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Figure A.1: Histogram of instruction lengths in two instruction finetuning datasets: FLAN (CoT
subset) (Longpre et al., 2023) and Super Natural Instructions (Wang et al., 2022). The dotted line
indicates the median length of the instructions in each dataset.

A Number of instances decreases rapidly as sequence length grows532

The recent trend of SFT-RLHF pipeline (Ouyang et al., 2022) relies on finetuning LLMs on the533

instruction following tasks. However, the training data of these datasets is often skewed towards534

shorter sequences. Figure A.1 shows the distribution of instruction lengths in two instruction535

finetuning datasets: FLAN (CoT subset) (Longpre et al., 2023) and Super Natural Instructions536

(Wang et al., 2022). The median length of instructions in these datasets is quite short compared537

to the maximum length that exists. Such distribution shape highlights the importance of length538

generalization in these tasks. In fact, the models are supposed to learn from short instructions and539

generalize to ones during inference that might be much longer.540

B Background541

B.1 Preliminaries542

In this section, we lay the groundwork and introduce the notation we use throughout the paper. We543

will refer to this in Appendices C.1 and C.2.544

Let f✓ be a decoder-only Transformer model, where ✓ denotes the full set of model parameters.545

f✓ processes the input sequence x = [x0, x1, . . . , xT ] and maps it to the output sequence y =546

[y0, y1, . . . , yT ] by applying a sequence of Transformer layers. Note that being decoder-only means547

the attention mechanism in each layer is causal, i.e. the attention weights are computed based on the548

previous positions only.549

The layer TLayer(l)(H(l�1); ✓l), consisting of self-attention heads and a feed-forward sub-layer,550

reads the previous hidden state H
(l�1) and produces the hidden state at layer l: H l, where l is the551

layer index, and ✓l is the set of parameters of the l-th layer. Each hidden state H
(l)

2 Rd⇥(T+1) is552

matrix where column t, denoted as h(l)
t

, is the hidden state at position t.553

A layer l is parameterized by a set of parameters ✓l = {(Wm

Q
,Wm

K
,Wm

V
,Wm

O
)m,W1,W2}, where554

W
m

Q
,Wm

K
,Wm

V
2 Rh⇥d and W

m

O
2 Rd⇥h are the query, key, value, and output matrices of the555

m-th head, respectively. W1,W2 2 Rd⇥k.d are the weight matrices of the feed-forward sub-layer.556

d denotes the model’s hidden state size, h is the attention dimension (where h = d

# heads ), and k is557

a multiplier of the hidden state size in the feed-forward sub-layer (it is usually set to 4 in common558

implementations of the Transformer). Note that we drop the layer index l and the attention head559

index m where it is clear from the context.560

The Transformer layer TLayer(l) processes each column of H(l�1) independently and in parallel to561

produce the output. The computation of the t-th column of H(l) is as follows:562

h
(l)
t

= FF(�(at + h
(l�1)
t

)) + at + h
(l�1)
t

(3)
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where FF is the feed-forward sub-layer, � is layer normalization, and at 2 Rd is the output of the563

multi-head self-attention sub-layer at position t. Specifically, at is computed as:564

at =
X

m

Attn(m)(h(l�1)
t

,H(l�1)) (4)

where Attn(m) is the m-th attention head. Let ot 2 Rd denote the output of an attention head at565

position t. Then, ot is computed as:566

ot = WO

0

@
X

it

↵̂ivi

1

A (5)

where ↵̂ = softmax(↵) 2 R(t+1), and ↵ is the attention weight vector such that:567

↵ = [hqt,k0i, hqt,k1i, . . . , hqt,kti]
| (6)

where qt = WQh
(l�1)
t

2 Rh, ki = WKh
(l�1)
i

2 Rh, and vi = WV h
(l�1)
i

2 Rh. h·, ·i denotes the568

dot product operation.569

The feed-forward sub-layer FF(·) 2 Rd is a two-layer MLP:570

FF(x) = W2�(W |
1 x) (7)

where � is a non-linear activation function (usually ReLU or GeLU (Hendrycks and Gimpel, 2020)).571

Additionally, �(·) 2 Rd is layer normalization (Ba et al., 2016). Note that we take the additive572

