

C1 log t
nm,i(t)

}
E[exp{�(n)(µ̃m,i(t)� µi)}1A✏,� |�({nm,i(t)}m,i,t)]]

 1

P (A✏,�)
E[

1

exp{�(n)
q

C1 log t
nm,i(t)

}
· exp {�

2(n)

1

C�
2

nm,i(t)
}]

 1

P (A✏,�)
exp{�2 log t} =

1

P (A✏,�)t2
(28)
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where the first inequality holds by (44) and the second inequality holds by choosing �(n) =

r
C1 log t
nm,i(t)

2 C�2

nm,i(t)

and by the choice of parameter C1 such that C1
4C�2 � 2 or equivalently C1 � 8C�

2.

In like manner, we obtain that by repeating the above steps with µi � µ̃m,i(t), we have

P (µi � µ̃m,i(t) �

s
C1 log t

nm,i(t)
|A✏,�) 

1

P (A✏,�)t2
(29)

which complete the proof.

Proposition 10. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). An arm k is said
to be sub-optimal if k 6= i

⇤ where i
⇤ is the unique optimal arm in terms of the global reward, i.e.

i
⇤ = argmax 1

M

PM
j=1 µ

j
i . Then in setting s1, s2 and s3, when the game ends, for every client m,

0 < ✏ < 1 and T > L, the expected numbers of pulling sub-optimal arm k after the burn-in period
satisfies with P (A✏,�) = 1� 7✏

E[nm,k(T )|A✏,�]

 max {[ 4C1 log T

�2
i

], 2(K2 +MK +M)}+ 2⇡2

3P (A✏,�)
+K

2 + (2M � 1)K

 O(log T ).

Proof of Proposition 10. We claim that what lead to pulling an sub-optimal arm i are explicit by
the decision rule of Algorithm 2, meaning that the result amt = i holds when any of the following
conditions is met:

• Case 1: nm,i(t)  Nm,i(t)�K,

• Case 2: µ̃m,i � µi >

q
C1 log t

nm,i(t�1) ,

• Case 3: �µ̃m,i⇤ + µi⇤ >

q
C1 log t

nm,i⇤ (t�1) ,

• Case 4: µi⇤ � µi < 2
q

C1 log t
nm,i(t�1) .

Then we formally consider the number of pulling arms nm,i(T ) starting from L+ 1. For any l > 1,
we have that based on the above listed conditions

nm,i(T )  l +
TX

t=L+1

1{am
t =i,nm,i(t)>l}

 l +
TX

t=L+1

1
{µ̃m

i �
r

C1 log t
nm,i(t�1)>µi,nm,i(t�1)�l}

+
TX

t=L+1

1
{µ̃m

i⇤+
r

C1 log t
nm,i⇤ (t�1)<µi⇤ ,nm,i(t�1)�l}

+
TX

t=L+1

1{nm,i(t)<Nm,i(t)�K,am
t =i,nm,i(t�1)�l}

+
TX

t=L+1

1
{µi+2

r
C1 log t

nm,i(t�1)>µi⇤ ,nm,i(t�1)�l}
.
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Consequently, the expected value of nm,i(t) conditional on A✏,� reads as

E[nm,i(T )|A✏,�]

= l +
TX

t=L+1

P (µ̃m
i �

s
C1 log t

nm,i(t� 1)
> µi, nm,i(t� 1) � l|A✏,�)

+
TX

t=L+1

P (µ̃m
i⇤ +

s
C1 log t

nm,i⇤(t� 1)
< µi⇤ , nm,i(t� 1) � l|A✏,�)

+
TX

t=L+1

P (nm,i(t) < Nm,i(t)�K, a
m
t = i, nm,i(t� 1) � l|A✏,�)

+
TX

t=L+1

P (µi + 2

s
C1 log t

nm,i(t� 1)
> µi⇤ , nm,i(t� 1) � l|A✏,�)

= l +
TX

t=L+1

P (Case2, nm,i(t� 1) � l|A✏,�) +
TX

t=L+1

P (Case3, nm,i(t� 1) � l|A✏,�)

+
TX

t=L+1

P (Case1, amt = i, nm,i(t� 1) � l|A✏,�) +
TX

t=L+1

P (Case4, nm,i(t� 1) � l|A✏,�)

(30)

where l = max {[ 4C1 log T
�2

i
], 2(K2 +MK +M)}.

For the last term in (30), we have
TX

t=L+1

P (Case4 : µi + 2

s
C1 log t

nm,i(t� 1)
> µi⇤ , nm,i(t� 1) � l) = 0 (31)

since the choice of l satisfies l � [ 4C1 log T
�2

i
] with �i = µi⇤ � µi.

For the first two terms, we have on event A✏,�

TX

t=L+1

P (Case2, nm,i(t� 1) � l|A✏,�) +
TX

t=1

P (Case3, nm,i(t� 1) � l|A✏,�)


TX

t=L+1

P (µ̃m,i � µi >

s
C1 log t

nm,i(t� 1)
|A✏,�) +

TX

t=1

P (�µ̃m,i⇤ + µi⇤ >

s
C1 log t

nm,i⇤(t� 1)
|A✏,�)


TX

t=1

(
1

t2
) +

TX

t=1

(
1

t2
)  ⇡

2

3
(32)

where the first inequality holds by the property of the probability measure when removing the event
nm,i(t� 1) � l and the second inequality holds by (47) and (29) as stated in Proposition 9, which
holds by the assumption that � < c.

For Case 1, we note that Lemma 1 implies that

nm,i(t) > Nm,i(t)�K(K + 2M)

with the definition of Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j 2 Nm(t)}.

Departing from the result that the difference between Nm,i(t) and nm,i(t) is at most K(K + 2M),
we then present the following analysis on how long it takes for the value �nm,i(t) +Nm,i(t) to be
smaller than K.

At time step t, if Case 1 holds for client m, then nm,i(t+1) is increasing by 1 on the basis of nm,i(t).
What follows characterizes the change of Nm,i(t+1). Client m satisfying nm,i(t)  Nm,i(t)�K will
not change the value of Nm,i(t+ 1) by the definition Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j 2
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Nm(t)}. Moreover, for client j 2 Nm(t) with nj,i(t) < Nj,i(t) � K, i.e. Nj,i(t + 1) will
not be affected by nj,i(t + 1)  nj,i(t) + 1. Thus, the value of Nm,i(t + 1) = max{nm,i(t +
1), Nj,i(t), j 2 Nm(t)} is independent of such clients. We observe that for client j 2 Nm(t) with
nj,i(t) > Nj,i(t)�K, the value Nj,i(t) will be the same if the client does not sample arm i, which
leads to a decrease of 1 in the difference �nm,i(t) +Nm,i(t). Otherwise, if such a client samples
arm i which brings an increment of 1 to Nm,i(t), the difference between nm,i(t) and Nm,i(t) will
remain the same. However, the latter has just been discussed and must be the cases as in Case 2 and
Case 3, the total length of which has already been upper bounded by ⇡2

3 as shown in (32).

