
A Active learning, in more detail

First, we will give an additional task description of Active Learning (AL) in Appendix A.1 introducing
necessary concepts and mathematical notation for our compared query methods which are discussed
in Appendix A.2. Finally, we give intuitions where the connection of AL to Self-Supervised Learning
(Self-SL) and Semi-Supervised Learning (Semi-SL) lies in Appendix A.3 and Appendix F.4.

A.1 From supervised to active learning

In supervised learning, we are given a labeled dataset of sample-target pairs (x, y) 2 L sampled
from an unknown joint distribution p(x, y). Our goal is to produce a prediction function p(Y |x, ✓)
parametrized by ✓, which outputs a target value distribution for previously unseen samples from p(x).
Choosing ✓ might amount, for example, to optimizing a loss function which reflects the extent to
which argmaxcp(Y = c|x, ✓) = y for (x, y) 2 L. However, in pool-based AL we are additionally
given a collection of unlabeled samples U , sampled from p(x, y). By using a query method (QM), we
hope to leverage this data efficiently through querying and successively labeling the most informative
samples (x1, ..., xB) from the pool. This should lead to a prediction function better reflecting p(Y |x)
than if random samples were queried.

From a more abstract perspective, the goal of AL is to use the information of the labeled dataset L
and the prediction function p(Y |x, ✓), to find the samples giving the most information where p(Y |x)
deviates from p(Y |x, ✓). This is also reflected by the way performance in AL is measured – which is
the relative performance gain of the prediction function with queries from a QM compared to random
queries. Making the prediction function implicitly the gauge for measuring the "success" of an AL
strategy.

At the heart of AL is an optimization problem: AL is a game of reducing cost – one trades in
computation cost with the expectation of lowering labeling cost which is deemed to be the bottleneck.

A.2 Query methods

A comprehensive overview of AL and its methods is out of the scope of this paper, we refer interested
readers to [50] as a basis and [40] for an overview of current research. Most QMs fall into two
categories following either: explorative strategies, which enforce queried samples to explore the
distribution of p(x); and uncertainty-based strategies, which make direct use of the prediction function
p(Y |x, ✓). 2 The principled combination of both strategies, especially to allow larger query sizes for
uncertainty-based QM, is an open research question.
In our work, we focus exclusively on QMs which induce no changes to the prediction function and
add no additional HPs except for Bayesian QMs modeled with dropout. This immediately rules out
QMs like Learning-Loss [55] or TA-VAAL [30], changing the prediction function, and QMs like
VAAL [51], introducing new HPs. The QMs we use for our comparisons are currently state-of-the-art
in AL on classification tasks. Further, they require no additional hyperparameters (HPs) to be set for
the query function which is hard to evaluate in practice due to the validation paradox.

For this chapter we follow the notation introduced in [31], where e.g. X represents a random variable
and x represents a concrete sample of variable X .

Random Draws samples from the pool U randomly which follows p(x, y). Therefore it can be
interpreted as an exploratory QM.

Core-Set This method is based on the finding that the decision boundaries of convolutional
neural networks are based on a small set of samples. To find these samples, the Core-Set QM
queries samples that minimize the maximal shortest path from unlabeled to labeled sample in the
representation space of the classifier [49]. This is also known as the K-Center problem, for which we
use the K-Center greedy approximation. It draws queries especially from tails of the data distribution,

2This is conceptually similar to the exploration and exploitation paradigm seen in Reinforcement Learning
and there actually exist strong parallels between Reinforcement Learning and Active Learning – so much so that
Reinforcement Learning has been proposed to use in AL and AL-based strategies have been proposed to be used
in Reinforcement Learning.

15

to cover the whole dataset as well as possible. Therefore we classify it as an explorative strategy.

Entropy The Entropy QM greedily queries the samples x with the highest uncertainty of the model
as shown in Equation (1) with C being the number of classes.

H(Y |x, ✓) =
CX

c=1

p(Y = c|x, ✓) · log(p(Y = c|x, ✓)) (1)

BALD Uses a bayesian model and selects greedily a query of samples with the highest mutual
information between the predicted labels Y and weights ⇥ for a sample x following [19]. From the
weight variable ⇥ the concrete values ✓ ⇠ p(✓|L) are then obtained by MC sampling of a bayesian
dropout model [19].

MI(Y ;⇥|x,L) =
CX

c=1

(p(Y = c|x,L) · log(p(Y = c|x,L))

� Ep(✓|L) [H(Y |x, ✓)])
(2)

Where p(Y |x,L) = Ep(✓|L) [p(Y |x, ✓)].

BADGE Uses the K-MEANS++ initialization algorithm on the last layer gradient embeddings G =
{r✓L�1L(ŷ(x), p(Y |x, ✓)|x 2 U} to obtain B centers. These are likely to have diverse directions
(which capture diversity due to diverse parameter updates) and large loss gradients (capturing
uncertainty due to large loss changes) [2].

A.3 Connection to self-supervised learning

The high-level concept of Self-SL pre-training is to obtain a model by training it with a proxy task that
is not dependent on annotations, leading to representations that generalize well to a specific task. This
allows the induction of information from unlabeled data into the model in the form of an initialization,
which can be interpreted as a form of bias. Usually, these representations are supposed to be clustered
based on some form of similarity, which is often induced directly by the proxy task and also the
reason why different proxy tasks are useful for different downstream tasks. Several different Self-SL
pre-training strategies were developed based on different tasks s.a. generative models or clustering
[12, 13, 21, 25], with contrastive training being currently the de facto standard in image classification.
For a more thorough overview over Self-SL we refer the interested reader to [41]. Based on this, we
use the popular contrastive SimCLR [13] training strategy as a basis for our Self-SL pre-training.

A.4 Connection to semi-supvervised learning

In Semi-SL the core idea is to regularize p(Y |x, ✓) by inducing information about the structure
of p(x) using the unlabeled pool additionally to the labeled dataset. Usually, this leads to the
representations of unlabeled samples with the clustering being more in line with the structure of the
supervised task [39]. Several different Semi-SL methods were developed based on regularizations on
unlabeled samples, which often fall into the category of enforcing consistency of predictions against
perturbations and/or reducing the uncertainty of predictions (for more information, we refer to [45]).
For a more thorough overview of Semi-SL we refer interested readers to [7, 45] In our experiments,
we use FixMatch [52] as a Semi-SL method, which combines both aforementioned principles of
consistency and uncertainty reduction in a simple manner.

16

B Active learning literature, in more detail

We will discuss the current literature landscape of deep active classification with a focus on our
proposed key-pitfalls as shown in Figure 1b.

The rules for evaluation of each of the five pitfalls (P1-P5) are:

P1 Data distribution Use of multiple datasets for evaluation featuring class-imbalanced
datasets.

P2 Starting budget Evaluation or ablating the influence of the starting budget on multi-
ple datasets explicitly.

P3 Query size Evaluation or ablating the influence of the query size on multiple
datasets explicitly.

P4 Performant baselines Performance is close to ours or Munjal et al. [44] for ST models on
CIFAR-10/100(see Appendix H for details).3

P4 HP Optim. & Val. Split The use of a dedicated validation set to configure the classifier.
P5 Self-SL Benchmarking AL with a performant Self-SL training paradigms.
P5 Semi-SL Benchmarking AL with a performant Semi-SL training paradigm

Munjal et al. [44] Evaluate the performance of AL methods and compare against and with well
finetuned baseline models using AutoML.

P1 Data Distribution: Perform experiments on CIFAR-10, CIFAR-100 and limited experiments on
ImageNet. They perform an ablation on CIFAR-100 with an artificial imbalanced dataset.
! (") due to limited imbalanced datasets.

P2 Starting Budget: Perform no experiments at all regarding the starting budget.
! X
P3 Query Size: Perform ablations on CIFAR-10/100 comparing query sizes of 5% (2500) to 10%
(5000). !"
P4 Performant Baselines: They achieve performance on CIFAR-10/100 on par with ours (see
Appendix H). !"
P4 HP Optim. & Val. Split They explicitly use a validation set and finetune their hyperparameters
based on the validation set performance using AutoML.
!"
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They do not consider using models trained with semi-supervised training paradigms.
! X

Mittal et al. [43] Evaluate the performance of AL methods and set them into context with semi-
supervised training paradigms.

P1 Data Distribution: Perform experiments on CIFAR-10, CIFAR-100.
! X
P2 Starting Budget: Perform experiments both on the standard setting with starting budget of 5000
(10%) on CIFAR-10/100 as well as 250 (CIFAR-10) and 500 (CIFAR-100).
! (") due to limited settings.

P3 Query Size: They do not consider speicifally ablating the query size.
! X

3We only base this on ST models, as getting good performance with Self-SL and Semi-SL for low data
settings can be achieved without taking HP configuration into account, as they can simply be taken from a paper
focusing on them which often use very large validation sets.

