
A Additional Proofs on Stability and Expressivity594

A.1 Stability Proofs595

Edge Filtrations versus Vertex Filtrations Our results are structured to address filtrations built
by a function on the edges of a graph G = (V,E), g : E ! R. This matches our notions of discrete
curvature, which are also defined edge-wise. g gives an explicit ordering on E and thus an induced
ordering on V given by:

v  v0 ()

X

e2Ev

g(e) 
X

e02Ev0

g(e0)

where Ex is the set of edges incident to x 2 V . However, one can also define a filtration over vertices

with a scalar valued function f : V ! R, and induce an ordering on edges. f can also attain a only
finite number of values , call them b1, b2, . . . on the graph. Thus we can also compute a filtration
; ✓ G0 ✓ G1 . . . ✓ Gk�1 ✓ Gk = G, where each Gi := (Vi, Ei), with Vi := {v 2 V | f(v)  bi}
and Ei := {e 2 E | maxv2e f(v)  bi}. Similarly, f gives an explicit ordering on V , and induces
an ordering on E, given by:

e  e0 () max
v2e

f(v)  max
v02e0

f(v0)

The key idea here is that either choice gives rise to an ordering of both edges, and vertices that are596

used to calculate persistent homology of the graph. This means that the arguments for Theorem 1597

and Theorem 5 also bound the bottle-neck distance for persistence diagrams generated using vertex598

filtrations.599

Theorem 1. Given graphs F = (VF , EF ) and G = (VG, EG) with filtration functions f, g, and600

corresponding persistence diagrams Df , Dg, we have dB(Df , Dg)  max{dis(f, g), dis(g, f)},601

where dis(f, g) := |maxx2EF f(x)�miny2EG g(y)| and vice versa for dis(g, f).602

Proof. Considering the calculation of persistence diagrams based on scalar-valued filtrations func-603

tions, every point in the persistence diagram Df can be written as a tuple of the form (f(eF ), f(e0F )),604

with eF , e0F 2 EF ; the sample applies for Dg . The inner distance between such tuples that occur in605

the bottleneck distance calculation can thus be written as606

k(f(eF ), f(e
0
F ))� (g(eG), g(e

0
G))k1. (6)

The maximum distance that can be achieved using this expression is determined by the maximum607

variation of the functions, expressed via dis(f, g) and dis(g, f), respectively.608

Graph perturbations. Here we explicitly specify a common framework used in the proofs for sta-609

bility of curvature functions. As mentioned in the main text, we consider perturbations to unweighted,610

connected graphs G = (V,E), with |V | = n and |E| = m. In the case of edge addition, let i⇤ and j⇤611

be arbitrary vertices that we wish to connect with a new edge, forming our new graph G0 = (V,E0)612

where E0 = E [ (i⇤, j⇤) such that |E0
| = m+1. For edge deletion, we similarly let (i⇤, j⇤) 2 E be613

the edge we delete such that E0
⇢ E and |E0

| = m� 1. Moreover, we only consider edges (i⇤, j⇤)614

that leave G0 connected.615

A.1.1 Forman–Ricci Curvature616

Theorem 2. If G0
is the graph generated by edge addition, then the updated Forman curvature 0

FR
617

for pre-existing edges (i, j) 2 E can be bounded by FR(i, j) � 1  0
FR
(i, j)  FR(i, j) + 2. If618

G0
is the graph generated by edge deletion, then the updated Forman curvature 0

FR
for pre-existing619

edges (i, j) 2 E can be bounded by FR(i, j)� 2  0
FR
(i, j)  FR(i, j) + 1.620

Proof. We first handle the case of edge addition. By definition FR(i, j) depends only on the621

degrees of the source and target (i, j) 2 E and the number of triangles formed using (i, j), |#�ij | =622

|N(i)[N(j)|, where N(i), N(j) are the set of neighbouring nodes for i, j respectively.This is a local623

computation– all relevant information can be computed in the subgraph generated by N(i) [N(j).624

Thus, in order to understand stability of FR, we need to understand how N(i) and N(j) change625

under graph perturbations. For our new graph G0, the only affected edges lie in the set:626
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Eij := {(u, v) 2 E|u, v 2 N(i) [N(j)}

For the new edge (i⇤, j⇤), we can directly compute FR(i⇤, j⇤) based on the original structure of
the graph. However, in terms of stability we are interested in the member of Eij , which can be split
into two cases: one of the nodes is i⇤ or j⇤ or neither is. Case 1: WLOG assume the edge is of the
form (i⇤, v) 2 Eij . Clearly, d0i = di + 1. As for |#0

