
Published as a conference paper at ICLR 2023

A Learning and Generalization Challenges

Our experimental setup for §5.1 follows the same setup as Barreto et al. (2018). For n tasks
with reward functions {ri}ni=1, they showed that discovered features which predict rewards,
i.e. [φ̃1, . . . , φ̃n] = [r̃1, . . . , r̃n], were effective features for transfer with SF&GPI. In their
experimental setup, training tasks were one-hot vectors, so regressing ||r − φ̃>w|| effectively
led φi to be a feature that predicted reward ri. We use this same setup, where now individual
modules are used for both φ̃(i) and ψ̃(i).

Figure 8: We present a diagram providing
intuition for the type of generalization
challenge required for our tasks. Green
stars represent our training tasks. Red
diamonds represent test tasks. They are
both outside of training distribution for
task encodings and can be far in task-
space from training task encodings.

While this is a simple method for learning fea-
tures, it some difficulties. First, there is an imbal-
ance of rewarding vs. non-rewarding transitions,
which leads to challenges in learning φ. In our
setting, an optimal policy only has 7% of its tran-
sitions be rewarding transitions. Over the course
of training, the percentage is much lower. Sec-
ond, Barreto et al. (2018) were mainly able to
show continual learning results with additional
learning using their discovered features and had
limited success with zero-shot transfer.

Zero-shot transfer is challenges because training
tasks are “out-of-distribution” while additionally
requiring behaviors that the agent was never
trained on. By out-of-distribution, we mean that
the agent is only trained on basis vectors (see
Figure 8). However, at test time, the agent must
perform tasks that are are far in “task-space”
from the training distribution. For example,
wtest = [−1, 1,−1,−1] has an L2 distance of
1.73 from closest training task. This requires an
agent that can generalize to test reward functions
that are quite different from training reward func-
tions. While both USFA-Learned-φ and MSFA
get about the same training error for predicting
rewards, we see that MSFA gets a dramatically
better reward prediction error for test reward functions r̃test = φ̃>wtest.

Reward prediction error on generalization tasks. To investigate this, we collect 40
episodes of each generalization task and compute the reward prediction error of MSFA and
USFA-Learned-φ for each task. We present the results in Table 1.

Task MSFA Error USFA-Learned-φ Error

1,1,0,0 0.0003± 0.0090 0.1362± 0.3410
1,1,.5,.5 0.0069± 0.0405 0.3922± 0.7051
1,1,1,1 0.0118± 0.0856 2.5530± 4.0324
-.5,1,-.5,-.5 0.0095± 0.0478 0.0556± 0.1041
-1,1,0,1 0.0014± 0.0264 0.0652± 0.2470

Table 1: MSFA has a smaller reward prediction error for test tasks. We present
the reward prediction error for MSFA and USFA-Learned-φ. We present results using 40
episodes for each test task.

B Combining knowledge of heterogeneous tasks

Aside from navigation tasks, researchers and practitioners will be interested in generally
combining solutions to different tasks. R5: Can MSFA enable combining solutions to
heterogeneous tasks?

13

Published as a conference paper at ICLR 2023

Figure 9: We study whether MSFA can combine three separate settings (1) limited visibility
(2) the presence of monsters (3) the presence of teleportation traps (see text for more). All
successor feature based methods best enable combining training tasks for generalization in
this setting. (10 run)

Setup. We leverage the “Minihack” environment (Samvelyan et al., 2021). Here, an agent is
spawned at the top of a map with obstacles. It must navigate to the a ladder at the bottom
of the map. The agent experiences partial observations of the environment. Actions: At
each time-step the agent can select from 8 compass directions. Training tasks: The agent
experiences three training tasks (1) avoiding monsters which kill the agent, (2) avoiding traps
which teleport the agent away from the goal, and (3) experiencing a small local view of the
environment with everything else black. Generalization requires that the agent generalize
to (a) new configurations of objects and (b) to the combination of all training conditions.

R5: MSFA enables combining solutions to heterogeneous tasks. Figure 9 shows
that SF-based methods best combine solutions to different tasks. In a small room, both
SF-based methods get 100% success rate. In a larger room, no method generalizes perfectly:
SF-based methods do best at 75%, followed by UVFA-FARM and UVFA with 60%.