17

P4 Performant Baselines: Their random baseline is more performant on CIFAR10/100 than most of
the literature. However, not as good as Munjal et al. [44] or ours (see Appendix H).
! (") due to performance being good but no on par with ours.

P4 HP Optim. & Val. Split They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They evaluate AL with and against the semi-supervised training paradigm ‘Unsupervised
Data Augmentation for Consistency Training’.
!"

Bengar et al. [6] Evaluate the performance of AL methods and set them into context with self-
supervised training paradigms.

P1 Data Distribution: They perform experiments on CIFAR-10/100 and TinyImageNet. All of which
are class balanced datasets.
! X due to only evaluating balanced datasets.

P2 Starting Budget: They use 3 different starting budgets on each of their three datasets. CIFAR-10:
0.1%, 1%, 10%; CIFAR-100: 1%, 2%, 10%; Tiny ImageNet: 1%, 2%, 10% (% of the whole dataset).
!"
P3 Query Size: Each of the three different starting budgets has a different query size resulting
in overlapping experiments. Therefore it would be possible to draw some conclusions about the
influence of the query size.
! (") due missing selective evaluation of query size.

P4 Performant Baselines: Their supervised random baseline is performing worse on CIFAR-10/100
than most models in the literature (see Appendix H).
! X
P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.

P5 Self-SL: They evaluate AL methods with and against one self-supervised training paradigm
(SimSiam).
!"
P5 Semi-Supervise Learning: They do not consider using models trained with semi-supervised
training paradigms.
! X

Gao et al. [20] Evaluate the performance of AL methods against and in the context of semi-
supervised training paradigms. Further, they propose a new query method designed for AL with
models that are trained with a Semi-SL training paradigm.

P1 Data Distribution: They perform experiments on CIFAR-10/100 and ImageNet.
! X due to only evaluating balanced datasets.

P2 Starting Budget: They perform a specific ablation about the importance of the starting budget on
CIFAR-10 with multiple settings and discuss it.
!"
P3 Query Size: In addition to the standard experiments, they perform experiments with query sizes of
50 and 250. However, they do not specifically discuss its importance.
! (") due missing selective evaluation of query size.

18

P4 Performant Baselines: The performance of their supervised random baseline models in the main
comparison is not close to our performance on CIFAR-10/100.
! X
P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They evaluate AL with and against the semi-supervised training paradigm (MixMatch).
!"

Yi et al. [54] They propose to use self-supervised pre-text as a basis for query functions.

P1 Data Distribution: Perform experiments on CIFAR-10, an imbalanced version of CIFAR-10,
Caltech-101 and ImageNet.
!"
P2 Starting Budget: One experiment is performed where they select the starting budget with their
proposed Active Learning method on CIFAR-10. Otherwise, they do not evaluate the performance
under different starting budgets.
! X

P3 Query Size: They do not evaluate the performance with regard to different query sizes.
! X

P4 Performant Baselines: Their supervised random baseline models are not close to the performance
of our random baseline models on CIFAR-10 (see Appendix H).
! X

P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X

P5 Self-SL: They consider several different Self-SL paradigms (‘Rotation Prediction’, ‘Colorization’,
‘Solving jigsaw puzzles’ and ‘SimSiam’) based on which they select rotation prediction for their
experiments.
! (") due to selection of non state-of-the-art Self-SL paradigm.

P5 Semi-Supervise Learning: They do not consider using models trained with semi-supervised
training paradigms.
! X

Krishnan et al. [35] They propose to use a supervised contrastive training paradigm as a basis for
two AL methods.

P1 Data Distribution: Perform experiments on Fashion-MNIST, SVHN and CIFAR-10 and an
imbalanced version of CIFAR-10.
! (") due to imbalanced CIFAR-10 being simulated.

P2 Starting Budget: They do not evaluate the performance under different starting budgets.
! X
P3 Query Size: They do not evaluate the performance with regard to different query sizes.
! X

19

P4 Performant Baselines: Their supervised random baseline models are not close to the performance
of our random baseline models on CIFAR-10 (see Appendix H).
! X
P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-Supervise Learning: They do not consider using models trained with semi-supervised
training paradigms.
! X

Kim et al. [30] They propose task-aware active learning which is a combination of learning loss
active learning and variational adversarial active learning.

P1 Data Distribution: Perform experiments on CIFAR-10, CIFAR-100, CALTECH 101 and imbal-
anced CIFARS.
!"
P2 Starting Budget: They do not evaluate the performance under different starting budgets.
! (")

P3 Query Size: They do not evaluate the performance with regard to different query sizes.
! (")

P4 Performant Baselines: Their supervised random baseline models perform good but not on par
with ours on CIFAR-10 and 100.
! (")

P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They do not consider using models trained with semi-supervised training paradigms.
! X

Beck et al. [4] Evaluate several AL methods in different settings to gain an understanding which
AL methods outperform random queries. Further, they provide the Al toolkit DISTIL.

P1 Data Distribution: Perform experiments on CIFAR-10, CIFAR-100, Fashion-MNIST, SVHN and
MNIST. ! X due to no class imbalance.

P2 Starting Budget: They perform one experiment, where they evaluate a lower starting budget for
MNIST.
! (") due limited dataset.

P3 Query Size: They evaluate three different query sizes on CIFAR-10, but do so only for Random,
Entropy and BADGE.
! (") due to limited scope.

P4 Performant Baselines: Their supervised random baseline models perform good but no par with
our random baseline models on CIFAR-10/100 (see Appendix H).
! (") due to limited scope.

P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X

20

P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They do not consider using models trained with semi-supervised training paradigms.
! X

Zhan et al. [58] Evaluate a multitude of different AL methods and provide the AL toolkit DeepAL+.

P1 Data Distribution: Perform experiments on Tiny ImageNet, CIFAR-10 (and CIFAR-10 imbal-
anced), CIFAR-100, Fashion-MNIST, EMNIST and SVHN. Further Experiments are performed on an
Histopathological image Classification Task (BreakHis) and Chest X-Ray Pneumonia classification
(Pneumonia-MNIST) as well as the Waterbird dataset adopted from object recognition with correlated
backgrounds.
!"
P2 Starting Budget: They do not evaluate the performance under different starting budgets.
! X
P3 Query Size: They evaluate multiple different query sizes on CIFAR-10 and analyze the difference.
!"
P4 Performant Baselines: Their supervised random baseline models are not close to the performance
of our random baseline models on CIFAR-10/100.
! X
P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They do not consider using models pre-trained with Self-SL.
! X
P5 Semi-SL: They do not consider using models trained with semi-supervised training paradigms.
! X

Chan et al. [11] Evaluate how AL methods interact with self- and semi-supervised training
paradigms and how and whether they yield a benefit. The experiments in this paper differ from
standard AL experiments by using only one query cycle, making it hard to compare systematically.

P1 Data Distribution: Perform experiments on CIFAR-10 and CIFAR-100.
! X
P2 Starting Budget: Experiments are performed with a fixed starting budget of 3 samples per class
or 2 samples per class in one case. This does not allow for evaluate of the influence of the starting
budget on AL methods.
! X
P3 Query Size: They query all samples for their final performance in one query step. This does not
allow for evaluation of the influence of the query size on AL methods.
! X
P4 Performant Baselines: Their supervised random baseline models perform on par with our random
baseline models on CIFAR-10/100.
!"
P4 HP Optim. & Val. Split: They do not state optimizing their hyperparameters based on a validation
set.
! X
P5 Self-SL: They use Debiased Contrastive Learning as self-supervised pretext task.
!"
P5 Semi-SL: They use Pseudo-labeling and FixMatch as semi-supervised training paradigms.
!"

21

Table 1: Number of Samples for each class in CIFAR-10 LT dataset. Validation and test sets are
balanced.

Class Train Split

airplane 4500
automobile (but not truck or pickup truck) 2913
bird 1886
cat 1221
deer 790
dog 512
frog 331
horse 214
ship 139
truck (but no pickup truck) 90

C Dataset details

Each dataset is split into a training, a validation and a test split.
For CIFAR-10/100 (LT) datasets the test split of size 10000 observations is already given and for
MIO-TCD and ISIC-2019 we use a custom test split of 25% random observations of the entire dataset
size. For MIO-TCD and ISIC-2019 the train, validation and test splits are imbalanced.
The validation split for all CIFAR-10 and CIFAR-100 datasets are 5000 randomly drawn observations
corresponding to 10% of the entire dataset. For CIFAR-10 LT the validation split also consists of
5000 samples obtained from the dataset before the long-tail distribution is applied onto the training
split. The CIFAR-10 LT validation split is therefore balanced. For MIO-TCD and ISIC-2019 the
validation splits consist of 15% of the entire dataset.
The shared training & pool dataset for CIFAR-10/100 consists of 45000 observations. For CIFAR-10
LT the training & pool datasets consist of 12,600 observations. For MIO-TCD and ISIC-2019 the
training & pool datasets consist of 60% the dataset.