(Elhage et al., 2021) view of attention heads in Equation (4) instead of concatenate and multiple573

view (Vaswani et al., 2017) as it is easier to understand and analyze. But, they are mathematically574

equivalent (Elhage et al., 2021).575

The hidden state is initialized with a learned embedding of the input sequence H(0) = WEX , where576

WE 2 Rd⇥V is the embedding matrix and X 2 RV⇥(T+1) is the one-hot encoded input sequence.577

V is the vocabulary size.578

B.2 Positional Encoding579

Almost all positional encoding methods can be explained and formulated as how they implement the580

dot product operation in Equation (6). So, in this section, we explain how the dot product hqt,kii is581

implemented in different positional encoding schemes.582

Absolute Positional Encoding (APE) The process of Absolute Positional Encoding (APE) involves583

assigning a position vector pi to each absolute position i and combining them with word embeddings584

before inputting them into the model. So, APE first modifies how the hidden state is initialized:585

H
(0) = WEX + WPP (8)

where WP 2 Rd⇥T is the positional embedding matrix and P 2 RVp⇥(T+1) is the one-hot encoded586

absolute position sequence. Vp is the maximum absolute position. Therefore, the hidden state at587

column j is:588

h
(0)
j

= ej + pj (9)

where ej 2 Rd is the word embedding of token xj and pj 2 Rd is the positional embedding for589

position j. Then, the dot product for the first layer in Equation (6) is computed as:590

hqt,kii = hWQh
(0)
t

,WKh
(0)
i

i

= hWQ(et + pt),WK(ei + pi)i

= (WQ(et + pt))
| (WK(ei + pi))

= e
|
t
W

|
Q
WKei + e

|
t
W

|
Q
WKpi

+ p
|
t
W

|
Q
WKei + p

|
t
W

|
Q
WKpi

(10)
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In the learned variant of APE, pj 2 Rd is learned during training. In the sinusoidal variant, pj is591

calculated using a non-parametric function. Specifically, pj is computed as:592

pj =
⇥
sin(!1.j), cos(!1.j), sin(!2.j), cos(!2.j), . . . , sin(!d/2.j), cos(!d/2.j)

⇤| (11)

where !i = 1
100002i/d

.593

T5’s Relative PE The Relative bias in T5 is a type of relative positional encoding that initially594

calculates the relative distance (t � i) between tokens at positions t and i. This distance is then595

transformed into a scalar bias value b and is incorporated into the dot product between the query and596

key. b is learned during training. Thus, the dot product in every layer can be written as:597

hqt,kii = q
|
t
ki + bbucket(n�m) (12)

where598

bucket(n) =

8
>><

>>:

n if n < B

2

B

2 +

�
log ( n

B/2 )
log ( D

B/2 )
⇥

B

2

⌫
if B

2  n < D

B � 1 if n � D

This function maps the relative distance d to a bucket index, which will be used to look up the weight599

corresponding to that bucket. B is the number of buckets, D is the maximum distance. It assigns600

half of the buckets to distances smaller than D

2 with linear spacing and the other half to distances601

larger than D

2 with logarithmic spacing. The weight for distances larger than D is the same. This is602

to facilitate generalization to unseen distances. In the original implementation of T5, B = 32 and603

D = 128. Following shows an example of the bucket function with B = 5 and D = 6:604

bucket(

2

6666666666664

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0
4 3 2 1 0 0 0 0 0 0
5 4 3 2 1 0 0 0 0 0
6 5 4 3 2 1 0 0 0 0
7 6 5 4 3 2 1 0 0 0
8 7 6 5 4 3 2 1 0 0
9 8 7 6 5 4 3 2 1 0

3

7777777777775

) =

2

6666666666664

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0
3 3 2 1 0 0 0 0 0 0
4 3 3 2 1 0 0 0 0 0
4 4 3 3 2 1 0 0 0 0
4 4 4 3 3 2 1 0 0 0
4 4 4 4 3 3 2 1 0 0
4 4 4 4 4 3 3 2 1 0

3

7777777777775

ALiBi Similar to T5’s Relative PE, ALiBi subtracts a scalar bias from the attention score. As the605

distance between the query and key tokens increases, the bias grows linearly. Specifically, the dot606

product in every layer can be written as:607

hqt,kii = q
|
t
ki � (t � i).C(m+1) (13)

where m is head index and C is a constant defined as:

C = 2�2� log2(# heads+3)