�iv
|, this can maximally be increased by 1 in

the case that x 2 S(i) \ S(j), else the triangle count stays the same. Case 2: consider (u, v) 2 Eij

where u, v 2 V \ {i⇤, j⇤}. In this case, there is no change to the degree nor the number |#0
�uv

|.
Clearly then, if (i⇤, j⇤) forms a new triangle, our curvature can increase by 2, and if no triangle is
formed the curvature can decrease by 1 in response to the increased degree. Thus we can bound
0

FR(i, j) := 4� d0i � d0j + 3|#0
�ij

| as follows:

FR(i, j)� 1  0
FR(i, j)  FR(i, j) + 2

The case of edge deletion can be handled similarly. Again, we need only consider the edges in Eij , as627

defined in the proof above, and can make the same case argument. Case 1: WLOG assume the edge628

is of the form (i⇤, v) 2 Eij . Clearly, d0i = di � 1. As for |#0
�iv

|, this can maximally be decreased629

by 1. Case 2: Degree and number of triangles do not change in response to the perturbation. Thus the630

following bounds hold for 0
FR:631

FR(i, j)� 2  0
FR(i, j)  FR(i, j) + 1

632

A.1.2 Ollivier–Ricci Curvature633

The definition of OR establishes a relationship between the graph metric dG, the Wasserstein distance634

W1, the probability distributions µi, µj at nodes i, j and the curvature. Given that we are considering635

unweighted, and connected graphs we know that (V, dG) is a well-defined metric space and therefore636

W1 (as defined in [54]) defines the L1 transportation distance between two probability measures637

µi, µj with respect to the metric dG. This is relevant for a much larger class of graph metrics than just638

the standard choice of the shortest path distance. We use results from [54] and the metric properties639

of W1 and dG on graphs to bound the potential changes in OR following an edge perturbation.640

Lemma 1. Consider the triple G = (G, dG, µ). Let �i denote the Dirac measure at node i and J(i)641

:= W1(�i, µi) the corresponding jump probability in the graph G. The Ollivier–Ricci curvature642

OR(i, j) satisfies the following Bonnet-Myers inspired upper bound:643

OR(i, j) 
J(i) + J(j)

dG(i, j)
(7)

Proof. Rearranging the original definition for OR curvature gives:
W1(µi, µj) = dG(i, j)(1� OR(i, j))

By definition of the W1, we have dG(i, j) = W1(�i, �j). Using this and the fact that W1 satisfies the644

triangle inequality property, we can construct the desired upper bound on OR:645

dG(i, j) W1(�i, µi) +W1(µi, µj) +W1(�j , µj)

dG(i, j) J(i) + dG(i, j)(1� OR(i, j)) + J(j)

dG(i, j)(1� (1� OR(i, j))) J(i) + J(j)

OR(i, j) 
J(i) + J(j)

dG(i, j)
646

Theorem 3. Given a perturbation (either edge addition or edge deletion) producing G
0
, the Ollivier–647

Ricci 0
OR
(i, j) of a pair (i, j) can be bounded via648

1�
1

dG0(i, j)

⇥
2W 0

max +W 0
1(µi, µj)

⇤
 0

OR
(i, j) 

J 0(i) + J 0(j)

dG0(i, j)
, (4)

where J 0(v) := W 0
1(�v, µ

0
v) refers to the new jump probabilities and W 0

max := maxx2V W 0
1(µx, µ0

x)649

denotes the maximal reaction to the perturbation (measured using the updated Wasserstein distance).650
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Proof. We first prove the upper bound. Given that G0 is still connected, and both W 0
1 and dG0 still651

satisfy the metric axioms, this result follows directly from Lemma Lemma 1. For proving the lower652

bound, recall from Section 3.1 that G0 = (G0, dG0 , µ0) specifies the behaviour of the new graph metric653

dG0 and the and the updated probability measure µ0 in response to the perturbation. Moreover, this654

defines a new Wasserstein distance W 0
1 and we will show that the maximum reaction (as evaluated655

by W 0
1) to the perturbation W 0

max := maxx2V W 0
1(µ

0
x, µx) can be used to express a general lower656

bound for OR curvature in the event of a perturbation. As per Eq. (2), we can define our curvature657

following the perturbation as:658

0
OR(i, j) = 1�

1

dG0(i, j)
W 0

1(µ
0
i, µ

0
j) (8)

Once again, we can make use of the metric properties of W 0
1, to establish the lower bound as659

0
OR(i, j) � 1�

1

dG0(i, j)

⇥
W 0

1(µi, µ
0
i) +W 0

1(µj , µ
0
j) +W 0

1(µi, µj)
⇤

�
1

dG0(i, j)

⇥
2W 0

max +W 0
1(µi, µj)

⇤
.