C.1 Dataset descriptions
1. CIFAR-10: natural images containing 10 classes, label distribution is uniform

Splits: (Train:45000; Val: 5000; Test; 10000)
Whole Dataset: 60000

2. CIFAR-100: natural images containing 100 classes, label distribution is uniform
Splits: (Train:45000; Val: 5000; Test; 10000)
Whole Dataset: 60000

3. CIFAR-10 LT: natural images containing 10 classes, label distribution of test and validation
split is uniform, label distribution of train split is artifically altered with imbalance factor
⇢ = 50 according to [10]. The resulting label distribution is shown in Tab. 1.
Splits: (Train:⇠12,600; Val: 5000; Test; 10000)
Whole Dataset: 27600

4. ISIC-2019: dermoscopic images containing 8 classes, label distribution of the dataset is
imbalanced and shown in Tab. 2
Splits: (Train:15200; Val: 3799; Test; 6332)
Whole Dataset: 25331

5. MIO-TCD: natural images of traffic participants containing 11 classes, label distribution of
the dataset is imbalanced and shown in Tab. 3
Splits: (Train:311498; Val: 77875; Test; 129791)
Whole Dataset: 519164

22

Table 2: Number of Samples for each class in ISIC-2019
Class Whole Dataset

Melanoma 4522
Melanocytic nevus 12875
Basal cell carcinoma 3323
Benign keratosis 867
Dermatofibroma 197
Vascular lesion 63
Squamos cell carcinoma 64

Table 3: Number of samples for each class in MIO-TCD
Class Whole Dataset

Articulated Truck 10346
Background 16000
Bicycle 2284
Bus 10316
Car 260518
Motorcycle 1982
Non-motorized vehicle 1751
Pedestrian 6262
Pickup truck 50906
Single unit truck 5120
Work van 9679

D Experimental setup, in more detail

Here we detail the most crucial information for reprocubility, re-implementation and checking our
implementation. When in doubt, trust the information documented here with regard to what we
wanted to do in our code.

D.1 Initial dataset setup

Before we do anything else the datasets are split according to Figure 4 resulting in a tain split, a
validation split and a test split. Each dataset has 3 different validation splits while always using the
same test split. This is to ensure comparability across these splits without relying on cross-validation.
The exact splits for each dataset are detailed in Appendix C. After that the final datasets use for
training and validation are then labeled according to the ‘label strategy’, which is described in
Figure 5. For all balanced datasets, we use class balanced label strategies since the label strategy only
leads to different outcomes for imbalanced datasets. For CIFAR-10 LT we use the label strategy on
the train split only, whereas for MIO-TCD and ISIC-2019 we use the label strategy on both train
and validation split. The amount of data which is labeled for the final datasets of each split is then
dependent upon the label-regime (described in more detail in Appendix D.2).

D.2 Label regimes

The exact label regimes are obtained by first taking the corresponding splits and then using the proper
label strategy (see Figure 5) in combination with the starting budget and validation set size according
to Tab. 4.

D.3 Model architecture and training

On each training step the model is trained from its initialization to avoid a ‘mode collapse’ [32].
Further we select the checkpoint with the best validation set performance in the spirit of [19]. A
ResNet-18 [24] is the backbone for all of our experiments with weight decay disabled on bias
parameters. If not otherwise noted, a nesterov momentum optimizer with momentum of 0.9 is used.

23

Split
off

25% 
or Test Split

15% 
or Val Split

60% 
or Rest

Train Split Validation Split Test Split

Dataset

Label Strategy Label Strategy

Pool Train Validation TestVal. 
Pool

Training &  
Active Learning

Hyperparameters 
& Performance

Performance  
Oracle

Can only be assessed in practice with great labelling effort

Labeled Unlabeled (Un)labeled

Figure 4: Description of the three different data splits and their use-cases. The complete separation of
a validation split allows to compare across label regimes and incorporate techniques for performance
evaluation s.a. Active Testing [34]. For evaluation and development the test split should be as big
as possible since QM recommendations are based on the test set performance making it a form
of "oracle". An estimate of the size a dataset is required to have to measure specific performance
differences can be derived using Hoeffding’s inequality [26, 45].

24

(Un)labeled Set

1. Draw B samples

of each class

Create Labeled Set

with N samples.

Consisting of 2 sets: 
1. Class Balanced

2. Random 2. Draw randomly  

N-BC samples

Merge

Labeled Set

Class  
Balanced

Follows 
p(x,y)

Label Strategy

Motivation:  
Task is known.  
All Classes are present
in Labeled Set

Unlabeled Set

3. Rest

Labeled

Unlabeled

(Un)labeled

Figure 5: The Label Strategy used on the two roll-out datasets MIO-TCD and ISIC-2019 and for train
and pool set on CIFAR-10 LT. For class balanced datasets this strategy does not induce meaningful
changes to balanced starting budgets.

Table 4: The exact values for all label regimes. Final Budget denotes the amount of labeled training
samples at the end of the AL pipeline.

Dataset CIFAR-10 CIFAR-100 CIFAR-10 LT MIO-TCD ISIC-2019
Label Regime Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Starting Budget 50 250 1000 500 1000 5000 50 250 1000 55 275 1100 40 200 800
Query Size 50 250 1000 500 1000 5000 50 250 1000 55 275 1100 40 200 800

Final Budget 500 2500 10000 5000 10000 25000 500 2500 10000 550 2750 11000 400 2000 8000
Validation Set Size 250 1250 5000 2500 5000 5000 250 1250 5000 275 1375 5500 200 800 3799

For Self-SL models we use a two layer MLP as a classification head to make better use of the Self-SL
representations with further details in Appendix D.5. To obtain bayesian models we add dropout on
the final representations before the classification head with probability (p = 0.5) following [19]. For
all experiments on imbalanced datasets, we use the weighted CE-Loss following [44] based on the
implementation in SK-Learn [9] if not otherwise noted. Models trained purely on the labeled dataset
upsample it to a size of 5500 following [32] if the labeled train set is smaller.

Bayesian Models All steps that require bayesian properties of the models including the prediction
are obtained by drawing 50 MC samples following [19, 32].

ST ST models are trained for 200 epochs with Cosine Annealing and 10 epochs warmup.

Self-SL Self-SL pre-trained models are trained for 80 epochs with a reduction of the learning rate
with a factor of 10 every 20 epochs (MultiStepLR) and using a Mulit-Layer-Percpeptron (MLP)
classification head (detailed description in Appendix D.5). The complete setup of the training for
SimCLR is described in Appendix D.4.

Semi-SL Semi-SL training is identical to the one proposed with the FixMatch method [52], except
that we do not use exponentially moving average models and restrict the training step from 1e6 to
2e5. The FixMatch implementation in our experiments is based on the open-source implementation

25

Table 5: HPs of the SimCLR pre-text training on each dataset. HP for CIFAR datasets are directly
taken [13] whereas MIO-TCD and ISIC-2019 HP are adapted from ImageNet experiments.

Dataset CIFAR-10/CIFAR100/CIFAR-10 LT MIO-TCD ISIC-2019

Epochs 1000 200 1000
Optimizer LARS LARS
Scheduler Cosine Annealing Cosine Annealing

Warmup Epochs 10 10
Temperature 0.5 0.1
Batch Size 512 256

Learning Rate 1 0.3
Weight Decay 1E-4 1E-6

Transform. Gauss Blur False True
Transform. Color Jitter Strength=0.5 Strength=1.0

Table 6: MLP Head Ablation for Self-SL models on CIFAR-10, over all labeled training set a
small improvement for Multi-Layer-Perceptron is measurable compared to Linear classification head
models. Reported as mean (std).

Labeled Train Set Classification Head Accuracy (Val) % Accuracy (Test) %

50 Linear 69.87(1.62) 69.90(2.18)
50 2 Layer MLP 71.47(3.06) 71.54(0.56)

500 Linear 84.67(0.36) 83.51(0.45)
500 2 Layer MLP 85.37(0.16) 84.60(0.37)

1000 Linear 87.13(0.69) 85.97(0.64)
1000 2 Layer MLP 87.69(0.55) 86.57(0.42)
5000 Linear 90.77(0.44) 90.20(0.21)
5000 2 Layer MLP 91.12(0.32) 90.25(0.24)

of 4 and MixMatch for distribution alignment 5. We always select the final Semi-SL model of the
training for testing and querying. On imbalanced datasets we change the supervised term to the
weighted CE-Loss and use distribution alignment on every dataset except for CIFAR-10 (where it
does not improve performance [52]). The HP sweep for our Semi-SL models includes weight decay
and learning rate.