For example, if the number of heads is 8, then we have 1
2 , 1

22 , . . . , 1
28 (Press et al., 2022).608

Rotary The Rotary is a relative PE that applies a rotation to the query and key representations609

based on their absolute positions before dot product attention. Due to this rotation, the attention dot610

product relies solely on the relative distance between tokens.611

First, we formulate Rotary for model dimension d = 2. Rotary positional encoding defines the dot612

product as:613
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hqt,kii =hRot(qt, t), Rot(ki, i)i

=hR
t✓
qt,R

i✓
kii

=(Rt✓
qt)

|(Ri✓
ki)

=qt
|(Rt✓)|Ri✓

ki

=qt
|
R

(i�t)✓
ki

(14)
where R

t✓ is a rotation matrix that rotates x by t✓ radians:614

R
n✓ =


cos(n✓) � sin(n✓)
sin(n✓) cos(n✓)

�
(15)

for d > 2, Rotary applies the same approach on every two consecutive dimensions of qt and ki, but615

with different ✓ angles. Refer to Su et al. (2021) for the exact formulation.616

NoPE NoPE does not explicitly encode positional encodings. So, the dot product in every layer617

can be written as:618

hqt,kii = q
|
t
ki (16)

C Proofs619

In this section, we provide proof of why NoPE can implicitly learn both absolute and relative positions.620

We refer the readers to Appendix B.1 for the notation and definitions used in this section.621

C.1 Absolute Positional Encoding in NoPE622

This section discusses how NoPE can recover absolute positions in the hidden state. Our proof is623

inspired by Weiss et al. (2021); Lindner et al. (2023) and relies on the causal attention mask in the624

decoder-only Transformer and the softmax function to recover absolute positions.625

Theorem 1 (Absolute Encoding). Let x = [<bos>, x1, . . . , xT ] be an input sequence of length
T + 1 to the model. Then, the first layer of f✓ can recover absolute positions [1, . . . , T + 1]
in the hidden state H

(1). That is, there exist WQ, WK , WV , WO, W1, and W2 such that
the self-attention and feedforward operations in the first layer compute absolute positions and
write it to the next hidden state.

Proof.626

Our proof only specifies the weights of a single attention head in the first layer (and additionally the627

parameterization of feedforward sub-layer). In this parameterization, we only require the first three628

dimensions of the hidden states. The rest of the heads, as long as they do not override the first three629

dimensions, can be arbitrary. This does not impose any challenges as Transformers used in practice630

usually have a very large model dimension d. In the rest, we provide the construction of the weights631

and then verify that they can recover absolute positions.632

First, we construct the word embedding matrix WE 2 Rd⇥V , where each column is the embedding633

of a token in the vocabulary. We construct WE such that it always sets the first dimension of every634

embedding vector to be 1. Additionally, it sets the second dimension to 1 if and only if the token635

is <bos>. Otherwise, it sets it to zero. The third dimension of all embedding vectors is set to zero.636

Other dimensions can take any arbitrary values. Without loss of generality, assume <bos> is the first637

token in the vocabulary, i.e. The first column. Then, we have:638

WE =

2

6666664

1 1 1 . . . 1
1 0 0 . . . 0
0 0 0 . . . 0

e4,1 e4,2 e4,3 . . . e4,V
...

...
...

. . .
...

ed,1 ed,2 ed,2 . . . ed,V

3

7777775

d⇥V

(17)
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where ed,i 2 R.639

Secondly, for head dimensions h � 1, we construct the weights WQ,WK ,WV ,WO of the first640

attention head in the first layer. Specifically,641

WK =

2

664

1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

3

775

h⇥d

WV =

2

664

0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

3

775

h⇥d

(18)

WK reads from the first dimension of the hidden state, which is initialized with 1 using the embedding642

matrix. Since all word embeddings have one in their first dimension, this parameterization will result643

all key vectors to be the same. Moreover, WV reads from the second dimension of the hidden state,644

which is initialized with 1 if the token is <bos>. So, the value vector will have 1 in its first dimension645

only if the corresponding token is <bos>.646

WQ can be any arbitrary matrix. WO will write the result of the attention to the third dimension of647

the hidden state and can be constructed as:648

WO =

2

6666664

0 0 0 0 . . . 0
0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

3

7777775

d⇥h

(19)

Now, we verify that for any input sequence x = [<bos>, x1, . . . , xT ], the first layer can recover649

absolute positions [1, . . . , T + 1] in the hidden state H(1). We verify this for column t of H(1). That650

is, we show that absolute position information is available in the third dimension of h(1)
t

.651

First, we use the word embedding matrix WE to compute the embedding H
(0):652

H
(0) = WEX =

2

6666664

1 1 1 . . . 1
1 0 0 . . . 0
0 0 0 . . . 0

e4,1 e4,2 e4,3 . . . e4,V
...

