410

411

412

413

414

415
416

417

418
419
420

421

422

423
424

434

444

445
446
447
448

449
450
451
452

454
455

Appendices to

“Learning Long-Horizon Action Dependencies in
Sampling-Based Bilevel Planning”

Anonymous Author(s)

A Additional Experimental Details

For the purpose of reproducibility, this appendix contains additional details of the runtime, domains,
baselines, and ablations for the experiments in Section 5 in the main paper.

A.1 Runtime

All experiments were run on Ubuntu 22.04.3 using 20 cores of Intel Xeon Gold 6248 and a 32GB
Nvidia Volta V100. We use 30 threads to collect the data for our method and its ablations in parallel.
For the 3D domains, we use PyBullet for collision checking and rendering.

A.2 Detailed Domain Descriptions

This section provides additional details of the domains.

» Shelves Domain: The cover must be placed after the boxes are on the shelves. The lifted abstract
actions are “Move Box”, “Move Cover to Top” and “Move Cover to Bottom™. All lifted abstract
actions share a single controller, whose parameters are some (z,y) absolute position of a point
on the moved and on the target object, and the (x, y) offset with respect to the target destination
to place the moved object on. The positions of the objects are in absolute coordinates, and the
objects cannot be rotated.

* Donut Domain: The lifted abstract actions are “Move Robot”, “Grasp Donut” “Place Donut in
Box”, “Place Donut on Shelf” and “Add Topping to Donut”. The movement, grasp position and
placement position in the abstract action controllers are parameterized by the the (x, y) displace-
ment. All other controller parameters are determined using binary decisions based on a threshold
on a real value (e.g. either a top or side grasp, or which topping to add). The topping machines
cannot be used if they’re too far away from the robot; a similar restriction applies to the grasp-
ing and placement actions. The positions of the objects are relative to the robot, and the objects
cannot be rotated. There are 10 varieties of possible toppings in the goals.

* Statue Domain: The lifted abstract actions are “Go through Door”, “Go through Door with
Statue”, “Grab Statue” and “Place Statue”. The movement controller parameterization speci-
fies the offset (x, y) that the robot moves by, and the grab controller specifies a thresholded value
for the orientation of the statue (horizontal, vertical) in the 3D axis from the front of the robot (not
perpendicular to the world). The positions of objects are in absolute coordinates, and (other than
the horizontal/vertical rotations of the statue) the objects cannot be rotated. In training problems,
the positions of objects are randomly offset to keep them in distribution for the larger grids of
rooms in test problems.

* Packing Domain: The blocks initially lie down scattered across the table. The only lifted abstract
action is “Place Block”. The controller is parameterized by where along the block to grasp it and
where to place the block (upright) relative to the center of the box. The positions of objects are in
absolute coordinates, and the rotations are in quaternions.

» Trays Domain: The blocks are initially upright scattered across the table. The lifted abstract
actions are “Move Block” and a dummy “Check Trays” action that confirms (at the end of the plan)
if the blocks are in the target configuration—this is necessary for the task planner to find a goal-
reaching plan, but prevents the movement actions from knowing the precise target placements.
The controller is parameterized by where to place the block (upright) relative to the center of the
tray and a one-hot encoding of the tray. The positions of objects are in absolute coordinates, and
the rotations are in quaternions.

11

456

457

459
460

461
462
463
464

465
466

467

468
469

470
471
472
473
474
475
476

477

478
479

480

481
482
483
484
485
486

487
488

A.3 Backjumping and Data Collection Ablations

This section describes the ablations used to validate the need for each element of our approach.

* No backjumping (Al): To study the impact of backjumping on our method, this ablation disables
backjumping, instead always backtracking only one step. The ablation uses exactly the same
trained networks as our full approach.

* Negative training data from the longest failed trajectory (A2): To assess the importance of our
data collection scheme, we train our method by generating positive training data from the prefixes
of controller plans from the demonstrations dataset) and negative training data from the longest
failed refinements of attempts at running backtracking on the problems from .

e Negative training data from all prefixes of a failed trajectory (A3): This ablation is similar to A2,
but instead generates negative training data from all prefixes of the longest failed refinement.