Hyperparameters All information with regard to the final HPs and our proposed methodology of
finding them is detailed in Appendix E

D.4 Self-supervised SimCLR pre-text training

Our implementation wraps the Pytorch-Lightning-Bolts implementation of SimCLR: https://lightning-
bolts.readthedocs.io/en/latest/models/self_supervised.html#simclr . The training of our SimCLR
models is performed by excluding the validation splits. Therefore three models are trained on each
dataset, one for each different validation split. In Tab. 5 we give a list of the HPs used on each of our
five different datasets. All other HPs are taken from [13]. Further, we did not optimize the HPs for
SimCLR at all, meaning that on MIO-TCD and ISIC-2019 Self-SL models could perform even better
than reported here.

D.5 MLP head for self-supervised pretrained models

The MLP Head used for the Self-SL models has 1 hidden layer of size 512 uses ReLU nonlinearities
and BatchNorm. The results on CIFAR-10 based on which this design decision is based on is shown
in Tab. 6.

4https://github.com/kekmodel/FixMatch-pytorch
5https://github.com/google-research/mixmatch

26

D.6 List of data transformations

Standard The standard augmentations we use are based on the different datasets.
For CIFAR datasets these are in order of execution: RandomHorizontalFlip, RandomCrop to 32x32
with padding of size 4.

For MIO-TCD we use the standard ImageNet transformations: RandomResizedCrop to 224x224,
Random Horizontal Flip.

For ISIC-2019 we use ISIC transformations which are: Resize to 300x300, RandomHorizontalFlip,
RandomVerticalFlip, ColorJitter(0.02, 0.02, 0.02, 0.01) ,RandomRotation(rotation=(-180, 180),
translate=(0.1, 0.1), scale=(0.7, 1.3)), RandomAffine(-180, 180), RandomCrop to 224x224.
These are based on the ISIC-2018 challenge best single model submission:
https://github.com/JiaxinZhuang/Skin-Lesion-Recognition.Pytorch

RandAugmentMC We use the same set of image transformations used in RandAugment [17] with
the parameters N=2 and M=10. A detailed list of image transformations alongside the corresponding
values can be seen in [52] (Table 12).

The RandAugmentMC transformations were used additionally after the corresponding standard trans-
formations for each dataset. RandAugmentMC(CIFAR) also adds cutout as a final transformation.

RandAugmentMC weak Works identical as RandAugmentMC and uses the same set of image
transformations as for RandAugmentMC but changed its parameters to N=1 and M=2. Therefore the
maximal range of values is divided by a factor of 5.

RandAugmentMC weak does not use cutout in difference to RandAugmentMC on CIFAR datasets.

D.7 Performance measure

As a measure of performance on CIFAR-10, CIFAR-100 and CIFAR-10 LT we use the accuracy
while on MIO-TCD and ISIC-2019 we use balanced accuracy which is identical to mean recall shown
in Equation (3).

Mean Recall =
CX

c=1

1

C

TPc

TPc + FNc
(3)

Where C denotes the number of classes TPc is the number of true positives for class c and FNc being
the number of samples belonging to class c being wrongly misclassified as another class.

D.8 Computational effort

Experiments were executed on a Cluster with access to multiple NVIDIA graphics cards. All ST and
Self-SL pre-trained experiments used a single Nvidia RTX 2080 (10.7GB video-ram) graphic cards
except for the BADGE experiments on CIFAR-100 and MIO-TCD which required more video-ram
using Nvidia Titan RTX (23.6GB video-ram). The Semi-SL models on the CIFAR-10/100 (LT)
datasets used also a single Nvidia RTX 2080 while on MIO-TCD and ISIC-2019 the Nvidia Titan
RTX was utilized. For the results in our main table (excluding the HP optimization), the overall
runtime was:

• All ST experiments: 1800 GPU hours
• All Self-SL pre-trained experiments: 1350 GPU hours6

• All Semi-SL experiments7: 11200 GPU hours

E Proposed hyperparameter optimization

Our proposed HP optimization for AL is based on the notion of minimizing HP selection effort by
simplifying and reducing the search space. We use SGD Optimizer with Nesterov momentum of 0.9

6Excluding the pre-training
7For only 2 label regimes and exluding MIO-TCD and ISIC-2019

27

Table 7: Final HPs for each dataset and label regime for our ST models based on our HP tuning. HPs
denoted with a * are fixed across datasets and HP denoted with a + are pre-selected for each dataset
while all other HP are obtained via sweeping.

Dataset CIFAR-10 CIFAR-100 CIFAR-10 LT MIO-TCD ISIC-2019
Label Regime Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Epochs⇤ 200 200 200 200 200
Optimizer⇤ SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9
Scheduler⇤ Cosine Annealing Cosine Annealing Cosine Annealing Cosine Annealing Cosine Annealing

Warmup Epochs⇤ 10 10 10 10 10
Loss⇤ CE-Loss CE-Loss CE-Loss CE-Loss CE-Loss

Sampling+ standard standard oversampling oversampling oversampling
Batch Size+ 1024 1024 1024 512 512

Learning Rate 0.1 0.1 0.1 0.01 0.01 0.1 0.1
Weight Decay 5E-3 5E-3 5E-3 5E-3 5E-4 5E-3 5E-3

Data Augmentation RandAugmentMC (CIFAR) RandAugmentMC (CIFAR) RandAugmentMC (CIFAR) RandAugmentMC (ImageNet) RandAugmentMC (ISIC)

Table 8: Final HPs for each dataset and label regime for our Self-SL models based on our HP tuning.
Overall Performance was remarkably stable with regard to HPs and stronger augmentations did not
necessarily improve performance in the same way as for ST models. This is presumably due to the
pre-trained representations. HP denoted with a * are fixed across datasets and HP denoted with a +
are pre-selected for each dataset while all other HP are obtained via sweeping.

Dataset CIFAR-10 CIFAR-100 CIFAR-10 LT MIO-TCD ISIC-2019
Label Regime Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Epochs⇤ 80 80 80 80 80
Optimizer⇤ SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9 SGD Nesterov 0.9
Scheduler⇤ MulitStepLR MulitStepLR MulitStepLR MulitStepLR MulitStepLR

Warmup Epochs⇤ 0 0 0 0 0
Loss⇤ CE-Loss CE-Loss CE-Loss CE-Loss CE-Loss

Sampling+ standard standard oversampling oversampling oversampling
Batch Size+ 64 64 64 256 128

Learning Rate 0.001 0.001 0.01 0.01 0.001 0.001 0.01 0.001 0.01 0.001 0.01
Weight Decay 5E-3 5E-3 5E-4 5E-4 5E-3 5E-3 5e-3 5E-4 5e-3

Data Augmentation RandAugmentMC weak (CIFAR) RandAugmentMC weak (CIFAR) Standard (CIFAR) RandAugmentMC weak (ImageNet) Standard (ImageNet) Standard (ImageNet) Standard (ISIC)

and select a number of epochs that always allow a complete fit of the model. The scheduler is also
fixed across experiments as are the warmup epochs if used. Secondly, we pre-select the batchsize for
each dataset since it is usually not a critical HP as long as it is big enough for BatchNorm to work
properly.

ST For our ST models the final HP for each dataset and label regime are shown in Tab. 7.
HP sweep: weight decay: (5E-3, 5E-4); learning rate: (0.1, 0.01); data transformation: (RandAug-
mentMC, Standard)

Self-SL For our Self-SL pre-trained models the final HP for each dataset and label regime are shown
in Tab. 8.
HP sweep: weight decay: (5E-3, 5E-4); learning rate: (0.01, 0.001); data transformation: (RandAug-
mentMC weak, Standard)

Semi-SL For our Semi-SL models we follow [52] with regard to HP selection as closely as possible.
The final HP for each dataset and label regime are shown in Tab. 9.
HP sweep: weight decay and learning rate.

Table 9: Final HPs for each dataset and label regime for our Semi-SL models based on our HP tuning.
HP denoted with a * are fixed across datasets and HP denoted with a + are pre-selected for each
dataset while all other HP are obtained via sweeping. – denotes not performed experiments.