...
...

. . .
...

ed,1 ed,2 ed,2 . . . ed,V

3

7777775

d⇥(T+1)

(20)

We now provide the attention computation at position 1  t  T + 1. First, we use WQ to compute653

the query vector qt by applying qt = WQh
(0)
t

:654

qt = [q1, q2, q3, . . . , qh]| (21)

Recall that WQ can be any arbitrary matrix. So, qj 2 R can take any arbitrary value. Next, we655

compute the key vectors by applying ki = WKh
(0)
i

:656

k1 =

0

BB@

1
1
...
1

1

CCA k2 =

0

BB@

1
1
...
1

1

CCA . . . kt =

0

BB@

1
1
...
1

1

CCA (22)

Note that all key vectors are the same and we only need to compute them up to position t as the657

attention mask is causal, i.e query can only look at positions  t. Next, we compute the attention658

weight vectors ↵:659

↵ = [hqt,k1i, hqt,k2i, . . . , hqt,kti]
| (23)

= [↵⇤, ↵⇤, . . . , ↵⇤]| (24)
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where ↵⇤ = q1 + q2 + . . . + qh. Next, we apply softmax to compute the attention probabilities.660

Since all ↵i’s are the same, we have:661

↵̂ = softmax(↵) =


1

t
,
1

t
, . . . ,

1

t

�|
(25)

Now, we compute the value vectors by applying vi = WV h
(0)
i

:662

v1 =

0

BB@

1
0
...
0

1

CCA v2 =

0

BB@

0
0
...
0

1

CCA . . . vt =

0

BB@

0
0
...
0

1

CCA (26)

Finally, we compute the output of the attention head by applying WO:663

ot = WO

0

@
X

it

↵̂ivi

1

A = WO

0

@1

t

X

it

vi

1

A = WO

0

BB@

1/t
0
...
0

1

CCA

h

=

0

BBBBBB@

0
0

1/t
0
...
0

1

CCCCCCA

d

(27)

Thus, the output of our constructed attention head recovers the absolute position information and664

writes it to the third dimension of output.665

We used the decoder-only property of Transformer implicitly in Equation (23), which helped us to666

only attend to position  t. So, the lengths of the attended sequence are always t. Moreover, the667

presence of <bos> token in the input sequence helped us to anchor the absolute position information.668

This is not a problem as in practice models are often prompted with some instructions which can act669

as <bos> token.670

With this information available to the rest of the network, the feedforward sub-layer, with sufficient671

hidden width, can recover the absolute positions [1, 2, . . . , T +1] from the third dimension of attention672

output. This is because the feedforward sub-layer is MLP with ReLU activation. So, it can learn673

any arbitrary function (Park et al., 2020). Note that the layer-norm operation can be bypassed as674

explained by Akyurek et al. (2023).675

C.2 Relative Positional Encoding in NoPE676

In this section, we show if the hidden state contains absolute positional information as explained in677

the previous section, then the attention mechanism in all subsequent layers can implement a relative678

positional encoding. We refer the readers to Appendices B.1 and C.1 for the notation and definitions679

used in this section.680

Theorem 2 (Relative Encoding). Suppose that the hidden state H
(1) contains absolute

positional information, as stated in Theorem 1, and assume that it is not overwritten by any
subsequent layers. Then, the self-attention in all subsequent layers can implement a relative
positional encoding: there exists a parameterization of f✓ such that, for l � 2, the attention dot
product between query qt and key ki at positions t and i (t � i) can be expressed as:

hqt,kii = fcnt(qt,ki) + frel(t � i) (1)

where fcnt is a function of their content, and frel is a function of their relative distance.