C Derivation of Modular Successor Features

Qπ(s, a, w) = Eπ

 ∞∑
j=0

γjRt|St = s,At = a

 (9)

= Eπ

 ∞∑
j=0

γj

(
n∑
k=1

φ
(k)
t+j

>
w(k)

)
|St = s,At = a

 (10)

=

n∑
k=1

Eπ

 ∞∑
j=0

γjφ
(k)
t+j

>
w(k)|St = s,At = a

 (11)

=

n∑
k=1

Eπ

 ∞∑
j=0

γjφ
(k)
t+j |St = s,At = a

> w(k)

 (12)

=

n∑
k=1

ψπ,k(s, a)>w(k) (13)

=

n∑
k=1

Qπ,k(s, a, w(k)) (14)

D Inter-module attention and gating

At each time-step t, each module updates with both observation features zt = fθz (xt) and
with information from the previous module-states {s(k)t−1}. MSFA shares information between

14

Published as a conference paper at ICLR 2023

modules with a “query-key” system. Each module has a “query” representation of its module-
state that it uses to select from “key” representations of the other module-states. MSFA
scores how well a query matches a key by computing the dot-product between the two
representations. A module then updates with the module-state corresponding to the key with
the highest dot-product. To enable flexible updating, each module uses a gating mechanism
to decide the degree to which information should be incorporated into an update.

More technically, the query vector is computed using the previous-module state and
action: q

(k)
t = W query[s

(k)
t−1, at−1] ∈ Rdq . Keys and values are computed as Kt =

W key[s1t−1; . . . ; s
n
t−1; 0] ∈ Rn+1×dq and Vt =W value[s1t−1; . . . ; s

n
t−1; 0] ∈ Rn+1×dq , respectively.

Note that we add a zero-vector key and value to allow a query to select “no information”.
Each module selects “values” v(k)t to update using dot-product attention (Vaswani et al.,
2017):

v
(k)
t = softmax

(
q
(k)
t K>t
dq

)
Vt (15)

Gating mechanism has been shown important for leveraging transformer-style attention when
updating state in RL agents (Parisotto et al., 2020). Thus, each module uses a sigtanh gate
when updating:

u
(k)
t = q

(k)
t + tanh(W g1v

(k)
t)� σ(W g2v

(k)
t − bg). (16)

MSFA then updates its module-stateas follows:

s
(k)
t = sθk(u

(k)
t , zt) (17)

E Learning modular functions

Our goal is to learn functions for producing cumulants φ and SFs ψ that have consider only
state information from their own modules. To be more precise, we learn modules which
collectively learn a set of n module-state representations: {si}n=1

i . As an example, consider
learning a linear function/transformation A for producing cumulants. A typical “monolithic
function” would be one like the following:φ

1

...
φn

 =

A11 · · · A1m

... A22

...
An1 · · · Anm

s

1

...
sn

 .
By "entangled," we mean that a cumulant φi is (potentially) a function of all module-state
information φi =

∑
j Aijs

j . By a "modular function", we simply meant that we were learning
a function like the following φ

1

...
φn

 =

[
A1 0 0
0 A2 0
0 0 An

]s
1

...
sn

 .
In our setting, we had A1 = . . . = An be a shared MLP and each si was produced by a
module with its own parameters. Our experiments demonstrate leveraging modules to learn
φ(i) and ψ(i) is an effective way to learn {φi}i that promote zero-shot composition of task
knowledge with the SF&GPI framework.

F Additional analysis

15

Published as a conference paper at ICLR 2023

Figure 10: We present a visualization of module activity for task generalization task w =
[1, 1, 1, 1] from §5.1. On the top, (a) we show the activity of each module across time. On
the bottom, (b) we show example transitions where modules activate to visualize what they
respond to. We see that individual modules are able to effectively respond to different object
categories, despite a strong data imbalance involved in learning to represent each object
category (see §). We find that modules don’t perfectly specialize, and multiple modules will
sometimes activate at the same state.