Therefore, the gap is at most K(K + 2M)�K + ⇡2

3 , i.e.

TX

t=1

P (Case1, amt = i, nm,i(t� 1) � l|A)  K(K + 2M)�K +
⇡
2

3
. (33)

Subsequently, we derive that

E[nm,i(T )|A✏,�]  l +
⇡
2

3
+K(K + 2M)�K +

⇡
2

3
+ 0

= l +
2⇡2

3
+K

2 + (2M � 1)K

= max {[ 4C1 log T

�2
i

], 2(K2 +MK +M)}+ 2⇡2

3
+K

2 + (2M � 1)K

where the inequality results from (30), (31), (32), and (33).

This completes the proof steps.

Next, we establish the concentration inequalities of the network-wide estimators when the rewards
follow sub-exponential distributions, i.e. in setting S1, S2, and S3.

Proposition 11. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). In setting S1, S2,
and S3, for any m, i,� and t > L where L is the length of the burn-in period, the global estimator
µ̃
m
i (t) is sub-exponentially distributed. Moreover, the conditional moment generating function

satisfies that with P (A✏,�) = 1� 7✏, for |�| < 1
↵

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

 exp {�
2

2

C�
2

minj nj,i(t)
}

where �
2 = maxj,i(�̃

j
i )

2 and C = max{ 4(M+2)(1� 1�c0
2(M+2) )

2

3M(1�c0)
, (M + 2)(1 + 4Md

2
m,t)}.

Proof. Assume that parameter |�| < 1
↵ . We prove the statement on the conditional moment generating

function by induction. Let us start with the basis step.

Note that the definition of A and the choice of � again guarantee that for t � L, |Pt � cE| < � < c

on event A. This implies that for any t � L, Pt > 0 and thereby obtaining that if t = L

P
0
m,j(t) =

1

M
(34)

and if t > L

P
0
m,j(t) =

M � 1

M2
. (35)
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Consider the time step t  L+ 1. The quantity

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�(µ̃m
i (L+ 1)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�(
MX

j=1

P
0
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�(
MX

j=1

1

M
µ̄
j
i (h

L
m,j)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]

= E[exp {�
MX

j=1

1

M
(µ̄j

i (h
L
m,j)� µ

j
i )}1A✏,� |�({nm,i(t)}t,i,m)]

 ⇧M
j=1(E[(exp {(� 1

M
(µ̄j

i (h
L
m,j)� µ

j
i )}1A✏,�)

M |�({nm,i(t)}t,i,m))])
1
M (36)

where the third equality holds by (34), the fourth equality uses the definition µi =
1
M

PM
i=1 µ

j
i and

the last inequality results from the generalized hoeffding inequality as in Lemma 3.

Note that for any client j, by the definition of µ̄j
i (h

L
m,j) we have

E[(exp {(� 1

M
(µ̄j

i (h
L
m,j)� µ

j
i )}1A✏,�)

M |�({nm,i(t)}t,i,m))]

= E[exp {(�(µ̄j
i (h

L
m,j)� µ

j
i )}1A✏,�)|�({nm,i(t)}t,i,m)]

= E[exp {(�
P

s(r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,�)|�({nm,i(t)}t,i,m)]

= E[exp {
X

s

(�
(rji (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,�)|�({nm,i(t)}t,i,m)]. (37)

It is worth noting that given s, rji (s) is independent of everything else, which gives us

(37) = ⇧sE[exp {� (r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}1A✏,� |�({nm,i(t)}t,i,m)]

= ⇧sE[exp {� (r
j
i (s)� µ

j
i )

nj,i(hL
m,j)

}|�({nm,i(t)}t,i,m)] · E[1A✏,� |�({nm,i(t)}t,i,m)]

= ⇧sEr[exp {�
(rji (s)� µ

j
i )

nj,i(hL
m,j)

}] · E[1A✏,� |�({nm,i(t)}t,i,m)]

 ⇧s exp {
( �
nj,i(hL

m,j)
)2�2

2
} · E[1A✏,� |�({nm,i(t)}t,i,m)]

 (exp {
( �
nj,i(hL

m,j)
)2�2

2
})nj,i(h

L
m,j)

= exp {
�2

nj,i(hL
m,j)

�
2

2
}  exp { �

2
�
2

2minj nj,i(hL
m,j)

} (38)

where the first inequality holds by the definition of sub-exponential random variables rji (s) � µ
j
i

with mean 0, the second inequality again uses 1A✏,�  1, and the last inequality is by the fact that
nj,i(hL

m,j) � minj nj,i(hL
m,j).
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Therefore, we obtain that by plugging (38) into (36)

(36)  ⇧M
j=1(exp {

�
2
�
2

2minj nj,i(hL
m,j)

}) 1
M

= ((exp { �
2
�
2

2minj nj,i(hL
m,j)

}) 1
M )M = exp { �

2
�
2

2minj nj,i(hL
m,j)

}

which completes the basis step.

Now we proceed to the induction step. Suppose that for any s < t+ 1 where t+ 1 > L+ 1, we have

E[exp {�(µ̃m
i (s)� µi)}1A✏,� |�({nm,i(s)}s,i,m)]

 exp {�
2

2

C�
2

minj nj,i(s)
} (39)

The update rule of µ̃m
i again and (25) implies that

E[exp {�(µ̃m
i (t+ 1)� µi)}1A✏,� |�({nm,i(s)}s,i,m)]

 ⇧M
j=1(exp {

�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

1
M+2 ·

⇧j2Nm(t)⇧s(Er[exp {�dm,t(M + 2)
(rji (s)� µ

j
i )

nj,i(t)
}] · E[1A✏,� |�({nm,i(t)}t,i,m)])

1
M+2 ·

⇧j 62Nm(t)⇧s(Er[exp {�dm,t(M + 2)
(rji (s)� µ

j
i )

nj,i(tm,j)
}] · E[1A✏,� |�({nm,i(t)}t,i,m)])

1
M+2 .

(40)