A.4 Training the Baselines

Table 1 presents the hyperparameters used when evaluating the baselines and the diffusion-based
samplers used in our method (classifier hyperparameters are included in Appendix C).

The hyperparameters of each method were tuned based on its prediction accuracy on the Shelves do-
main, using a held-out validation dataset of 20% of the data points. We picked the hyperparameters
with the lowest validation loss for each method. The SeSamE-based methods (including our own)
set Tier = 20 for all domains. Our data collection method from Section 4.3 collects 74, = 4000 data
points per the iteration of the data collection loop. To ensure a fair comparison, the Gaussian and
diffusion samplers were trained for a comparable amount of time, and the GNN baseline was trained
for a similar amount of time as our method (including the data collection procedure).

Table 1: Hyperparameters for the baselines and samplers for our method

Method Hyperparameter Value
number of training iterations 10000
Diffusion sampler number of diffusion timesteps 100
hidden layer sizes 2 x 512
learning rate le—4
regressor hidden sizes 1024 x 2
Gaussian sampler classifier hidden sizes 128 x 2
number of training terations 20000
learning rate le—3
number of epochs 1600
GNN number of message passings 3
hidden sizes (encoders, models, and decoders) | 1 x 512
learning rate le—4

B Data Gathering Illustrative Example

Figure B.1 illustrates an example search tree that the backtracking algorithm could produce during
the data collection described in Section 4.3.

C Network Training Setup

In this appendix, for the purposes of reimplementation and reproducibility, we describe the training
setup for our transformer-based classifier. We use an encoder-only transformer.We select the hy-
perparameters for the classifier, summarized in Table 2, based on the accuracy on the final iteration
of training in the data collection algorithm from Section 4.3 on the Shelves environment—runs that
caused the data collection to take prohibitively long (e.g., because accuracy in early iterations was
too low) were terminated early and discarded.

We optimize a standard binary cross-entropy loss with the Adam optimizer, over randomly drawn
mini-batches. In addition to the output of the featurizer network, for each token we concatenate

12

489
490
491
492
493
494
495

497
498

grasp

o D i=1
move _— N 2N
o o O O 0 i=2
gaze N~ N
___________ _____ N ________Ej_____ __i=3

NYZNZIN N7
oocolon el 000000 I
placeinbox A """""""""""" """
0000 O® ;_;

Figure B.1: Example data collection search graph. This is the subgraph of the refinability graph
described in Section 3.3 found via backtracking search on the Donut domain, using r¢, = 4. Rows
separated by dashed lines represent layers of the graph (as labeled by i), filled nodes represent
continuous states s; found during backtracking search, and empty nodes labeled by L indicate that
the sampled parameters resulted in controller failure. The path highlighted in yellow corresponds to
a successful execution, so all nodes and corresponding prefixes of the plan are positive samples for
h. The two nodes boxed by red dotted lines exemplify the negative samples that lead to refinement
failure, as described in Section 4.3.

Table 2: Feasibility classifier training hyperparameters

Hyperparameter Value
Model learning rate (without the transformer) | le —4
Transformer learning rate le—5
Number of training iterations 5000
Batch size 4000
Featurizer network hidden layer sizes 2 x 256
Feautrizer network output size 256
Sinusoidal embedding dimensionality 128
Sinusoidal embedding base 130
Transformer token width 128
Transformer feedforward block hidden size 512
Number of transformer heads 8
Number of transformer residual blocks 4

a one-hot encoding of which featurizer network produced it (identifying the lifted abstract action
and whether the state was produced by its controller, as explained in Section 4.2), and a binary
flag to indicate whether the corresponding ground abstract action was the latest one to be refined
(i.e., the action w; such that j = 7). These additional inputs aid the network with locating the key
information in the sequence of tokens. As is standard practice in the literature, we also concatenate
the sinusoidal positional encodingto each token. As described in [23], we offset the positions of the
tokens by a random value to improve out-of-distribution generalization with respect to the length of
the task plan. Before passing the token to the transformer, we pass it through a linear map to ensure
matching dimensionality. Our transformer then uses multi-head attention: the token is split into a
number of transformer heads, each processing a chunk of the mapped token.