16

Published as a conference paper at ICLR 2023

Figure 11: MSFA best matches the behavior of USFA across generalization tasks.
We present additional analysis for the experiments in §5.1. Each heatmap displays how
often object categories were picked up by each method for a given generalization task. Rows
correspond to different methods. We show the final episode return for each method along
the y-axis. Columns describe the transition-reward when an object category is picked up.
USFA has access to hand-designed cumulants that described whether an object category
was picked up. Despite learning cumulants, MSFA best matches USFA’s object collection
dynamics. USFA-Learned-φ equally collects all objects regardless of task, except for when
r ≤ −1 when an object is picked up. In this setting, no method except USFA or MSFA
collect objects. As a reminder, negative rewards are never experienced during training and
these tasks are the furthest away from training tasks in task-space. UVFA-based methods
tend to collect rewarding objects but not as effectively as MSFA or USFA.

Figure 12: We present the cross-correlation between pairs of modules. This confirms that
modules tend to activate at different time-points on a statistical level.

17

Published as a conference paper at ICLR 2023

G Full results

Figure 13: All results for ablating disentanglement of φ and ψ. We consistently find that
disentangled functions for φ and ψ have the best generalization performance.

Figure 14: All results for ablating GPI. First, we compare MSFA to USFA (which has
hand-designed cumulants). We can see that the two perform comparably across the board.
Sometimes (e.g. [1, 1, 1, 1] and [−1, 1,−1,−1]), MSFA outperforms USFA. Next we compare
MSFA to USFA-Learned-φ. We see that MSFA performs as well as USFA-Learned-φ or
better in all settings except [−1, 1, 0, 1]. Interestingly, MSFA without GPI outperforms
USFA-Learned-φ with GPI in some generalization settings (e.g. [1, 1, 0, 0] and [−1, 1,−1, 1]).

18

Published as a conference paper at ICLR 2023

Figure 15: All results for the Fruitbot environment. When objects must be avoided, we see
that no method does well, though MSFA generalizes best and can pick up a couple of objects.
When combinations of objects must be collected, MSFA outperforms baselines by a large
margin.

19

Published as a conference paper at ICLR 2023

H Hyperparameters

We shown hyperparameters in Tables 2 and 3. Tables 2 describes hyperparameters that were
shared across algorithms and Tables 3 describes hyperparameters that were different across
algorithms. We developed the algorithms using the Hoffman et al. (2020) reinforcement
learning codebase and unless stated otherwise using default “R2D2” (Kapturowski et al.,
2018) config values in the codebase. We describe our development and hyperparameter
search in more detail below.

H.1 Development and hyperparameter search

The first thing we did was replicate the generalization gap between USFA and UVFA
that Borsa et al. (2019) produced in their paper using the BabyAI gridworld (Chevalier-
Boisvert et al., 2018). As a result, most hyperparameters were tuned for either USFA or
UVFA. We used the Atari Convolutional network used by “Deep Q-Networks” (DQN) in Mnih
et al. (2015) as our visual encoder and an LSTM (Hochreiter & Schmidhuber, 1997) as our
state representation function.

Once we were able to replicate their generalization performance, we implemented USFA-
Learned-φ and MSFA. In this setting, we are learning Q-values, successor features, and
predicting rewards from cumulants. This leads to the following coefficients for losses:
αQ, αψ, and αφ respectivey. We fixed αψ = 1 and searched αφ ∈ [.01, .1, 1, 10, 100] and
αQ ∈ [.01, .05, .1, .5, 1.0] for both USFA-Learned-φ and MSFA. For MSFA and UVFA-FARM,
we chose the number of modules to be the number of training tasks. We set each module size
so that the number of parameters by all algorithms was approximately the same (with USFA
as a reference). We found that FARM hyperparameter (Carvalho et al., 2021a) worked well
for both UVFA-FARM and for MSFA (FARM modules are the basis of MSFA state-modules).
We highlight that properly masking all losses was absolutely critical to good generalization
performance. Without proper masking, out-of-episode data is used for value estimation of
in-episode data, which can lead to inaccurate value estimates. We suspect that this hampers
GPI.