We continue bounding the last two terms by using the definition of sub-exponential random variables
(rji (s)� µ

j
i ) and obtain

(40)  (exp {�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

M
M+2 ·

⇧j2Nm(t)⇧s(exp
�
2
d
2
m,t(M + 2)2�2

2n2
j,i(t)

· E[1A✏,� |�({nm,i(t)}t,i,m)])
1

M+2 ·

⇧j 62Nm(t)⇧s(exp
�
2
d
2
m,t(M + 2)2�2

2n2
j,i(tm,j)

· E[1A✏,� |�({nm,i(t)}t,i,m)])
1

M+2

= (exp {�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

M
M+2 ·

⇧j2Nm(t) exp {
nj,i(t)

M + 2

�
2
d
2
m,t(M + 2)2�2

2n2
j,i(t)

} · E[1A✏,� |�({nm,i(t)}t,i,m)]·

⇧j 62Nm(t) exp {
nj,i(tm,j)

M + 2

�
2
d
2
m,t(M + 2)2�2

2n2
j,i(tm,j)

} · E[1A✏,� |�({nm,i(t)}t,i,m)].
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Building on that, we establish

(40)  (exp {�
2(P 0

t (m, j))2(M + 2)2

2

C�
2

minj nj,i(tm,j)
})

M
M+2 ·

(exp {
�
2
d
2
m,t(M + 2)�2

2minj nj,i(t)
})|Nm(t)| · E[1A✏,� |�({nm,i(t)}t,i,m)]·

(exp {
�
2
d
2
m,t(M + 2)�2

2minj nj,i(tm,j)
})|M�Nm(t)| · E[1A✏,� |�({nm,i(t)}t,i,m)]

= E[(exp {�
2(P 0

t (m, j))2M(M + 2)

2

C�
2

minj nj,i(tm,j)
}) · (exp {

�
2
d
2
m,t(M + 2)|Nm(t)|
2minj nj,i(t)

})

· (exp {
�
2
d
2
m,t(M + 2)�2|M �Nm(t)|

2minj nj,i(tm,j)
})1A✏,� |�({nm,i(t)}t,i,m)]

 E[(exp {�
2(P 0

t (m, j))2M(M + 2)

2(1� c0)

C�
2

minj nj,i(t+ 1)
}) · (exp {

�
2
d
2
m,t(M + 2)|Nm(t)|�2

2 L/K
L/K+1 minj nj,i(t+ 1)

})

· (exp {
�
2
d
2
m,t(M + 2)|M �Nm(t)|�2

2(1� c0)minj nj,i(t+ 1)
})1A✏,� |�({nm,i(t)}t,i,m)]

where the first inequality uses the fact that nj,i(t) � minj nj,i(t) and nj,i(tm,j) � minj nj,i(tm,j).
For the second inequality, the first term is a result of minj nj,i(t)

minj nj,i(t+1) �
minj nj,i(t)

minj nj,i(t)+1 � L/K
L/K+1 since

nj,i(t) > nj,i(L) = L/K and the ratio is monotone increasing in n, and the second term is bounded
through applying Proposition 6, which holds on event A✏,� and leads to

min
j

nj,i(tm,j) � min
j

nj,i(t+ 1� t0)

� min
j

nj,i(t+ 1)� t0

� min
j

nj,i(t+ 1)� c0 min
j

nj,i(t+ 1)

= (1� c0)min
j

nj,i(t+ 1).

Therefore, we can rewrite the above expression as

(40) = E[(exp{ �
2
�
2

2minj nj,i(t+ 1)
· (C�

2(P 0
t (m, j))2M(M + 2)

2(1� c0)
+

d
2
m,t(M + 2)|Nm(t)|

L/K
L/K+1

+
d
2
m,t(M + 2)|M �Nm(t)|

(1� c0)
)}1A✏,� |�({nm,i(t)}t,i,m)]

 E[exp{ C�
2
�
2

2minj nj,i(t+ 1)
}1A✏,� |�({nm,i(t)}t,i,m)]

 exp{ C�
2
�
2

2minj nj,i(t+ 1)
}

where the first inequality holds again by the choice of P
0
t (m, j), dm,t, L and c0 and the second

inequality uses the fact that 1A✏,�  1.

This completes the induction step and subsequently concludes the proof.

Proposition 12. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). In setting S1, S2,
and S3, for any m, i and t > L where L is the length of the burn-in period, the deviation of µ̃m,i(t)
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satisfies that if nm,i(t) � 2(K2 +KM +M), then with P (A✏,�) = 1� 7✏,

P (µ̃m,i(t)� µi �

s
C1 log t

nm,i(t)
+

C2 log t

nm,i(t)
|A✏,�) 

1

P (A✏,�)

1

T 4
,

P (µi � µ̃m,i(t) �

s
C1 log t

nm,i(t)
+

C2 log t

nm,i(t)
|A✏,�) 

1

P (A✏,�)

1

T 4
.

Proof. By Proposition 7, we have E[µ̃m,i(t) � µi|A✏,�] = 0, which allows us to consider the tail
bound of the global estimator µ̃m

i (t) conditional on event A✏,�. It is worth mentioning that by the
choice of C1 and C2, we have

C
2
1 · ↵

2

�̃4
 C

2
2 .

where �̃
2 is 2C�2

nm,i(t)
.

Note that since we set Rad =
q

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

, we obtain

P (|µ̃m
i (t)� µi| > Rad|A✏,�) < P (|µ̃m

i (t)� µi| >

s
C1 lnT

nm,i(t)
|A✏,�), (41)

P (|µ̃m
i (t)� µi| > Rad|A✏,�) < P (|µ̃m

i (t)� µi| >
C2 lnT

nm,i(t)
|A✏,�) (42)

On the one hand, if

r
C1 log T
nm,i(t)

�̃2 >
1
↵ , i.e. nm,i(t)  C1 log T

↵2

(�̃)4 , we have

P (|µ̃m
i (t)� µi| >

C2 lnT

nm,i(t)
|A✏,�)

= E[1|µ̃m
i (t)�µi|> C2 lnT

nm,i(t)
|A✏,�]

=
1

P (A✏,�)
E[1|µ̃m

i (t)�µi|> C2 lnT
nm,i(t)

1A✏,� ]

=
1

P (A✏,�)
E[1

exp{�(n)(|µ̃m,i(t)�µi|)}�exp{�(n) C2 lnT
nm,i(t)

}1A✏,� ]

 1

P (A✏,�)
E[

exp{�(n)(|µ̃m,i(t)� µi|)}
exp{�(n)C2 lnT

nm,i(t)
}

1A✏,� ] (43)

where the last inequality is by the fact that 1
exp{�(n)(|µ̃m,i(t)�µi|)}�exp{�(n) C2 lnT

nm,i(t)
} 

exp{�(n)(|µ̃m,i(t)�µi|)}
exp{�(n) C2 lnT

nm,i(t)
}

.

