
Appendices to410

“Learning Long-Horizon Action Dependencies in411

Sampling-Based Bilevel Planning”412

Anonymous Author(s)413

A Additional Experimental Details414

For the purpose of reproducibility, this appendix contains additional details of the runtime, domains,415

baselines, and ablations for the experiments in Section 5 in the main paper.416

A.1 Runtime417

All experiments were run on Ubuntu 22.04.3 using 20 cores of Intel Xeon Gold 6248 and a 32GB418

Nvidia Volta V100. We use 30 threads to collect the data for our method and its ablations in parallel.419

For the 3D domains, we use PyBullet for collision checking and rendering.420

A.2 Detailed Domain Descriptions421

This section provides additional details of the domains.422

• Shelves Domain: The cover must be placed after the boxes are on the shelves. The lifted abstract423

actions are “Move Box”, “Move Cover to Top” and “Move Cover to Bottom”. All lifted abstract424

actions share a single controller, whose parameters are some ⟨x, y⟩ absolute position of a point425

on the moved and on the target object, and the ⟨x, y⟩ offset with respect to the target destination426

to place the moved object on. The positions of the objects are in absolute coordinates, and the427

objects cannot be rotated.428

• Donut Domain: The lifted abstract actions are “Move Robot”, “Grasp Donut” “Place Donut in429

Box”, “Place Donut on Shelf” and “Add Topping to Donut”. The movement, grasp position and430

placement position in the abstract action controllers are parameterized by the the ⟨x, y⟩ displace-431

ment. All other controller parameters are determined using binary decisions based on a threshold432

on a real value (e.g. either a top or side grasp, or which topping to add). The topping machines433

cannot be used if they’re too far away from the robot; a similar restriction applies to the grasp-434

ing and placement actions. The positions of the objects are relative to the robot, and the objects435

cannot be rotated. There are 10 varieties of possible toppings in the goals.436

• Statue Domain: The lifted abstract actions are “Go through Door”, “Go through Door with437

Statue”, “Grab Statue” and “Place Statue”. The movement controller parameterization speci-438

fies the offset ⟨x, y⟩ that the robot moves by, and the grab controller specifies a thresholded value439

for the orientation of the statue (horizontal, vertical) in the 3D axis from the front of the robot (not440

perpendicular to the world). The positions of objects are in absolute coordinates, and (other than441

the horizontal/vertical rotations of the statue) the objects cannot be rotated. In training problems,442

the positions of objects are randomly offset to keep them in distribution for the larger grids of443

rooms in test problems.444

• Packing Domain: The blocks initially lie down scattered across the table. The only lifted abstract445

action is “Place Block”. The controller is parameterized by where along the block to grasp it and446

where to place the block (upright) relative to the center of the box. The positions of objects are in447

absolute coordinates, and the rotations are in quaternions.448

• Trays Domain: The blocks are initially upright scattered across the table. The lifted abstract449

actions are “Move Block” and a dummy “Check Trays” action that confirms (at the end of the plan)450

if the blocks are in the target configuration—this is necessary for the task planner to find a goal-451

reaching plan, but prevents the movement actions from knowing the precise target placements.452

The controller is parameterized by where to place the block (upright) relative to the center of the453

tray and a one-hot encoding of the tray. The positions of objects are in absolute coordinates, and454

the rotations are in quaternions.455

11



A.3 Backjumping and Data Collection Ablations456

This section describes the ablations used to validate the need for each element of our approach.457

• No backjumping (A1): To study the impact of backjumping on our method, this ablation disables458

backjumping, instead always backtracking only one step. The ablation uses exactly the same459

trained networks as our full approach.460

• Negative training data from the longest failed trajectory (A2): To assess the importance of our461

data collection scheme, we train our method by generating positive training data from the prefixes462

of controller plans from the demonstrations dataset D and negative training data from the longest463

failed refinements of attempts at running backtracking on the problems from D.464

• Negative training data from all prefixes of a failed trajectory (A3): This ablation is similar to A2,465

but instead generates negative training data from all prefixes of the longest failed refinement.466

A.4 Training the Baselines467

Table 1 presents the hyperparameters used when evaluating the baselines and the diffusion-based468

samplers used in our method (classifier hyperparameters are included in Appendix C).469

The hyperparameters of each method were tuned based on its prediction accuracy on the Shelves do-470

main, using a held-out validation dataset of 20% of the data points. We picked the hyperparameters471

with the lowest validation loss for each method. The SeSamE-based methods (including our own)472

set riter = 20 for all domains. Our data collection method from Section 4.3 collects rdp = 4000 data473

points per the iteration of the data collection loop. To ensure a fair comparison, the Gaussian and474

diffusion samplers were trained for a comparable amount of time, and the GNN baseline was trained475

for a similar amount of time as our method (including the data collection procedure).476

Table 1: Hyperparameters for the baselines and samplers for our method

Method Hyperparameter Value

Diffusion sampler

number of training iterations 10000
number of diffusion timesteps 100
hidden layer sizes 2× 512
learning rate 1e− 4

Gaussian sampler

regressor hidden sizes 1024× 2
classifier hidden sizes 128× 2
number of training terations 20000
learning rate 1e− 3

GNN

number of epochs 1600
number of message passings 3
hidden sizes (encoders, models, and decoders) 1× 512
learning rate 1e− 4