When doing experiments for Fruitbot, we took all implementation details from (Cobbe et al.,
2020). We first replicated the DQN performance from Cobbe et al. (2020) with UVFA.
Some important changes that we made included (1) adding prioritized experience replay (2)
leveraging the Impala ResNet vision torso (Espeholt et al., 2018) (3) lowering the memory
size to match the paper (4) using the SIGNED_HYPERBOLIC_PAIR value transformation for
UVFA-based algorithms (5) increasing the capacity of the Q-value estimation MLPs. We
applied these settings to other baselines and redid our search over αφ and αQ for both
MSFA and USFA-Learned-φ. For each method, we changed the size of the networks so they
were approximately the same (with UVFA as a reference). Since MSFA uses disentangled
functions for φ and ψ, it has fewer parameters.

When doing experiments in Minihack, we found that the Fruitbot changes were important for
good performance in this domain. All hyperparameters led to strong training performance
but poor generalization for UVFA. We found that increasing the batch size was important for
improving generalization of USFA-Learned-φ and MSFA but was detrimental to UVFA-based
methods.

I Environments

We presented most environment information in the main text. Here, we specify which levels
we used from the corresponding environments or how the changed environments for our
experiments.

I.1 Procgen

We used the Fruitbot environment in Procgen. We made the following changes. We set the
maximum number of levels that an agent could complete within a lifetime to 4. We divided the

20

Published as a conference paper at ICLR 2023

Table 2: Hyperparameters shared across all algorithms.
Algorithm

Loss Hyperparameters BabyAI Fruibot Minihack

discount 0.99 0.99 0.99
burn_in_length 0 0 0
trace_length 40 40 40
importance_sampling_exponent 0 0.6 0.6
max replay size 100,000 70,000 70,000
max gradient norm 80 80 80

Shared Network Components

Vision torso DQN ConvNet Impala ResNet Impala ResNet

Table 3: Hyperparameters for individual algorithms. Note: T1 = IDENTITY_PAIR and
T2 = SIGNED_HYPERBOLIC_PAIR.

BabyAI Fruibot Minihack

MSFA

Parameters (millions) 2.1M 1.66M 1.7M
αφ 1 1 1
αψ 1 1 1
αQ 0.5 0.5 0.5
module_size 150 60 80
nmodules 4 4 3
attention heads 2 2 1
batch size 32 32 64
φ MLP hidden sizes [256] [256] [256]
ψ MLP hidden sizes [128] [512, 512] [512, 512]
projection dim 16 16 16

USFA

Parameters (millions) 2.35M 1.98M 1.95M
lstm size 512 300 300
αφ 1 1 1
αψ 1 1 1
αQ 0.5 0.5 0.5
batch size 32 32 128
φ MLP hidden sizes [256] [256] [256]
ψ MLP hidden sizes [128] [512, 512] [512, 512]

UVFA

Parameters (millions) 2.09M 1.96M 1.95M
lstm size 512 256 256
rlax.TxPair T1 T2 T2

batch size 32 32 32
Q MLP hidden sizes [128] [512, 512] [512, 512]

UVFA-FARM

Parameters (millions) 2.17M 2.15M 2.06M
module_size 150 64 80
nmodules 4 4 3
attention heads 2 2 1
rlax.TxPair T1 T2 T2

batch size 32 32 32
projection dim 16 16 16
Q MLP hidden sizes [128] [512, 512] [512, 512]

21

Published as a conference paper at ICLR 2023

12 object types {O1 . . . O12} into 4 categories: C1 = {O1, O2, O3}, . . . , C4 = {O10, O11, O12},
where each category provided postive reward for picking up any of its 3 category types.

I.2 Minihack

We did not make any changes to the environment. Train tasks were: “MiniHack-Room-
Monster-Y-v0”, “MiniHack-Room-Trap-Y-v0”, and “MiniHack-Room-Dark-Y-v0”. Test tasks
were “MiniHack-Room-Ultimate-Y-v0”. We used Y = 5× 5 for the “small room” experiments
and Y = 15× 15 for the “large room” experiments.

22