13

Shelves Donut Statue

1005; 1005; 1005; IOurs: Backtracking with
=] 3 3 Feasibility Classifier
o § 7 7 7
E 3 1055 1055 1055 IB1a: Myopic Diffusion Samplers
02 3] 3 7
§ g 1sd 1sd 1s4 IB1b: Myopic Gaussian Samplers
4 3 3 3
]] 3 Iezz GNN policy
0s-— T T T T T Os—7 T T T 0s—7 T T T T
5 6 7 8 9 10 3 4 5 6 4 5 6 7 8
Number of Shelves Number of Toppings Grid Size

Figure D.2: Solve times for the generalization experiments on 2D domains across varying domain
sizes. Other than the Statue domain, our approach is faster than the sampler-based baselines (Bla
and B1b) across all environment sizes. We omit the GNN baseline (B2) because it does not do
planning and therefore is trivially faster than planning approaches. Averaged across 8 seeds, ranges
represent mininum and maximum values. Note that 0% plots are dropped for clarity.

100 Shelves 100 Donut 100 Statue
°3 °3 3 Ours: Backtracking with

S 7 7 3 Feasibility Classifier
oL] a1 |]
E K 105; 105; 105; I.‘ IB1a: Myopic Diffusion Samplers

(%) 3 ui 3
£y L e — '| | | | I B1b: Myopic Gaussian Sampl
S : 1ss lsg 0t 1ss : Myopic Gaussian Samplers

] E E 3

]]] Iszz GNN policy

0s-— T T T Os— T T T 0s—+ T T T
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Number of Datapoints Number of Datapoints Number of Datapoints

Figure D.3: Solve times for the data efficiency experiments on 2D domains across initial dataset
sizes. Our approach is on average faster than the sampler-based baselines (Bla and B1b) across
all dataset sizes. We omit the GNN baseline (B2) because it does not do planning and therefore is
trivially faster than planning approaches. Averaged across 8 seeds, ranges represent mininum and
maximum values. Note that 0% plots are dropped for clarity.

Packing Trays

100s

Q :GL;
I g 10s Ours: Backtracking with
o Feasibility Classifier
2 —
8 % 1s IB1a: Myopic Diffusion Samplers

—

Os Os

Figure D.4: Solve times for the experiments on the PyBullet domains compared to the best-
performing baseline on the 2D environments. Our approach is over 3x faster than the baseline.
Averaged across 8 seeds, error bars represent standard deviation, and ranges represent mininum and
maximum values.

100 Shelves
S
-
[9] . N " A2: Backtracking with Feasibility
g % 10s ?:;zibBiI:ckéEZ';liggrw“h Classifier - negative training data
= Y from the longest failed trajectory
o2
% @ A1: Backtracking with Feasibility A3: Backtracking with Feasibility
n 3 1s Cla'ssiﬁer - no Backiumpin: Classifier - negative training data
é Jumping from all prefixes of a failed trajectory
0Os

Figure D.5: Solve times for the experiments on the 2D Shelves domain compared to the ablations.
Our method is over 3 x faster than the ablation of backjumping, and over 10x faster than the abla-
tions of data collection. Averaged across 8 seeds, error bars represent standard deviation, and ranges
represent minimum and maximum values.

14

499

500
501
502
503
504
505
506
507
508

D Environment Timing Results

In this appendix, we present the timing results of the experiments described in Section 5.4. The tim-
ings only consider the tasks for which each baseline succeeded, which is why our method sometimes
exhibits a higher runtime than the baselines—recall from Section 5 that the baselines failed to solve
many problems due to timeouts. Our method on average performs better than the sampler-based
baselines (Bla and B1b; Figures D.2, D.3, and D.4) and ablations (Figure D.5) on all experiments
except the generalization experiments for the Statue environment. The timings for the GNN baseline
(B2) were not included because the policy is designed to compute a single solution; if the solution
works, it succeeds, and otherwise it immediately fails. In consequence, when it does succeed, it is
much faster (~ 1000x) than our approach.

15

	Additional Experimental Details
	Runtime
	Detailed Domain Descriptions
	Backjumping and Data Collection Ablations
	Training the Baselines

	Data Gathering Illustrative Example
	Network Training Setup
	Environment Timing Results