By the assumption that � < c, we have Proposition 11 holds. Subsequently, by Proposition 11 and
Lemma 2 which holds since nm,i(t) � 2(K2 +KM +M), we have for any |�| < 1

↵

E[exp {�(µ̃m
i (t)� µi)}1A✏,� |�({nm,i(t)}t,i,m)]  exp {�

2

2
�̃
2}. (44)

Likewise, we obtain that by taking � = ��,

E[exp {�(�µ̃
m
i (t) + µi)}1A✏,� |�({nm,i(t)}t,i,m)]  exp {�

2

2
�̃
2}. (45)

With (44) and (45), we arrive at for any |�| < 1
↵ that

E[exp {�(|µ̃m
i (t)� µi)|}1A✏,� |�({nm,i(t)}t,i,m)]  2 exp {�

2

2
�̃
2}. (46)
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Again, we utilize the law of total expectation and further obtain that |�(n)| < 1
↵

(43) =
1

P (A✏,�)
E[E[

exp{�(n)(|µ̃m,i(t)� µi|)}
exp{�(n)C2 lnT

nm,i(t)
}

1A✏,� |�({nm,i(t)}m,i,t)]]

=
1

P (A✏,�)
E[

1

exp{�(n)C2 lnT
nm,i(t)

}
E[exp{�(n)(|µ̃m,i(t)� µi|)}1A✏,� |�({nm,i(t)}m,i,t)]]

 2
1

P (A✏,�)
E[

1

exp{�(n)C2 lnT
nm,i(t)

}
· exp {�

2(n)

2
�̃
2}] (47)

where the first inequality holds by (46).

Note that the condition

r
C1 log T
nm,i(t)

�̃2 >
1
↵ implies that nm,i(t) <

C1 lnT
�̃2
↵

which is the global optima of

the function in (47). This is true since nm,i(t)  C1 log T
↵2

(�̃)4  (C2 log T )2

C1
. Henceforth, (47) is

monotone decreasing in �(n) 2 (0, 1
↵ ) and we obtain a minima when choosing �(n) = 1

↵ and using
the continuity of (47).

Formally, it yields that

(47)  2
1

P (A✏,�)
E[

1

exp{ 1
↵

C2 lnT
nm,i(t)

}
· exp {

1
2↵2

1
�̃
2}]

= 2
1

P (A✏,�)
E[exp{ 1

2↵2
�̃
2 � 1

↵

C2 lnT

nm,i(t)
}]

 2
1

P (A✏,�)
exp{�4 log T} =

2

P (A✏,�)T 4
(48)

where the last inequality uses the choice of C2 and the condition that 1
2↵2 �̃

2 � 1
↵

C2 lnT
nm,i(t)

 �4 lnT
which holds by the following derivation. Notably, we have

1

2↵2
�̃
2 � 1

↵

C2 lnT

nm,i(t)
 1

2↵2
�̃
2 � C2 lnT

↵

�̃2

↵

C1 lnT

=
1

2↵2
�̃
2 � C2

C1

�̃
2

↵2

= (
1

2
� C2

C1
)(�̃2 ·

C1 log T
nm,i(t)

�̃4
) = (

1

2
� C2

C1
)(

C1 log T
nm,i(t)

�̃2
)

= (
1

2
� C2

C1
) · C1 log T

nm,i(t)
· 1

2C�2

nm,i(t)

= (
1

2
� C2

C1
)

C1

2C�2
log T  �4 log T

where the first inequality uses nm,i(t) <
C1 lnT

�̃2
↵

and the last inequality is by the choices of parameters

( 12 � C2
C1

) C1
2C�2  �4.

On the other hand, if

r
C1 log T
nm,i(t)

�̃2 <
1
↵ , i.e. nm,i(t) � C1 log T

↵2

(�̃)4 , we observe for |�(n)| < 1
↵

P (|µ̃m
i (t)� µi| >

s
C1 lnT

nm,i(t)
|A✏,�)

 2
1

P (A✏,�)
E[

1

exp{�(n)
q

C1 lnT
nm,i(t)

}
· exp {�

2(n)

2
�̃
2}] (49)

by a same argument from (43) to (47) replacing C2 lnT
nm,i(t)

with
q

C1 lnT
nm,i(t)

. When choosing �(n) =
r

C1 log T
nm,i(t)

�̃2 that meets the condition � <
1
↵ under the assumption

r
C1 log T
nm,i(t)

�̃2 <
1
↵ and noting that
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C1
2C�2 � 4, we obtain

(49)  2
1

P (A✏,�)
E[exp{� C1 log T

�̃2nm,i(t)
}]

= 2
1

P (A✏,�)
E[exp{�C1 log T

nm,i(t)

1
2C�2

nm,i(t)

}]

 2
1

P (A✏,�)
exp{�4 log T} =

2

P (A✏,�)T 4
.

To conclude, by (41) and (42), we have

P (|µ̃m
i (t)� µi| > Rad|A✏,�) 

2

P (A✏,�)T 4

which completes the proof.

Proposition 13. Assume the parameter � satisfies that 0 < � < c = f(✏,M, T ). An arm k is said
to be sub-optimal if k 6= i

⇤ where i
⇤ is the unique optimal arm in terms of the global reward, i.e.

i
⇤ = argmax 1

M

PM
j=1 µ

j
i . Then in setting S1, S2 and S3, when the game ends, for every client m,

0 < ✏ < 1 and T > L, the expected numbers of pulling sub-optimal arm k after the burn-in period
satisfies with P (A✏,�) = 1� 7✏

E[nm,k(T )|A✏,�]

 max([
16C1 log T

�2
i

], [
4C2 log T

�i
], 2(K2 +MK +M)) +

4

P (A✏,�)T 3
+K

2 + (2M � 1)K

 O(log T ).

Proof. Recall that Rad =
q

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

. We again have a
m
t = i holds when any of the

following conditions is met: Case 1: nm,i(t)  Nm,i(t)�K, Case 2: µ̃m,i�µi >

q
C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

,

Case 3: �µ̃m,i⇤ + µi⇤ >

q
C1 lnT
nm,i⇤ (t)

+ C2 lnT
nm,i⇤ (t)

, and Case 4: µi⇤ � µi < 2(
q

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

).