Dataset CIFAR-10 CIFAR-100 CIFAR-10 LT MIO-TCD ISIC-2019
Label Regime Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Optimization Steps⇤ 2E5 – 2E5 – 2E5 – 2E5 – 2E5 –
Optimizer⇤ SGD Nesterov 0.9 – SGD Nesterov 0.9 – SGD Nesterov 0.9 – SGD Nesterov 0.9 – SGD Nesterov 0.9 –
Scheduler⇤ Cosine Annealing – Cosine Annealing – Cosine Annealing – Cosine Annealing – Cosine Annealing –

Warmup Steps+ 0 – 0 – 0 – 3000 – 3000 –
Loss+ CE-Loss – CE-Loss – weigthed CE-Loss – weigthed CE-Loss – weigthed CE-Loss –

Sampling⇤ standard – standard – standard – standard – standard –
�
⇤
u 1 – 1 – 1 – 1 – 1 –

µ
⇤ 7 – 7 – 7 – 7 – 7 –

⌧
⇤ 0.95 – 0.95 – 0.95 – 0.95 – 0.95 –

Distribution Alignment+ False – True – True – True – True –
Batch Size⇤ 64 – 64 – 64 – 64 – 64 –

Learning Rate 0.03 – 0.03 – 0.03 – – –
Weight Decay 5E-4 – 5E-4 – 1E-3 5E-4 – – –

Data Augmentation+ Standard (CIFAR) – Standard (CIFAR) – Standard (CIFAR) – Standard (ImageNet) – Standard (ISIC) –
Unlabeled Augmentation+ RandAugmentMC (CIFAR) – RandAugmentMC (CIFAR) – RandAugmentMC (CIFAR) – RandAugmentMC (ImageNet) – RandAugmentMC (ISIC) –

28

F Detailed results

F.1 Main results

General observations: For all datasets, the overall performance of models was primarily deter-
mined by the training strategy and the HP selection, with the benefits of AL being generally smaller
compared to the proper selection of both. For the three toy datasets, Semi-SL generally performed
best, followed by Self-SL and ST last, whereas, for the two real-world datasets, Semi-SL showed no
substantial improvement over ST in the first training stage and, therefore, further runs were omitted.
Also, the absolute performance gains for Self-SL models with AL are generally smaller compared to
ST models. For Semi-SL, there were generally only very small performance gains or substantially
worse performance with AL observed. Concerning the effect of AL, the high-label regime proved to
work for ST models on all datasets and Self-SL models. On the two real-world datasets, MIO-TCD
and ISIC-2019, a dip in performance at 7k samples for all ST models could be observed. This
behavior is ablated in Appendix I.1.

Evaluation using the pair-wise penalty matrix: We use the pair-wise penalty matrix (PPM) to
compare whether the performance of one query method significantly outperforms the others. It is
essentially a measure of how often one method significantly outperforms another method based on a
t-test with ↵ = 0.05 (more info in [2, 4]). This allows to aggregate results over different datasets
and label regimes, with the disadvantage being that the absolute performance is not taken into
consideration. When reading a PPM, each row i indicates the number of settings in which method i

beats other methods, while column j indicates the number of settings in which method j is beaten by
another method.

We show the PPMs aggregated over all datasets and label regimes for each training paradigm in
Figure 6.

For all methods, BADGE is the QM that is least often outperformed by other QMs. Further, for
Self-SL models, it is never significantly outperformed by Random, whereas it is seldomly significantly
outperformed for ST models. Based on this, we deem BADGE to be the best of our compared QMs
for both ST and Self-SL models. Since BADGE is more often outperformed by Random (0.5) on the
Semi-SL datasets and the additional high training cost for each iteration, we believe that Random is
the better choice in many cases.

Evaluation using the area under the budget curve: For each of the following subsections, we
added the area under the budget curve (AUBC) for each dataset and label regime to allow assessing
the absolute performance each QM brings. Generally, higher values are better. For more information,
we refer to [57, 58].

The results on the dataset for AUBC also show that BADGE is always one of the best performing AL
methods. This is in line with the findings based on the PPM.

29

(a) (b) (c)

Figure 6: PPMs aggregated over all experiments for Standard Models (a), Self-Sl Pre-Trained Models
(b) and Semi-SL models(c).
The value in the title (X) gives the highest possible value in a cell and the lowest row is the mean
value across a column j without row i = j signaling how often on average on QM is outperformed
by another.

F.1.1 CIFAR-10

The AUBC values are shown in Tab. 10.

Table 10: Area Under Budget Curve values for CIFAR-10.
Label Regime Low-Label Medium-Label High-Label

Mean STD Mean STD Mean STD
Training Query Method

ST BADGE 0.4730 0.0105 0.7289 0.0025 0.8599 0.0016
BALD 0.4744 0.0106 0.7253 0.0051 0.8578 0.0017
Entropy 0.4307 0.0018 0.6859 0.0042 0.8498 0.0025
Core-Set 0.4681 0.0038 0.7282 0.0043 0.8629 0.0017
Random 0.4720 0.0144 0.7309 0.0068 0.8526 0.0030

Self-SL BADGE 0.8282 0.0016 0.8728 0.0018 0.9086 0.0012
BALD 0.8005 0.0056 0.8692 0.0011 0.9093 0.0010
Entropy 0.8002 0.0090 0.8663 0.0017 0.9071 0.0010
Core-Set 0.8224 0.0026 0.8670 0.0009 0.9015 0.0009
Random 0.8117 0.0040 0.8669 0.0009 0.8989 0.0007

Semi-SL BADGE 0.9349 0.0010 0.9488 0.0022 – –
Entropy 0.9193 0.0082 0.9497 0.0007 – –
Core-Set 0.9343 0.0018 0.9442 0.0007 – –
Random 0.9326 0.0050 0.9478 0.0002 – –

ST Results are shown in Figure 7.

Self-SL Results are shown in Figure 8.

Semi-SL Results are shown in Figure 9.

30

Figure 7: CIFAR-10 ST

Figure 8: CIFAR-10 Self-SL

31

Figure 9: CIFAR-10 Semi-SL

32

Figure 10: CIFAR-100 ST

F.1.2 CIFAR-100

The AUBC values are shown in Tab. 11.

Table 11: Area Under Budget Curve values for CIFAR-100.
Label Regime Low-Label Medium-Label High-Label

Mean STD Mean STD Mean STD
Training Query Method

ST BADGE 0.3525 0.0042 0.4855 0.0044 0.6627 0.0017
BALD 0.3586 0.0007 0.4865 0.0019 0.6658 0.0002
Entropy 0.3036 0.0095 0.4440 0.0007 0.6569 0.0021
Core-Set 0.3458 0.0010 0.4767 0.0031 0.6560 0.0004
Random 0.3599 0.0027 0.4791 0.0044 0.6474 0.0015

Self-SL BADGE 0.5397 0.0030 0.6020 0.0019 0.6858 0.0021
BALD 0.5028 0.0043 0.5754 0.0027 0.6784 0.0009
Entropy 0.5111 0.0066 0.5857 0.0028 0.6857 0.0032
Core-Set 0.5337 0.0044 0.5917 0.0032 0.6804 0.0013
Random 0.5365 0.0017 0.5970 0.0017 0.6757 0.0013

Semi-SL BADGE 0.5562 0.0033 0.6222 0.0041 – –
Entropy 0.5328 0.0158 0.6152 0.0038 – –
Core-Set 0.5220 0.0101 0.6083 0.0061 – –
Random 0.5713 0.0066 0.6307 0.0016 – –

ST Results are shown in Figure 10.

Self-SL Results are shown in Figure 11.

Semi-SL Results are shown in Figure 12.

33

Figure 11: CIFAR-100 Self-SL

Figure 12: CIFAR-100 Semi-SL

34

Figure 13: CIFAR-10 LT ST

F.1.3 CIFAR-10 LT

The AUBC values are shown in Tab. 12.

Table 12: Area Under Budget Curve values for CIFAR-10 LT.
Label Regime Low-Label Medium-Label High-Label

Mean STD Mean STD Mean STD
Training Query Method

ST BADGE 0.3788 0.0152 0.5887 0.0098 0.7577 0.0004
BALD 0.3919 0.0111 0.5935 0.0141 0.7590 0.0034
Entropy 0.3740 0.0064 0.5793 0.0114 0.7454 0.0023
Core-Set 0.3939 0.0249 0.6162 0.0200 0.7667 0.0058
Random 0.3615 0.0118 0.5446 0.0214 0.7263 0.0044

Self-SL BADGE 0.5373 0.0233 0.6501 0.0026 0.7704 0.0093
BALD 0.5431 0.0202 0.6549 0.0097 0.7742 0.0036
Entropy 0.5282 0.0225 0.6450 0.0090 0.7707 0.0061
Core-Set 0.5298 0.0182 0.6171 0.0154 0.7555 0.0032
Random 0.5397 0.0208 0.6173 0.0097 0.7554 0.0069

Semi-SL BADGE 0.7233 0.0166 0.7616 0.0087 – –
Entropy 0.6934 0.0289 0.7590 0.0101 – –
Core-Set 0.6825 0.0103 0.7608 0.0108 – –
Random 0.6965 0.0264 0.7363 0.0077 – –

ST Results are shown in Figure 13.

Self-SL Results are shown in Figure 14.

Semi-SL Results are shown in Figure 15.