Proof.681

Our proof only specifies a few entries of weight matrices for attention heads in layers l � 2, which682

does not impose any challenges for Transformers used in practice as they usually have a very large683

model dimension d. Moreover, we require to have absolute positions in the third dimension of the684

hidden state as explained in Theorem 1. To show NoPE can implement relative encoding, we only685

need to prove that its attention dot product depends on the relative distance between tokens (See686
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Appendix B.1 for an overview of relative encoding methods). In the rest, we provide the construction687

of the weights and then verify that they can implement relative position encoding.688

For head dimension h � 2, we construct the weights WQ,WK of the attention heads in the second689

layers and above. Specifically,690

WQ =

2

66664

1 0 0 0 . . . 0
0 0 �1 0 . . . 0

w3,1 w3,2 w3,3 w3,4 . . . w3,d
...

...
...

...
. . .

...
wh,1 wh,2 wh,3 wh,4 . . . wh,d

3

77775

h⇥d

(28)

691

WV =

2

66664

0 0 1 0 . . . 0
1 0 0 0 . . . 0

w0
3,1 w0

3,2 w0
3,3 w0

3,4 . . . w0

3,d
...

...
...

...
. . .

...
w0

h,1 w0

h,2 w0

h,3 w0

h,4 . . . w0

h,d

3

77775

h⇥d

(29)

where wi,j , w0

i,j
2 R can take any arbitrary value. Their corresponding WV and WO can take any692

arbitrary values as long as they do not override the first three dimensions of the residual stream.693

Now we verify that for any input sequence x = [<bos>, x1, . . . , xT ], the attention dot product694

between query qt and key ki at positions t and i (t � i) will depend the relative distance between695

tokens.696

First, assume that absolute positions are computed in the hidden state H
(l) for l � 1, as stated in697

Theorem 1. Specifically,698

H
(l) =

2

6666664

1 1 1 1 . . . 1
1 0 0 0 . . . 0
1 2 3 4 . . . T + 1

h4,1 h4,2 h4,3 h4,4 . . . h4,T+1
...

...
...

...
. . .

...
hd,1 hd,2 hd,3 hd,4 . . . hd,T+1

3

7777775

d⇥(T+1)

(30)

where hi,j 2 R can be any arbitrary value as the first three dimensions of the hidden state are699

reserved for PE computation. The rest of the dimensions can take any arbitrary values as in regular700

computation of Transformers.701

We now present the attention computations at position 1  t  T + 1. We use WQ to compute the702

query vector qt by applying qt = WQh
(l)
t

:703

qt = [1, �t, q3, . . . , qh]| (31)

where qj 2 R can take any arbitrary value. Next, we compute the key vectors by applying ki =704

WKh
(l)
i

:705

k1 =

0

BBBB@

1
1

k3,1
...

kh,1

1

CCCCA
k2 =

0

BBBB@

2
1

k3,2
...

kh,2

1

CCCCA
k3 =

0

BBBB@

3
1

k3,3
...

kh,3

1

CCCCA
. . . kt =

0

BBBB@

t
1

k3,t
...

kh,t

1

CCCCA
(32)

where k(·,·) 2 R can have any arbitrary value. So, for ki we have:706

ki = [i, 1, k3,i, . . . , kh,i]
| (33)
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Next, we let us present the attention dot product between qt and ki:707

hqt,kii =1.i + (�t).1 + q3.k3,i + · · · + qh.kh,i (34)

=i � t +
hX

j=3

qj .kj,i (35)

=

0

@
hX

j=3

qj .kj,i

1

A � (t � i) (36)

=fcnt(qt,ki) + frel(t � i) (37)

Thus, the dot product between qt and ki depends on the relative distance between tokens (assuming708

the rest of the terms do not cancel out which can be easily avoided by setting the respective weights709

in Equations (28) and (29)). Note that our proof uses the linear spacing between tokens, but the MLP710

the first layer can write any arbitrary function of absolute positions to the third dimension of the711

hidden state, which enables more complex relative encoding schemes.712

D Experimental Details713

D.1 Tasks714

Here we provide the details and more examples of the tasks and datasets we used in our evaluation.715

For each task, we sample 100K examples for the training set and 10K for the test. Also, we use 15%716

of the train as the validation set.717

Addition The addition task (Nye et al., 2021) asks the model to compute the sum of two numbers.718

Each number is represented as a sequence of digits that are separated by space. So, the model has719

access to the exact digits.720

Input
Compute: 5 3 7 2 6 + 1 9 1 7 ?
Output
The answer is 5 5 6 4 3.

we create each length bucket based on the number of digits in each number, e.g. 6-by-3, 6-by-4,721

etc. For the training set, we use buckets where one of the numbers has at most L digits. For the test722

set, we use buckets where any of the numbers have at most L digits. The model is evaluated on the723

correctness of its predicted result.724

Polynomial Evaluation The polynomial evaluation task (Nye et al., 2021) asks the model to725

evaluate a polynomial expression at a given value of x. The polynomial terms and digits are separated726

to make just the tokenizer does not glue symbols together.727

Input
Evaluate x = 3 in ( 3 x ** 0 + 1 x ** 1 + 1 x ** 2 ) % 10 ?
Output
The answer is 5.