By (30), the expected value of nm,i(t) conditional on A✏,� reads as

E[nm,i(T )|A✏,�]

= l +
TX

t=L+1

P (Case2, nm,i(t� 1) � l|A✏,�) +
TX

t=L+1

P (Case3, nm,i(t� 1) � l|A✏,�)

+
TX

t=L+1

P (Case1, amt = i, nm,i(t� 1) � l|A✏,�) +
TX

t=L+1

P (Case4, nm,i(t� 1) � l|A✏,�)

(50)

where l is specified as l = max {[ 4C1 log T
�2

i
], 2(K2 +MK +M)} with �i = µi⇤ � µi.

For the last term in the above upper bound, we have

TX

t=L+1

P (Case4 : µi + 2(

s
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
) > µi⇤ , nm,i(t� 1) � l) = 0 (51)

since the choice of l satisfies l � max([ 16C1 log T
�2

i
], [ 4C2 log T

�i
], 2(K2 +MK)).
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For the first two terms, we have on event A✏,�

TX

t=L+1

P (Case2, nm,i(t� 1) � l|A✏,�) +
TX

t=1

P (Case3, nm,i(t� 1) � l|A✏,�)


TX

t=L+1

P (µ̃m,i � µi >

s
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
|A✏,�)+

TX

t=1

P (�µ̃m,i⇤ + µi⇤ >

s
C1 lnT

nm,i⇤(t)
+

C2 lnT

nm,i⇤(t)
|A✏,�)


TX

t=1

(
1

P (A✏,�)T 4
) +

TX

t=1

(
1

P (A✏,�)T 4
)  2

P (A✏,�)T 3
(52)

where the first inequality holds by the property of the probability measure when removing the event
nm,i(t� 1) � l and the second inequality holds by Proposition 12, which holds by the assumption
that � < c.

For Case 1, we note that Lemma 1 implies that

nm,i(t) > Nm,i(t)�K(K + 2M)

with the definition of Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j 2 Nm(t)}.

Departing from the result that the difference between Nm,i(t) and nm,i(t) is at most K(K + 2M),
we then present the following analysis on how long it takes for the value �nm,i(t) +Nm,i(t) to be
smaller than K.

At time step t, if Case 1 holds for client m, then nm,i(t+1) is increasing by 1 on the basis of nm,i(t).
What follows characterizes the change of Nm,i(t+1). Client m satisfying nm,i(t)  Nm,i(t)�K will
not change the value of Nm,i(t+ 1) by the definition Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j 2
Nm(t)}. Moreover, for client j 2 Nm(t) with nj,i(t) < Nj,i(t) � K, i.e. Nj,i(t + 1) will
not be affected by nj,i(t + 1)  nj,i(t) + 1. Thus, the value of Nm,i(t + 1) = max{nm,i(t +
1), Nj,i(t), j 2 Nm(t)} is independent of such clients. We observe that for client j 2 Nm(t) with
nj,i(t) > Nj,i(t)�K, the value Nj,i(t) will be the same if the client does not sample arm i, which
leads to a decrease of 1 in the difference �nm,i(t) +Nm,i(t). Otherwise, if such a client samples
arm i which brings an increment of 1 to Nm,i(t), the difference between nm,i(t) and Nm,i(t) will
remain the same. However, the latter has just been discussed and must be the cases as in Case 2 and
Case 3, the total length of which has already been upper bounded by 2

P (A✏,�)T 3 as shown in (52).

Therefore, the gap is at most K(K + 2M)�K + 2
P (A✏,�)T 3 , i.e.

TX

t=1

P (Case1, amt = i, nm,i(t� 1) � l|A✏,�)  K(K + 2M)�K +
2

P (A✏,�)T 3
. (53)

Subsequently, we derive that

E[nm,i(T )|A✏,�]

 l +
2

P (A✏,�)T 3
+K(K + 2M)�K +

2

P (A✏,�)T 3
+ 0

= l +
2⇡2

3
+K

2 + (2M � 1)K

= max([
16C1 log T

�2
i

], [
4C2 log T

�i
], 2(K2 +MK +M)) +

4

P (A✏,�)T 3
+K

2 + (2M � 1)K

where the inequality results from (50), (51), (52) and (53).
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F.2 Proof of Theorems
Theorem 1. For event A✏,� and any 1 > ✏, � > 0, we have P (A✏,�) � 1� 7✏.

Proof. Recall that we define events
A1 = {8t � L, |Pt � cE|  �},
A2 = {8t � L, 8j,m, t+ 1�min

j
tm,j  t0  c0 min

l
nl,i(t+ 1)},

A3 = {8t � L,Gt is connected}
where A1, A2, A3 belong to the �-algebra in the probability space since the time horizon is countable,
i.e. for the probability space (⌦,⌃, P ), A1, A2, A3 2 ⌃.

Meanwhile, we obtain
P (A1) = P ({8t � L, |Pt � cE|  �})

� P (\i{8t � Lsi , |Pt � cE|  �})

� 1�
X

i

(1� P (\i{8t � Lsi , |Pt � cE|  �}))

� 1�
X

i

(1� (1� ✏))

= 1� 3✏ (54)
where the first inequality includes all settings and L � Lsi , the second inequality results from the
Bonferroni’s inequality and the third inequality holds by Proposition 1 and Proposition 3.

At the same time, note that
P (A2) = P ({8t � L, 8j,m, t+ 1�min

j
tm,j  t0  c0 min

l
nl,i(t+ 1)})

� P (\i{8t � Lsi , 8j,m, t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1)})

� 1�
X

i

(1� P ({8t � Lsi , 8j,m, t+ 1�min
j

tm,j  t0  c0 min
l

nl,i(t+ 1)}))

� 1�
X

i

(1� (1� ✏)) = 1� 3✏ (55)

where the first inequality is by the definition of L, the second inequality again uses the Bonferroni’s
inequality, and the third inequality results from Proposition 6.

Moreover, we observer that
P (A3) = P ({8t � L,Gt is connected})

� P (\i{8t � Lsi , Gt is connected})

� 1�
X

i

(1� P ({8t � Lsi , Gt is connected}))

� 1� (1� (1� ✏))� 0 = 1� ✏ (56)
where the first inequality uses the definition of L, the second inequality is by the Bonferroni’s
inequality and the third inequality holds by Proposition 5 and the definition of s2, s3 where all graphs
are guaranteed to be connected.

Consequently, we arrive at
P (A✏,�) = P (A1 \A2 \A3)

= 1� P (Ac
1 [A

c
2 [A

c
3)

� 1� (P (Ac
1) + P (Ac

2) + P (Ac
3))

� 1� (3✏+ 3✏+ ✏) = 1� 7✏

where the first inequality utilizes the Bonferroni’s inequality, the second inequality results from (54),
(55), and (56).