35

Figure 14: CIFAR-10 LT Self-SL

Figure 15: CIFAR-10 LT Semi-SL

36

Figure 16: MIO-TCD ST

F.1.4 MIO-TCD

The AUBC values are shown in Tab. 13.

Table 13: Area Under Budget Curve values for MIO-TCD.
Label Regime Low-Label Medium-Label High-Label

Mean STD Mean STD Mean STD
Training Query Method

ST BADGE 0.3539 0.0041 0.4688 0.0153 0.6614 0.0080
BALD 0.3254 0.0155 0.4830 0.0092 0.6884 0.0104
Entropy 0.3201 0.0097 0.4134 0.0230 0.6078 0.0176
Core-Set 0.3514 0.0134 0.4678 0.0181 0.7098 0.0056
Random 0.3510 0.0151 0.4564 0.0140 0.6065 0.0120

Self-SL BADGE 0.5446 0.0122 0.6365 0.0054 0.7174 0.0040
BALD 0.4494 0.0102 0.5741 0.0138 0.6041 0.0092
Entropy 0.5105 0.0092 0.6416 0.0075 0.6972 0.0029
Core-Set 0.5060 0.0082 0.5900 0.0190 0.6699 0.0166
Random 0.5298 0.0109 0.6124 0.0032 0.6975 0.0054

ST Results are shown in Figure 16.

Self-SL Results are shown in Figure 17.

Semi-SL We performed no AL experiments due to the bad performance of Semi-SL on the starting
budgets. More information can be found in Appendix F.4.

37

Figure 17: MIO-TCD Self-SL

F.1.5 ISIC-2019

The AUBC values are shown in Tab. 14.

Table 14: Area Under Budget Curve values for ISIC-2019.
Label Regime Low-Label Medium-Label High-Label

Mean STD Mean STD Mean STD
Training Query Method

ST BADGE 0.3204 0.0099 0.4331 0.0146 0.5628 0.0101
BALD 0.3190 0.0133 0.4521 0.0211 0.5534 0.0052
Entropy 0.3241 0.0067 0.4207 0.0335 0.5631 0.0061
Core-Set 0.3426 0.0099 0.4501 0.0139 0.5708 0.0096
Random 0.3376 0.0243 0.4116 0.0201 0.5273 0.0048

Self-SL BADGE 0.3809 0.0168 0.4679 0.0174 0.5761 0.0063
BALD 0.3949 0.0209 0.4847 0.0018 0.5914 0.0080
Entropy 0.3666 0.0165 0.4659 0.0104 0.5872 0.0096
Core-Set 0.3752 0.0205 0.4472 0.0071 0.5556 0.0069
Random 0.3736 0.0092 0.4555 0.0053 0.5547 0.0066

ST Results are shown in Figure 18.

Self-SL Results are shown in Figure 19.

Semi-SL We performed no AL experiments due to the bad performance of Semi-SL on the starting
budgets. More information can be found in Appendix F.4.

38

Figure 18: ISIC-2019 ST

Figure 19: ISIC-2019 Self-SL Pre-Trained Models

39

F.2 Low-Label Query Size

To investigate the effect of query size in the low-label regime, we conduct an ablation with Self-SL
pre-trained models on CIFAR-100 and ISIC-2019. For CIFAR-100 the query sizes are 50, 500 and
2000, while for ISIC-2019 they are 10, 40 and 160.

Here the accuracies for the overlapping labeled samples are shown which are analyzed using a t-test.

CIFAR100 The results are shown in Tab. 15 and Tab. 16. When comparing the performance of
the same QM using different query sizes only BALD and Core-Set lead to statistically significant
difference in performance. While it is consistent across both comparisons for BALD with the the
performance difference widening for larger labeled sets and more iterations the trend for Core-Set is
not as clear.

ISIC-2019 The results are shown in Tab. 17 and Tab. 18. Entropy is the only QM showing a
significant difference, indicating that a query size of 40 outperforms a query size of 10 for a training
set size of 160. However, this behavior does not extend to the other training set sizes. Whereas, for
BALD, there is a consistent trend that smaller query sizes lead to increased performance.

Table 15: Accuracies % for the low-label comparison for CIFAR100 with query sizes 50 and 500 at
overlapping training set sizes. Reported as mean (std). Values with a significant difference (t-test)
across query sizes are denoted with ⇤.

Labeled Samples 1000 1500
Query Size 50 500 50 500

BADGE 45.75 (0.75) 46.32 (0.20) 50.02 (0.92) 50.24 (0.61)
BALD 45.54 (0.20) 42.31 (1.71) 49.41 (0.39)⇤ 46.00 (0.44)⇤
Core-Set 46.53 (0.76) 46.02 (0.74) 49.34 (0.72) 49.70 (0.60)
Entropy 43.82 (0.40) 42.95 (1.32) 47.05 (0.91) 46.75 (0.76)
Random 46.10 (0.41) 45.22 (0.34) 49.88 (0.26) 49.79 (0.27)

Table 16: Accuracies % for the low-label comparison for CIFAR100 with query sizes 500 and 2000
at overlapping training set sizes. Reported as mean (std). Values with a significant difference (t-test)
across query sizes are denoted with ⇤.

Labeled Samples 2500 4500
Query Size 500 2000 500 2000

BADGE 54.62 (0.60) 55.03 (0.38) 50.92 (0.12) 59.98 (0.60)
BALD 50.92 (0.30) 49.96 (1.43) 55.86 (0.21)⇤ 52.14 (1.36)⇤
Core-Set 54.72 (0.16)⇤ 53.52 (0.33)⇤ 58.71 (0.61) 58.28 (0.43)
Entropy 51.41 (0.53) 51.79 (0.76) 57.12 (0.53) 57.53 (0.43)
Random 54.71 (0.38) 54.38 (0.21) 59.98 (0.60) 59.48 (0.48)

Table 17: Accuracies % for the low-label comparison for ISIC-2019 with query sizes 10 and 40 at
overlapping training set sizes. Reported as mean (std). Values with a significant difference (t-test)
across query sizes are denoted with ⇤.

Labeled Sample 80 120 160 200 240
Query Size 10 40 10 40 10 40 10 40 10 40

BADGE 34.39 (0.86) 36.03 (0.39) 37.58 (1.93) 36.40 (1.10) 37.58 (2.51) 37.24 (2.15) 38.32 (1.59) 37.52 (1.16) 38.78 (1.64) 38.94 (2.97)
BALD 38.11 (1.42) 36.51 (1.26) 38.80 (1.19) 37.26 (4.90) 40.40 (1.76) 39.23(1.89) 42.15 (1.49) 40.09 (2.59) 42.26 (0.97) 40.18 (2.70)
Core-Set 35.57 (1.49) 35.38 (0.50) 36.87 (1.73) 36.52 (2.24) 38.55 (2.37) 38.19 (1.69) 38.41 (1.80) 37.19 (2.93) 39.04 (2.94) 38.30 (1.66)
Entropy 35.19 (0.63) 34.87 (0.91) 37.06 (1.63) 38.59 (2.06) 36.95 (1.13)⇤ 39.67 (0.55)⇤ 38.25 (3.11) 39.93 (2.38) 39.38 (2.62) 40.26 (2.49)
Random 36.10 (0.70) 35.69 (0.68) 37.57 (1.79) 37.65 (2.15) 37.43 (1.77) 40.62 (0.62) 38.41 (1.46) 40.29 (1.78) 3835 (2.43) 41.14 (0.37)

40

Table 18: Accuracies % for the low-label comparison for ISIC-2019 with query sizes 40 and 160 at
overlapping training set sizes. Reported as mean (std). Values with a significant difference (t-test)
across query sizes are denoted with ⇤.

Labeled Samples 200 360
Query Size 40 160 40 160

BADGE 37.52 (1.16) 38.11 (1.07) 42.90 (3.29) 42.86 (1.44)
BALD 40.09 (2.59) 39.67 (2.54) 44.49 (1.78) 42.83 (1.05)
Core-Set 37.79 (2.93) 37.71 (3.18) 39.56 (1.48) 39.47 (1.04)
Entropy 39.93 (2.38) 37.80 (1.46) 42.03 (1.16) 40.82 (1.46)
Random 40.29 (1.78) 40.80 (2.34) 42.10 (2.29) 42.10 (2.29)

41

Figure 20: Macro-averaged F1-scores for ISIC-2019 and MIO-TCD datasets. Across the board,
BADGE is still the best-performing QM which can also be seen in Table 19. Please interpret the
results with care, as the model configurations are optimized for balanced accuracy.

Table 19: Area Under Budget Curve values based on macro-averaged F1-scores for ISIC-2019 and
MIO-TCD (corresponding plots in Figure 20).