B Data Gathering Illustrative Example477

Figure B.1 illustrates an example search tree that the backtracking algorithm could produce during478

the data collection described in Section 4.3.479

C Network Training Setup480

In this appendix, for the purposes of reimplementation and reproducibility, we describe the training481

setup for our transformer-based classifier. We use an encoder-only transformer.We select the hy-482

perparameters for the classifier, summarized in Table 2, based on the accuracy on the final iteration483

of training in the data collection algorithm from Section 4.3 on the Shelves environment—runs that484

caused the data collection to take prohibitively long (e.g., because accuracy in early iterations was485

too low) were terminated early and discarded.486

We optimize a standard binary cross-entropy loss with the Adam optimizer, over randomly drawn487

mini-batches. In addition to the output of the featurizer network, for each token we concatenate488

12



grasp

move

glaze

move

place in box

Figure B.1: Example data collection search graph. This is the subgraph of the refinability graph
described in Section 3.3 found via backtracking search on the Donut domain, using rdp = 4. Rows
separated by dashed lines represent layers of the graph (as labeled by i), filled nodes represent
continuous states si found during backtracking search, and empty nodes labeled by ⊥ indicate that
the sampled parameters resulted in controller failure. The path highlighted in yellow corresponds to
a successful execution, so all nodes and corresponding prefixes of the plan are positive samples for
h. The two nodes boxed by red dotted lines exemplify the negative samples that lead to refinement
failure, as described in Section 4.3.

Table 2: Feasibility classifier training hyperparameters

Hyperparameter Value
Model learning rate (without the transformer) 1e− 4
Transformer learning rate 1e− 5
Number of training iterations 5000
Batch size 4000
Featurizer network hidden layer sizes 2× 256
Feautrizer network output size 256
Sinusoidal embedding dimensionality 128
Sinusoidal embedding base 130
Transformer token width 128
Transformer feedforward block hidden size 512
Number of transformer heads 8
Number of transformer residual blocks 4

a one-hot encoding of which featurizer network produced it (identifying the lifted abstract action489

and whether the state was produced by its controller, as explained in Section 4.2), and a binary490

flag to indicate whether the corresponding ground abstract action was the latest one to be refined491

(i.e., the action ωj such that j = i). These additional inputs aid the network with locating the key492

information in the sequence of tokens. As is standard practice in the literature, we also concatenate493

the sinusoidal positional encodingto each token. As described in [23], we offset the positions of the494

tokens by a random value to improve out-of-distribution generalization with respect to the length of495

the task plan. Before passing the token to the transformer, we pass it through a linear map to ensure496

matching dimensionality. Our transformer then uses multi-head attention: the token is split into a497

number of transformer heads, each processing a chunk of the mapped token.498

13



5 6 7 8 9 10
Number of Shelves

0s

1s

10s

100s

So
lv

e 
Ti

m
e

(L
ow

er
 is

 B
et

te
r)

Shelves

3 4 5 6
Number of Toppings

0s

1s

10s

100s
Donut

4 5 6 7 8
Grid Size

0s

1s

10s

100s
Statue

Figure D.2: Solve times for the generalization experiments on 2D domains across varying domain
sizes. Other than the Statue domain, our approach is faster than the sampler-based baselines (B1a
and B1b) across all environment sizes. We omit the GNN baseline (B2) because it does not do
planning and therefore is trivially faster than planning approaches. Averaged across 8 seeds, ranges
represent mininum and maximum values. Note that 0% plots are dropped for clarity.

500 1000 1500 2000
Number of Datapoints

0s

1s

10s

100s

So
lv

e 
Ti

m
e

(L
ow

er
 is

 B
et

te
r)

Shelves

500 1000 1500 2000
Number of Datapoints

0s

1s

10s

100s
Donut

500 1000 1500 2000
Number of Datapoints

0s

1s

10s

100s
Statue

Figure D.3: Solve times for the data efficiency experiments on 2D domains across initial dataset
sizes. Our approach is on average faster than the sampler-based baselines (B1a and B1b) across
all dataset sizes. We omit the GNN baseline (B2) because it does not do planning and therefore is
trivially faster than planning approaches. Averaged across 8 seeds, ranges represent mininum and
maximum values. Note that 0% plots are dropped for clarity.

0s

1s

10s

100s

So
lv

e 
Ti

m
e

(L
ow

er
 is

 B
et

te
r)

Packing

0s

1s

10s

100s
Trays

Figure D.4: Solve times for the experiments on the PyBullet domains compared to the best-
performing baseline on the 2D environments. Our approach is over 3× faster than the baseline.
Averaged across 8 seeds, error bars represent standard deviation, and ranges represent mininum and
maximum values.

0s

1s

10s

100s

So
lv

e 
Ti

m
e

(L
ow

er
 is

 B
et

te
r)

Shelves

Figure D.5: Solve times for the experiments on the 2D Shelves domain compared to the ablations.
Our method is over 3× faster than the ablation of backjumping, and over 10× faster than the abla-
tions of data collection. Averaged across 8 seeds, error bars represent standard deviation, and ranges
represent minimum and maximum values.

14



D Environment Timing Results499

In this appendix, we present the timing results of the experiments described in Section 5.4. The tim-500

ings only consider the tasks for which each baseline succeeded, which is why our method sometimes501

exhibits a higher runtime than the baselines—recall from Section 5 that the baselines failed to solve502

many problems due to timeouts. Our method on average performs better than the sampler-based503

baselines (B1a and B1b; Figures D.2, D.3, and D.4) and ablations (Figure D.5) on all experiments504

except the generalization experiments for the Statue environment. The timings for the GNN baseline505

(B2) were not included because the policy is designed to compute a single solution; if the solution506

works, it succeeds, and otherwise it immediately fails. In consequence, when it does succeed, it is507

much faster (∼ 1000×) than our approach.508

15


	Additional Experimental Details
	Runtime
	Detailed Domain Descriptions
	Backjumping and Data Collection Ablations
	Training the Baselines

	Data Gathering Illustrative Example
	Network Training Setup
	Environment Timing Results