This concludes the proof and shows the validness of the statement.
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Theorem 2. Let f be a function specific to a setting and detailed later. For every 0 < ✏ < 1 and

0 < � < f(✏,M, T ), in setting s1 with c � 1
2 +

1
2

q
1� ( ✏

MT )
2

M�1 , s2 and s3, with the time horizon

T satisfying T � L, the regret of Algorithm 2 with F (m, i, t) =
q

C1 ln t
nm,i(t)

satisfies that

E[RT |A✏,�]  L+
X

i 6=i⇤

(max {[ 4C1 log T

�2
i

], 2(K2 +MK +M)}+ 2⇡2

3P (A✏,�)
+K

2 + (2M � 1)K)

where the length of the burn-in period is explicitly

L = max

(
ln T

2✏

2�2
,
4K log2 T

c0| {z }
Ls1

,
ln �

10

ln p⇤
+ 25

1 + �

1� �

ln T
2✏

2�2
,
4K log2 T

c0| {z }
Ls2

,

ln �
10

ln p⇤
+ 25

1 + �

1� �

ln T
2✏

2�2
,

K ln(MT
✏ )

ln( 1

1� 2 log M
M�1

)

c0| {z }
Ls3

)

with � being the spectral gap of the Markov chain in s2, s3 that satisfies 1 � � � 1
2 ln 2

ln 2p⇤ ln 4+1
,

p
⇤ = p

⇤(M) < 1 and c0 = c0(K,mini 6=i⇤ �i,M, ✏, �), and the instance-dependent constant
C1 = 8�2 max{12M(M+2)

M4 }.

Proof. The optimal arm is denoted as i⇤ satisfying

i
⇤ = argmax

i

MX

m=1

µ
m
i .

For the proposed regret, we have that for any constant L,

RT =
1

M
(max

i

TX

t=1

MX

m=1

µ
m
i �

TX

t=1

MX

m=1

µ
m
am
t
)

=
TX

t=1

1

M

MX

m=1

µ
m
i⇤ �

TX

t=1

1

M

MX

m=1

µ
m
am
t


LX

t=1

| 1
M

MX

m=1

µ
m
i⇤ � 1

M

MX

m=1

µ
m
am
t
|+

TX

t=L+1

(
1

M

MX

m=1

µ
m
i⇤ � 1

M

MX

m=1

µ
m
am
t
)

 L+
TX

t=L+1

(
1

M

MX

m=1

µ
m
i⇤ � 1

M

MX

m=1

µ
m
am
t
)

= L+
TX

t=L+1

(µi⇤ � 1

M

MX

m=1

µ
m
am
t
)

= L+ ((T � L) · µi⇤ � 1

M

MX

m=1

KX

i=1

nm,i(T )µ
m
i )

where the first inequality is by taking the absolute value and the second inequality results from the
assumption that 0 < µ

j
i < 1 for any arm i and client j.
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Note that
PK

i=1

PM
m=1 nm,i(T ) = M(T � L) where by definition nm,i(T ) is the number of pulls

of arm i at client m from time step L+ 1 to time step T , which yields that

RT  L+
KX

i=1

1

M

MX

m=1

nm,i(T )µ
m
i⇤ �

KX

i=1

1

M

MX

m=1

nm,i(T )µ
m
i

= L+
KX

i=1

1

M

MX

m=1

nm,i(T )(µ
m
i⇤ � µ

m
i )

 L+
1

M

KX

i=1

X

m:µm
i⇤�µm

i >0

nm,i(T )(µ
m
i⇤ � µ

m
i )

= L+
1

M

X

i 6=i⇤

X

m:µm
i⇤�µm

i >0

nm,i(T )(µ
m
i⇤ � µ

m
i ).

where the second inequality uses the fact that
P

m:µm
i⇤�µm

i 0 nm,i(T )(µm
i⇤ � µ

m
i )  0 holds for any

arm i and the last equality is true since nm,i(T )(µm
i⇤ � µ

m
i ) = 0 for i = i

⇤ and any m.

Meanwhile, by the choices of � such that � < c = f(✏,M, T ), we apply Proposition 10 which leads
to for any client m and arm i 6= i

⇤,

E[nm,i(T )|A✏,�]  max {[ 4C1 log T

�2
i

], 2(K2 +MK +M)}+ 2⇡2

3
+K

2 + (2M � 1)K. (57)

As a result, the upper bound on RT can be derived as by taking the conditional expectation over RT

on A✏,�

E[RT |A✏,�]

 L+
1

M

X

i 6=i⇤

X

m:µm
i⇤�µm

i >0

E[nm,i(T )|A✏,�](µ
m
i⇤ � µ

m
i ) (58)

 L+

1

M

X

i 6=i⇤

X

m:µm
i⇤�µm

i >0

(max {[ 4C1 log T

�2
i

], 2(K2 +MK)}+ 2⇡2

3
+K

2 + (2M � 1)K)(µm
i⇤ � µ

m
i )

= L+

1

M

X

i 6=i⇤

(max {[ 4C1 log T

�2
i

], 2(K2 +MK)}+ 2⇡2

3
+K

2 + (2M � 1)K)
X

m:µm
i⇤�µm

i >0

(µm
i⇤ � µ

m
i )

(59)

where the second inequality holds by plugging in (57).

Meanwhile, we note that for any i 6= i
⇤,

X

m:µm
i⇤�µm

i >0

(µm
i⇤ � µ

m
i ) +

X

m:µm
i⇤�µm

i 0

(µm
i⇤ � µ

m
i )

=
MX

m=1

(µm
i⇤ � µ

m
i )

= M�i > 0

and

|
X

m:µm
i⇤�µm

i 0

(µm
i⇤ � µ

m
i )|  M
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which gives us that
X

m:µm
i⇤�µm

i >0

(µm
i⇤ � µ

m
i )

= M�i �
X

m:µm
i⇤�µm

i 0

(µm
i⇤ � µ

m
i )

= M�i + |
X

m:µm
i⇤�µm

i 0

(µm
i⇤ � µ

m
i )|

 M�i +M = M(�i + 1). (60)

Hence, the regret can be upper bounded by
(59)

 L+
X

i 6=i⇤

(�i + 1)(max {[ 4C1 log T

�2
i

], 2(K2 +MK +M)}+ 2⇡2

3
+K

2 + (2M � 1)K)

= O(max{L, log T})
where the inequality is derived from (60) and L is the same constant as in the definition of A✏,� .