(a) ISIC-2019

Label Regime Low-Label Mid-Label High-Label
Mean STD Mean STD Mean STD

Training Query Method

Standard Training BADGE 0.2791 0.0081 0.3810 0.0167 0.5059 0.0054
BALD 0.2587 0.0196 0.4050 0.0216 0.4866 0.0100
Entropy 0.2652 0.0147 0.3763 0.0453 0.4988 0.0056
Core-Set 0.2800 0.0105 0.3937 0.0082 0.5139 0.0141
Random 0.2817 0.0153 0.3638 0.0292 0.4774 0.0035

Self-SL Pre-Trained BADGE 0.3390 0.0107 0.3978 0.0053 0.5380 0.0067
BALD 0.3273 0.0054 0.4065 0.0047 0.5173 0.0008
Entropy 0.3232 0.0039 0.4081 0.0061 0.5586 0.0143
Core-Set 0.3010 0.0129 0.3833 0.0094 0.5045 0.0123
Random 0.3333 0.0033 0.3852 0.0153 0.5100 0.0059

(b) MIO-TCD

Label Regime Low-Label Mid-Label High-Label
Mean STD Mean STD Mean STD

Training Query Method

Standard Training BADGE 0.2503 0.0111 0.3604 0.0249 0.5759 0.0075
BALD 0.2023 0.0127 0.3325 0.0082 0.5758 0.0116
Entropy 0.1957 0.0208 0.2929 0.0218 0.5066 0.0290
Core-Set 0.2301 0.0155 0.3450 0.0203 0.5945 0.0099
Random 0.2446 0.0091 0.3438 0.0132 0.5085 0.0093

Self-SL Pre-Trained BADGE 0.4295 0.0205 0.5487 0.0129 0.5994 0.0035
BALD 0.2560 0.0132 0.4488 0.0236 0.4335 0.0088
Entropy 0.3398 0.0104 0.4977 0.0095 0.5481 0.0078
Core-Set 0.3525 0.0066 0.4970 0.0160 0.5375 0.0138
Random 0.4175 0.0158 0.5194 0.0101 0.5681 0.0036

F.3 Macro averaged F1-scores

Additionally, we provide the macro-averaged F1-scores for ISIC-2019 and MIO-TCD dataset. A plot
showing the performance of both ST and Self-SL models is shown in Figure 20 and the resulting
AUBC values are shown in Tab. 19.

F.4 Semi-Supervised Learning

Results of FixMatch for all HPs on the whole validation splits are shown separately for MIO-TCD in
Tab. 20 and ISIC-2019 in Tab. 21. Based on the performance which did not improve substantially
over even ST models we decided to omit all further AL experiments.

Table 20: MIO-TCD FixMatch results reported on the test sets (balanced accuracy in %). Reported
as mean (std).

FixMatch Sweep MIO-TCD
Labeled Train Samples Learning Rate Weight Decay Balanced Accuracy (Test)

55
0.3 5E-3 18.1(1.1)

5E-4 28.0(0.4)

0.03 5E-3 26.8(0.5)
5E-4 29.7(2.4)

275
0.3 5E-3 20.2(6.2)

5E-4 28.2(1.5)

0.03 5E-3 31.4(0.7)
5E-4 36.0(1.8)

42

Table 21: ISIC-2019 FixMatch results reported on the test sets (balanced accuracy in %). Reported as
mean (std).

FixMatch Sweep ISIC-2019
Labeled Train Samples Learning Rate Weight Decay Balanced Accuracy (Test)

40
0.3 5E-3 14.0(2.5)

5E-4 26.9(1.5)

0.03 5E-3 24.5(4.4)
5E-4 31.3(1.7)

200
0.3 5E-3 15.2(3.6)

5E-4 19.1(1.5)

0.03 5E-3 26.3(0.8)
5E-4 24.3(3.6)

G Discussion and further observations

The results are interpreted based on the assumption that a QM performing on a similar level as
Random is not a drawback as long as it brings in other settings performance improvements over
random queries. This mostly follows in line with the PPM as a performance metric but mostly focuses
on the row that compares each QM with random queries. However, if a QM shows behavior leading
to much worse behavior than random as Entropy does or shows signs of the cold start problem, we
deem this as highly problematic. In these settings, one loses significant performance whilst paying a
cost in computing and setup corresponding to AL. Therefore, we use random queries as a baseline for
all QMs.
Based on this our recommendation for BADGE is given for Self-SL and ST trainings.
The main disadvantage of this approach is that absolute performance difference are not captured in
this aggregated format.

43

H Comparing random-sampling baselines across studies

Here we compare the performance of random-sampling baselines on the most commonly utilized
dataset CIFAR-10 and CIFAR-100 across different studies for ST, Self-SL and Semi-SL models along
strategic point where overlap in between papers occurs. For CIFAR-10 the results of this comparison
are shown for the high-label regime in Tab. 22 and the low- and mid-label regime in Tab. 23. Similarly
for CIFAR-100 the results are shown in Tab. 24 for the high-label regime and Tab. 25 for the low-
and mid-label regimes. Overall our ST random baselines outperform all other random baselines. Our
Self-SL models also outperform the only other relevant literature [6] on CIFAR-10. Further, our
Semi-SL models also outperform the relevant literature [20, 43] on CIFAR-10 and CIFAR-100.

Table 22: Comparison of random baseline model accuracy in % on the test set for the high label-
regime for CIFAR-10 across different papers. Best performing models for each training strategy are
highlighted. Values denoted with – represent not performed experiments. Values with a denoted with
a * are reprinted from [44]. Values which are sourced from a graph are subject to human read-out
error.

Information Number Labeled Training Samples
Paper Training Model Source 1k 2k 5k 10k 15k 20k

QBC ST DenseNet121 Graph 74* 82.5* - -
VAAL ST VGG16 Graph - - 61.35* 68.17* 72.96* 75.99*
CoreSet ST VGG16 Graph - - 60* 68* 71* 74*
Agarwal et al. ST VGG16 Graph - - 61.5 68 72 76
Munjal-SR ST VGG16 Table - - 82.16 85.07 89.43 91.16
Mittal et al. ST WRN28-2 Graph 57 73 82.5 86 90.7 92
LLAL ST ResNet18 Graph 51 63 81* 87* - -
CoreCGN ST ResNet18 Graph 50 64 80* 85.5* - -
TA-VAAL ST ResNet18 Graph 50 65 81* 87.5* - -
Krishnan et al. ST ResNet18 Graph 47 60 78 86 - -
Yi et al. ST ResNet18 Graph 47.5 56 78 86 - -
Bengar et al. ST ResNet18 Graph 45 55 73 81 85 88
Beck et al. ST ResNet18 Graph 55 - - 84 85 90.5
Zhan et al. ST ResNet18 Graph 45 - - 76 - -
Munjal-SR ST ResNet18 Table - - 84.69 88.45 89.98 92.29
Ours ST ResNet18 Table 72.4 79.8 85.5 90.5 - -
Bengar et al. Self-SL ResNet18 Graph 87 88 89.5 90.5. 91 91.5
Ours Self-SL ResNet18 Table 86.2 88.3 90.1 91.4 - -
Mittal et al. Semi-SL WRN28-2 Graph 88 91 92.5 93.8 94 94.5
Gao et al. Semi-SL WRN28-2 Graph 91.5 91 - - - -
Ours Semi-SL ResNet18 Table 94.7 95.0 - - - -

44

Table 23: Comparison of random baseline model accuracy in % on the test set for the low- and
mid-label regime for CIFAR-10 across different papers. Best performing models for each training
strategy are highlighted. Values denoted with – represent not performed experiments. Values which
are sourced from a graph are subject to human read-out error.

Information Number Labeled Training Samples
Paper Training Model Source 50 100 200 250 500

Chan et al. ST WRN28-2 Table - - - 40.9 -
Mittal et al. ST WRN28-2 Graph - - - 36 48
Bengar et al. ST ResNet18 Graph - - - - 38
Ours ST ResNet18 Table 25.1 32.3 44.4 47.0 61.2
Chan et al. Self-SL WRN28-2 Table - - - 76.7 -
Bengar et al. Self-SL ResNet18 Graph 62 77 81 83 85
Ours Self-SL ResNet18 Table 71.3 76.8 81.2 81.4 84.1
Chan et al. Semi-SL WRN28-2 Table - - - 93.1 -
Mittal et al. Semi-SL WRN28-2 Graph - - - 82 85
Gao et al. Semi-SL WRN28-2 Table - 47.9 89.2 90.2 -
Ours Semi-SL ResNet18 Graph 90 91 93 93 94

Table 24: Comparison of random baseline model accuracy in % on the test set for the high-label
regime for CIFAR-100 across different papers. Best performing models for each training strategy are
highlighted. Values denoted with – represent not performed experiments. Values which are sourced
from a graph are subject to human read-out error.