The length bucket is created based on the number of terms in the polynomial expression. We sample x728

from U(�2, 2), the degree of each term from U(0, 3), and the coefficient of each term from U(�3, 3).729

We take the modulo of the result by 10 to make the task easier for the model and make sure we only730

measure the generalization of the length of the problem instance not the value of the polynomial. The731

model is evaluated on the correctness of its predicted result.732

Sorting The sorting task (Saxton et al., 2019) asks the model to sort a sequence of input numbers.733

We use this task in two variants: Single Token and Multi Digit. In the Single Token variant, we create734

an alphabet of 50 tokens from the model’s vocabulary and fix some canonical ordering among them735
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through task. Each instance is a sequence of tokens from the alphabet in a random order, and the736

model is asked to sort them in the canonical order.737

Input
Sort the following numbers: 3 1 4 1 5 ?
Output
The answer is 1 1 3 4 5.

In the Multi Digit variant, we simply present a sequence of multi digit/tokens numbers to the model,738

and ask it to sort them in ascending order. Each number is represented by its digits and they are739

separated by a space.740

Input
Sort the following numbers: 3 1, 4 1, 5 9, 1 2 6, 5 3 3 ?
Output
The answer is 3 1, 4 1, 5 9, 1 2 6, 5 3 3.

In this case, we sample each number from U(0, 10000). In both cases, the length bucket is created741

based on the length of the input sequence. The model is evaluated on the correctness of its predicted742

result.743

Summation In this task (Saxton et al., 2019), we ask the model to compute the sum of a sequence744

of input numbers modulo 10 as we want to specifically measure how the model generalizes to longer745

sequences not the value of summation result:746

Input
Compute: ( 1 + 2 + 3 + 4 + 7 ) % 10 ?
Output
The answer is 7.

Each digit is randomly sampled from U(1, 9). The length bucket is created based on the length of the747

input sequence. The model is evaluated on the correctness of its predicted result.748

Parity In the parity task (Anil et al., 2022), we ask the model to compute the parity of a binary749

sequence.750

Input
Is the number of 1’s even in [ 1 0 0 1 1] ?
Output
The answer is No.

LEGO In the LEGO task (Zhang et al., 2023), the model is provided with a simple computation751

graph (DAG), where each node represents a variable, and variables are connected by simple operations752

which created the edges in the computation graph. We refer to Zhang et al. (2023) for a detailed753

description.754

Input
If a = -1; b = -a; c = +b; d = +c. Then what is c?
Output
The answer is +1.

To sample each example, we first sample the list of variables based on the length of the example, and755

then we uniformly sample the value of each variable to make sure all variables are represented with756

both -1 and +1. Finally, given the value of variables, we deterministically compute the operation on757

each edge. For each example, we query all variables from the middle of the computation graph to the758

end. The model is evaluated on the correctness of its predicted result.759
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Copy The copy task is straightforward. The model has to repeat the input sequence in the output.760

Input
Copy the following words: <w1> <w2> <w3> <w4> <w5> .
Output
<w1> <w2> <w3> <w4> <w5>

We create multiple variants of this task to better understand the models’ generalization behavior. In761

the first variant, the input tokens are the same, so the model has to basically count the number of input762

tokens. In the second variant, the model has to replace the input tokens with another token sampled763

from the vocabulary. In the third variant, we sample the input tokens from the model’s vocabulary,764

and the model has to predict them in the same order. We also create 2x versions of variants 1 and 3 to765

make the tasks more challenging.766

Reverse In this task the model, the model has to reverse the order of input tokens in its output.767

Input
Reverse the following words: <w1> <w2> <w3> <w4> <w5> .
Output
<w5> <w4> <w3> <w2> <w1> .