This completes the proof.

Theorem 3. Let f be a function specific to a setting and defined in the above remark. For every

0 < ✏ < 1 and 0 < � < f(✏,M, T ), in settings S1 with c � 1
2 + 1

2

q
1� ( ✏

MT )
2

M�1 ,S2, S3 with the

time horizon T satisfying T � L, the regret of Algorithm 2 with F (m, i, t) =
q

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

satisfies

E[RT |A✏,�]  L+
X

i 6=i⇤

(�i + 1) · (max([
16C1 log T

�2
i

], [
4C2 log T

�i
], 2(K2 +MK +M))

+
4

P (A✏,�)T 3
+K

2 + (2M � 1)K)

where L,C1 are specified as in Theorem 2 and C2
C1

� 3
2 .

Proof. By the regret decomposition as in (58), we obtain that

E[RT |A✏,�]  L+
1

M

X

i 6=i⇤

X

m:µm
i⇤�µm

i >0

E[nm,i(T )|A✏,�](µ
m
i⇤ � µ

m
i ). (61)

By Proposition 13, we have that with probability at least 1� 7✏

E[nm,i(T )|A✏,�]

 max([
16C1 log T

�2
i

], [
4C2 log T

�i
], 2(K2 +MK +M)) +

4

P (A✏,�)T 3
+K

2 + (2M � 1)K.

(62)

Following (60) gives us that
X

m:µm
i⇤�µm

i >0

(µm
i⇤ � µ

m
i )  M�i +M = M(�i + 1). (63)

Therefore, we derive that with probability at least P (A✏,�) = 1� 7✏

E[RT |A✏,�]  L+
X

i 6=i⇤

(�i + 1) · (max([
16C1 log T

�2
i

], [
4C2 log T

�i
], 2(K2 +MK +M))

+
4

P (A✏,�)T 3
+K

2 + (2M � 1)K)
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which completes the proof.

Theorem 4. Assume the same conditions as in Theorems 2 and 3. The regret of Algorithm 2 satisfies
that

E[RT |A✏,�]  L1 +
4

P (A✏,�)T 3
+

(1 +max{
p
C1 lnT ,C2 lnT})(K(K + 2M)�K +

2

P (A✏,�)T 3
)+

K(C2(lnT )
2 + C2 lnT +

p
C1 lnT

p
T (lnT + 1)) = O(

p
T lnT ).

where L1 = max(L,K(2(K2 +MK +M))), L,C1 is specified as in Theorem 2, and C2
C1

� 3
2 . The

involved constants depend on �
2 but not on �i.

Proof. Define U
t
m(i) and L

t
m(i) as µ̃m

i (t) + Rad(i,m, t) and µ̃
m
i (t) � Rad(i,m, t), respectively,

where Rad is previously defined as Rad(i,m, t) =
q

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

. We observe that by definition,
the regret RT can be written as

RT =
1

M

TX

t=1

MX

m=1

(µi⇤ � µ
t
at
m
)

=
1

M

TX

t=1

MX

m=1

(µi⇤ � U
t
m(atm) + U

t
m(atm)� L

t
m(atm) + L

t
m(atm)� µ

t
at
m
).

Subsequently, the conditional expectation of RT has the following decomposition

E[RT |A✏,�]

=
1

M

TX

t=1

MX

m=1

(E[µi⇤ � U
t
m(atm)|A✏,�] + E[U t

m(atm)� L
t
m(atm)|A✏,�] + E[Lt

m(atm)� µ
t
at
m
|A✏,�])

= L1 +
1

M

TX

t=L1+1

MX

m=1

(E[µi⇤ � U
t
m(i⇤)|A✏,�] + E[U t

m(i⇤)� U
t
m(atm)|A✏,�]+

E[U t
m(atm)� L

t
m(atm)|A✏,�] + E[Lt

m(atm)� µ
t
at
m
|A✏,�]) (64)

where L1 = max(L, 2(K2 +MK +M)).

For the first term, we derive its upper bound as follows.

Note that

E[µi⇤ � U
t
m(i⇤)|A✏,�]

 E[(µi⇤ � U
t
m(i⇤))1µi⇤�Ut

m(i⇤)>0|A✏,�]

= E[µi⇤1µi⇤�Ut
m(i⇤)>0|A✏,�]� E[U t

m1µi⇤�Ut
m(i⇤)>0|A✏,�]

 E[µi⇤1µi⇤�Ut
m(i⇤)>0|A✏,�]

 E[1µi⇤�Ut
m(i⇤)>0|A✏,�]

= P (µi⇤ � U
t
m(i⇤) > 0|A✏,�)

= P (µi⇤ � µ̃
m
i⇤(t) > Rad|A✏,�)

 P (|µi⇤ � µ̃
m
i⇤(t)| > Rad|A✏,�) 

2

P (A✏,�)T 4
(65)

where the first inequality uses the monotone property of E[·], the second inequality omits the latter
negative quantity, the third inequality holds by the fact that 0  µ

⇤
i  1, and the last inequality is by

Proposition 12.
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In like manner, we have that the last term satisfies that

E[Lt
m(atm)� µat

m
|A✏,�] 

2

P (A✏,�)T 4
(66)

by the same logic as the above and substituting i
⇤ with a

t
m, and thus we omit the details here.

We then proceed to bound the second term. Based on the decision rule in Algorithm 2, we have either
E[U t

m(i⇤)� U
t
m(atm)|A✏,�] < 0 or nm,i(t) < Nm,i(t)�K. This is equivalent to

E[U t
m(i⇤)� U

t
m(atm)|A✏,�]
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m(i⇤)� U

t
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t
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t
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By definition, U t
m(i⇤) = µ̃i⇤ +Rad(i⇤,m, t) implies that

U
t
m(i⇤)  1 +Rad(i⇤,m, t)

which leads to
(67)  E[(1 +Rad(i⇤,m, t))1nm,i(t)<Nm,i(t)�K |A✏,�]

 (1 + maxRad(i⇤,m, t))E[1nm,i(t)<Nm,i(t)�K |A✏,�]

 (1 + max{
p
C1 lnT ,C2 lnT})E[1nm,i(t)<Nm,i(t)�K |A✏,�]

and subsequently

1

M
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t=L1+1
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m=1
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m(i⇤)� U

t
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p
C1 lnT ,C2 lnT})E[1nm,i(t)<Nm,i(t)�K |A✏,�]. (68)

Following (53) that only depends on whether clients stay on the same page that relies on the
transmission, we obtain