Information Number Labeled Training Samples
Paper Training Model Source 5k 10k 15k 20k

Agarwal et al. ST VGG16 Graph 28 35 41.5 46
Agarwal et al. ST ResNet18 Graph 29.5 38 45 49
Core-Set ST VGG16 Graph 27 37 42 49
VAAL ST VGG16 Graph 28 35 42 46
Munjal et al. ST VGG16 Graph 39.44 49 55 59
VAAL ST ResNet18 Graph 28 38 45 49
TA-VAAL ST ResNet18 Graph 43 52 60 63.5
Bengar et al. ST ResNet18 Graph 27 45 52 58
Beck et al. ST ResNet18 Graph 40 53 60 64
Zhan et al. ST ResNet18 Graph - 39 - -
Munjal et al. ST ResNet18 Table ? 61.1 66.9 69.8
Mittal et al. ST WRN28-2 Graph 44.9 58 64 68
Ours ST ResNet18 Table 49.2 61.3 66.7 70.2
Bengar et al. Self-SL ResNet18 Table 60 63 63.5 64
Ours Self-SL ResNet18 Table 60.4 64.8 68.4 70.7
Mittal et al. Semi-SL WRN28-2 Graph 59 65 70 71
Gao et al. Semi-SL WRN28-2 Table 63.4 67 68 70
Ours Semi-SL ResNet18 Graph 63.5 68.5 - -

45

Table 25: Comparison of random baseline model accuracy in % on the test set for the low- and
mid- label regime for CIFAR-100 across different papers. Best performing models for each training
strategy are highlighted. Values denoted with – represent not performed experiments. Values which
are sourced from a graph are subject to human read-out error.

Information Number Labeled Training Samples
Paper Training Model Source 500 1000 2000 2500

Chan et al. ST WRN28-2 Table - - - 33.2
Mittal et al. ST WRN28-2 Graph 9 12 24 27
TA-VAAL ST ResNet18 Graph - - 20 -
Bengar et al. ST ResNet18 Graph 9 12 17 -
Ours ST ResNet18 Table 14.0 22.4 32.0 36.3
Chan et al. Self-SL WRN28-2 Table - - - 49.1
Bengar et al. Self-SL ResNet18 Table 47 50 56 -
Ours Self-SL ResNet18 Table 37.3 45.2 52.2 54.7
Chan et al. Semi-SL WRN28-2 Table - - - 67.6
Mittal et al. Semi-SL WRN28-2 Graph 26 35.5 44.5 49
Ours Semi-SL ResNet18 Graph 41 - 56.5 -

46

I Detailed limitations

Additionally to the limitations already discussed in Sec. 4 we would like to critically reflect on the
following points:

Query methods We only evaluate four different QMs which is only a small sub-selection of all the
QMs proposed in the literature. We argue that this may not be optimal, however, deem it justified
due to the variety of other factors which we evaluated. Further, we excluded all QMs which induce
changes in the classifier (s.a. LLAL [55]) or add a substantial additional computational cost by
training new components (s.a. VAAL [51]). These QMs might induce changes in the HPs for every
dataset and were therefore deemed too costly to properly optimize.
We leave a combination of P4 with these QMs for future research.

Validation set size The potential shortcomings of our validation set were already discussed. However,
we would like to point out that a principled inclusion of K-Fold Cross-Validation into AL might
alleviate this problem. This would also give direct access to ensembles which have been shown
numerous times to be beneficial with regard to final performance (also in AL) [5]. How this would
allow us to assess performance gains in practice and also make use of improved techniques for
performance evaluation s.a. Active Testing [34] in the same way as our proposed solution shown in
Figure 4 is not clear to us. Therefore we leave this point up for future research.

Performance of ST models On the imbalanced datasets, the performance of our models is not
steadily increasing for more samples which can be traced back to sub-optimal HP selection according
to [44]. We believe that our approach of simplified HP tuning improves over the state-of-the-art in
AL showcased by the superior performance of our models on CIFAR-10 and CIFAR-100. However,
regularly re-optimizing HPs might be an alternative solution.

Performance of Self-SL models Our Self-SL models are outperformed on the low-label regime
on CIFAR-100 by the Self-SL models by [6], whereas on the medium- and high-label regime our
Self-SL models outperform them. We believe that this might be due to our fine-tuning schedule and
the possibility that Sim-Siam improves over SimCLR on CIFAR-100. Since our Self-Sl models still
outperform most Semi-SL models in the literature we believe that drawing conclusions from our
results is still feasible. An interesting research direction would be to make better use of the Self-SL
representations s.a. improved fine-tuning regimes [37].

No Bayesian Query Methods for Semi-SL The Semi-SL models were neither combined with BALD
nor BatchBALD as query functions, even though we showed that small query sizes and BatchBALD
can counteract the cold-start problem. Further our Semi-SL models had bigger query sizes by a
factor of three, possibly additionally hindering performance gains obtainable with AL. However, in
previous experiments with FixMatch, we were not able to combine it with Dropout whilst keeping
the performance of models without dropout. This clearly might have been an oversight by us, but we
would like to point out that in the works focusing on AL, using Semi-SL without bayesian QMs is
common practice [20, 43]

Changing both starting budget and query size We correlated the two parameters (smaller query
size for smaller starting budget etc.) since 1) in practice, we deem the size of the starting budget to be
dependent on labeling cost (therefore, large query sizes for small starting budgets are unrealistic and
vice versa) and 2) In this work, we are especially interested in smaller starting budgets (“cold-start”
territory) compared to the ones in the literature, since AL typically shows robust performance for
larger starting budgets. Theory shows that our adapted smaller query size for this case can only
positively affect the result [19, 32]. The only possible confounder could be that we interpret the
performance of a small starting budget too positively due to a hidden effect of the smaller query size.
However, we performed the low-label query size ablation, showcasing that varying the query size for
small starting budgets did not have considerable effects on performance for all QMs, except BALD,
where, a clear performance increase for smaller query sizes was observed.

I.1 Instability of hyperparameters for class imbalanced datasets

The substantial dip in performance on MIO-TCD and ISIC-2019 for approx 7k samples shown in
Figure 16 and Figure 18 is ablated in Tab. 26 where we show that simply changing the learning rate
leads to stabilizing the performance on both datasets for these cases.

47

Table 26: Ablation study on the performance-dip on MIO-TCD and ISIC-2019 for ST models with
regard to HP. Reported as mean (std).

Dataset Labeled Train Set Data Augmentation Learning Rate Weight Decay Balanced Accuracy (Val) Balanced Accuracy (Test)

ISIC-2019 7200 RandAugmentMC (ISIC)
0.1 5E-3 54.4(1.2) 52.6(1.9)

5E-4 57.2(1.7) 55.4(0.9)

0.01 5E-3 58.0(1.7) 55.6(1.0)
5E-4 55.6(1.9) 54.5(2.1)

MIO-TCD 7700 RandAugmentMC (ImageNet)
0.1 5E-3 65.7(1.8) 64.3(1.1)

5E-4 65.9(2.4) 63.6(2.7)

0.01 5E-3 64.1(1.2) 62.9(1.0)
5E-4 63.8(0.7) 62.2(1.1)

Figure 21: Comparison between balanced sampling and weighted cross-entropy-loss (weighted
CE-Loss). Whereas the ST models overall seem to benefit more from balanced sampling, the Self-SL
models perform slightly better for weighted CE-Loss. Generally the observed performance gains in
the imbalanced settings are still present.

However, this dip in performance also arises using weighted Cross-Entropy (weighted CE-Loss) as a
loss function as shown in the following ablation Figure 21.

48

	Introduction
	Realistic Evaluation in Active Learning
	Active Learning Task Formulation
	Overview over critical concepts in Active Learning evaluation
	Current pitfalls of Active Learning evaluation

	Experimental Setup
	Results & Discussion
	Conclusion & Take-Aways
	Active learning, in more detail
	From supervised to active learning
	Query methods
	Connection to self-supervised learning
	Connection to semi-supvervised learning

	Active learning literature, in more detail
	Dataset details
	Dataset descriptions

	Experimental setup, in more detail
	Initial dataset setup
	Label regimes
	Model architecture and training
	Self-supervised SimCLR pre-text training
	MLP head for self-supervised pretrained models
	List of data transformations
	Performance measure
	Computational effort

	Proposed hyperparameter optimization
	Detailed results
	Main results
	CIFAR-10
	CIFAR-100
	CIFAR-10 LT
	MIO-TCD
	ISIC-2019

	Low-Label Query Size
	Macro averaged F1-scores
	Semi-Supervised Learning

	Discussion and further observations
	Comparing random-sampling baselines across studies
	Detailed limitations
	Instability of hyperparameters for class imbalanced datasets