As in the copy task, we create multiple variants of this task. In the first variant, the model has to768

reverse the order of input tokens, where the tokens are randomly sampled from the model’s vocabulary.769

In the second variant, the model has to reverse the order of input tokens, as in the first variant, but770

also it has to reverse it one more time, recreating the original input.771

D.2 Hyperparameters772

Table 2 shows the hyperparameters we used in our experiments. We use the same hyperparameters773

for all models and positional encoding schemes. In our initial experiment, we tried a few more774

hyperparameters such as lr 2 {0.00001, 0.00003, 0.00005} and WeightDecay 2 {0, 0.05, 0.1},775

but we did not observe any significant difference in the results. So, we decided to use the same776

hyperparameters throughout our experiments.777

D.3 Compute778

In our experiments, we used single-GPU training setup for the models. Specifically, we ran our779

experiments on a mix of NVIDIA V100 32G, NVIDIA RTX8000 48G, NVIDIA A100 40G, and780

NVIDIA A100 80G GPUs. Depending on the GPU type and the positional encoding, each of our781

training runs took 6 to 15 hours, per each seed, on average to complete. Considering all the datasets,782

and positional encoding schemes, in addition to the scratchpad experiments, and three seeds, we ran783

about 870 individual training runs for results in this paper.784

D.4 Reproducibility785

In this study, all experiments employed open-source libraries, specifically HuggingFace (Wolf et al.,786

2020) from which we utilized their implementation as a foundation for the training loop, optimizer,787

and the Transformer architecture. To ensure the reproducibility, we will also release a singularity788

binary with all dependencies and libraries to enable running our experiments on any machine with789

NVIDIA GPUs and at anytime in the future. Moreover, every reported number in this paper is linked790

to source code package that deterministically (up to GPU stochasticity) reproduces the results, which791

we release them publicly on GitHub at https://www.omitted.link.792

E Full Results793

E.1 Detailed Model Accuracy794

We report the detailed results of our experiments in Figures E.2 to E.4. We refer the readers to795

Appendix D.1 for the description of each task.796
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Table 2: Summary of hyperparamters used in the experiments.

Parameter Value

Optimizer AdamW
Learning rate 0.00003
Weight Decay 0.05
Batch size 64
Learning Rate Scheduler Polynomial
Warm Up 6% of training steps
# Train Steps 40K steps
Dropout (taken from HuggingFace) 0.1
Model dimension (taken from HuggingFace) 768
# Layers (taken from HuggingFace) 12
# Attention Heads (taken from HuggingFace) 12

E.2 Detailed Head Distance797

Figure E.5 shows the layer-wise distance of No PE’s attention patterns with other positional encoding798

schemes measured across instances of the SCAN dataset. We refer the readers to Section 5.2 for the799

details and analysis of these results.800

E.3 Detailed Model Accuracy On Various Scratchpad Formats801

Figure E.6 shows the generalization of various scratchpad formats for each model aggregated across802

all datasets. Figures E.7 to E.13 show the generalization of various scratchpad formats for each model803

on each dataset. We refer the readers to Section 6 for the details and analysis of these results.804
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Figure E.2: Generalization behavior of positional encoding schemes on Primitive tasks.
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Figure E.3: Generalization behavior of positional encoding schemes on Mathematical & Reasoning
tasks.
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Figure E.7: Generalization of various scratchpad formats for each model on the Addition task.
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Figure E.8: Generalization of various scratchpad formats for each model on the Summation task.
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Figure E.9: Generalization of various scratchpad formats for each model on the Parity task.

0
0.25
0.50
0.75

1

A
cc

ur
ac

y
(A

vg
.

ov
er

al
l
O

O
D

le
ng

th
s)

No PE

0
0.25
0.50
0.75

1
T5’s Relative PE

0
0.25
0.50
0.75

1
ALiBi

0
0.25
0.50
0.75

1
Rotary

No Scratchpad

Minimal (Only Compute+Output)

Full Full - “Step Input”

Full - “Step Output”

Full - “Remaining Parts”

Scratchpad Config

0
0.25
0.50
0.75

1
Absolute Position Embedding

Figure E.10: Generalization of various scratchpad formats for each model on the Sorting task (Single
Digit).
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Figure E.11: Generalization of various scratchpad formats for each model on the Sorting task (Multi
Digit).
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Figure E.12: Generalization of various scratchpad formats for each model on the Polynomial
Evaluation task.
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Figure E.13: Generalization of various scratchpad formats for each model on the LEGO task.
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