X

t

E[1nm,i(t)<Nm,i(t)�K |A✏,�]  K(K + 2M)�K +
2

P (A✏,�)T 3

which immediately leads to

(68)  (1 + max{
p
C1 lnT ,C2 lnT}) · (K(K + 2M)�K +

2

P (A✏,�)T 3
)

Afterwards, we consider the third term and have
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m(atm)� L
t
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= E[2Rad(atm,m, t)|A✏,�] (69)

Putting (65, 66, 68, 69) all together, we deduce that
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1

M
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t=L1+1
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m=1

(
2

P (A✏,�)T 4
+ E[2Rad(atm,m, t)|A✏,�] +

2
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)

+ (1 + max{
p
C1 lnT ,C2 lnT}) · (K(K + 2M)�K +

2

P (A✏,�)T 3
)
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4

P (A✏,�)T 3
+

1

M

X
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X

m

(E[2Rad(atm,m, t)|A✏,�])+

(1 + max{
p
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2
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Meanwhile, we observe that by definition
1

M

X

t>L1

X

m

(E[2Rad(atm,m, t)|A✏,�])

=
1

M

X

i

X

m
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t>L1
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=
1
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X
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X

at
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t>L1

E[2

s
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
|A✏,�]. (70)

By the sum of the Harmonic series, we have
X

at
m=i

t>L1

C2 lnT

nm,i(t)
 C2 lnT lnnm,i(T ) + C2 lnT  C2(lnT )

2 + C2 lnT. (71)

Meanwhile, by the Cauchy-Schwartz inequality, we obtain

X

at
m=i

t>L1

s
C1 lnT

nm,i(t)


p
C1 lnT

vuut(
X

t

1)(
X

t

(

s
1

nm,i(t)
)2)


p
C1 lnT

p
T (lnT + 1)

where the last inequality again uses the result on the Harmonic series as in (71).

Therefore, the cumulative value can be bounded as

(70)  1

M

X

i

X

m

(C2(lnT )
2 + C2 lnT +

p
C1 lnT

p
T (lnT + 1))

= K(C2(lnT )
2 + C2 lnT +

p
C1 lnT

p
T (lnT + 1))

Using the result of (70), we have

(64)  L1 +
4

P (A✏,�)T 3
+K(C2(lnT )

2 + C2 lnT +
p
C1 lnT

p
T (lnT + 1))+

(1 + max{
p
C1 lnT ,C2 lnT}) · (K(K + 2M)�K +

2

P (A✏,�)T 3
)

= O(max{
p
T lnT, (lnT )2})

which completes the proof.

G Choices of parameter c0 in Theorem 2
Parameter c0 We note that c0 is a pre-specified parameter which are different in different settings.
The choices of c0 are as follows. Meanwhile, we need to study whether the possible choices of c0
explode in terms of the order of T .

Remark (2). The regret reads

E[RT |A✏,�]  L+ C1

X

i 6=i⇤

([
4 log T

�2
i

]) + (K � 1)(2(K2 +MK) +
2⇡2

3
+K

2 + (2M � 1)K)
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with L denoted as L = max{L1, L2, L3} = max{a1, a2, a3, b1
c0
,
b2
c0
,
b3
c0
} and C1 denoted as

max{ e
1�c0

, f}, where parameters a1, a2, a3, b1, b2, b3, e, f are specified as

a1 =
ln 2T

✏

2�2

b1 = 4K log2 T

a2 =
ln �

10

ln p⇤
+ 25

1 + �

1� �

ln 2T
✏

2�2

b2 = 4K log2 T

a3 =
ln �

10

ln p⇤
+ 25

1 + �

1� �

ln 2T
✏

2�2

b3 =
K ln(MT

✏ )

ln( 1
1�c )

e = 16
4(M + 2)

3M
f = 16(M + 2)(1 + 4Md

2
m,t).

This function of c0 is non-differentiable which brings additional challenges and requires a case-by-
case analysis.

Let a = {a1, a2, a3} and b = {b1, b2, b3}. Then continue with the decision rule as in the previous
discussion.

• Case 1: there exists c0 such that a � b
c0

,i.e. c � b
a and b

a  1 Then RT is monotone
increasing in c due to C1 and c0 = b

a gives us the optimal regret R1
T .

• Case 2: if a  b
c0

,i.e. c0  b
a

– if e
1�c0

< f ,i.e. c0  1� e
f , then c0 = min { b

a , 1�
e
f } is the minima.

– else we have c0 � 1� e
f

* if 1� e
f >

b
a , it leads to contradiction and this can not be the case.

* else 1� e
f  b

a , we obtain

RT  b

c0
+

e

1� c0
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]) + (K � 1)(2(K2 +MK) +
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3
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2 + (2M � 1)K)

which implies that the optimal choice of c0 is
p
b

p
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r
e
P

i 6=i⇤ ([
4 log T

�2
i

])

· if 1 � e
f 

p
b

p
b+

r
e
P

i 6=i⇤ ([
4 log T

�2
i

])
 b

a , this gives us the final choice of c0 and

the subsequent local optimal regret R2
T .

· elif
p
b

p
b+

r
e
P

i 6=i⇤ ([
4 log T

�2
i

])
< 1 � e

f , the optimal choice of c0 is 1 � e
f and the

subsequent local optimal regret is R2
T

· else the optimal choice of c0 is b
a and the subsequent local optimal regret is R2

T

• Compare R
1
T and R

2
T and choose the c0 associated with the smaller value.
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The possible choices of c0 are { b
a ,min{ b
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q
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which implies the choice of c0 is between

s

8K log T+
K ln(MT

✏
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8K log T+
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4 log T

�2
i

])

and 1 �

16 4(M+2)
3M

16(M+2)(1+4Md2
m,t)

. Meanwhile, we observe that the choice of c0 satisfies

E[RT |A✏,�]  RT (1�
16 4(M+2)

3M

16(M + 2)(1 + 4Md2m,t)
) = O(log T ).

57


	Introduction
	Problem Formulation and Methodologies
	Problem Formulation
	Algorithms
	Graph Generation
	Main Algorithm


	Regret Analyses
	Model Assumptions
	Regret Analyses
	Other Performance Measures

	Numerical Results
	Conclusions
	Additional Background Work
	Future work
	Details on numerical experiments in Section 4
	Algorithms and Tables in Section 3
	Remarks on the theoretical results in Section 3.2
	Remarks on Theorem 2
	Remarks on Theorem 4

	Proof of results in Section 3.2
	Lemmas and Propositions
	Proof of Theorems

	Choices of parameter c0 in Theorem 2