660

A.1.3 Resistance Curvature661

The resistance distance, intuitively, measures how well connected two nodes are in a graph. It is662

defined in [19] as:663

Rij := (ei � ej)
|Q†(ei � ej) (9)

Here Q is the normalized laplacian (weighted degrees on the diagonal, see [19]), Q† the Moore-664

Penrose inverse, and ei is ith unit vector. This is the main feature that will be studied to understand the665

stability of the curvature measure, and can be computed for any two nodes in a connected component666

of a graph.667

A brief aside regarding the practice of inverting edge weights: The common practice when computing668

effective resistance is to invert the edge weights of a graph in order to get a resistance. Given the669

spirit of resistance from circuit theory, we know that a high resistance should make it difficult for670

current to pass between nodes. Analogously when thinking about our graph as a markov chain, this671

would correspond to a low transition probability. So, if we think about our edge weights as coming672

from some kernel where higher similarity results in a higher edge weight, then we should definitely673

invert our edge weights to get to resistance. However, in the case that our edge weights represent the674

cost of travelling between nodes, then this is a suitable proxy for resistance in which case inverting675

the nodes is unnecessary. In order to achieve the theoretical properties of curvature with well known676

examples described in [19], we do not invert the edge weights in our experiments. Which means that677

the curvature itself interprets the edge weights themselves as a cost/resistance; I think is an important678

point to specify especially given the similarity to markov chains and the borrowed terminology from679

circuit theory.680

Recalling the equations for node resistance curvature and resistance curvature, i.e. Eq. (3), it becomes681

clear that the main task is to understand how the resistance distance changes in response to pertur-682

bations. The results below from [45], are crucial for our proofs. Let C(i, j) be the commute time683

between nodes i, j 2 V . It is important to note that these results depend on the normalized Laplacian,684

defined in [45] as N = D
1
2AD

1
2 , with eigenvalues �i, ordered such that �1 � �2 � .... Here, D is685

the diagonal matrix with inverse degrees and A the adjancecy matrix. Also, as is consistent with the686

rest of the paper, assume our graph has n nodes and m edges, and di is the degree at node i 2 V .687

Proposition 1. For a graph G, let N = D
1
2AD

1
2 be the normalized Laplacian with eigen values688

�1 � �2 � · · · � �n. Then, the commute time in G between nodes i, j is subject to the following689

bounds:690

m
� 1

ds
+

1

dt)

�
 C(i, j) 

2m

1� �2

� 1

ds)
+

1

dt

�
(10)

Proposition 2. Consider the unweighted graph G, where each edge represents a unit resistance,691

i.e we consider each edge in the graph to be artificially weighted with value 1. Then the following692

equality holds for the commute time between nodes i, j:693
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C(i, j) = 2mRij (11)
Proposition 3. If G0

arises from a graph G by adding a new edge, then the commute time C 0(i, j)694

between any two nodes in G0
is bounded by:695

C 0(i, j)  (1 +
1

m
)C(i, j) (12)

For proofs of these propositions, we refer the reader to [45]. These results create a direct connection696

between commute times and resistance distance, and gives insight into how commute time reacts697

under edge addition, and we use them directly to generate our bounds for resistance curvature.698

Theorem 4. If G0
is the graph generated by edge addition, then 0

R
� R,with the following bound:699

|0
R
(i, j)� R(i, j)| 

�add(di + dj)

Rij ��add
, (5)

where �add := maxi,j2V

�
Rij �

1
2

�
1

di+1 + 1
dj+1

��
.700

Proof. Let R0
ij be the resistance distance in G0. Likewise, let C(i, j) be the commute distance in701

G between nodes i, j and C 0(i, j) be the commute time in G0. Then 12 and 11 ensure that R0
ij is702

bounded above, by the original resistance distance in G:703

2(m+ 1)R0
ij  2m(1 +

1

m
)Rij

R0
ij  Rij

This follows our intuition of resistance distance very well: with the addition of an edge nodes can704

only get more connected. 10 also gives a nice lower bound:705

(m+ 1)
� 1

d0i
+

1

d0j

�
 C 0(i, j)

1

2

� 1

d0i
+

1

d0j

�
 R0

ij

In the case that we are adding a single edge, it is often the case that d0x = dx. However, the nodes that706

are connected by the new edge, (i⇤, j⇤) 2 E0
\E, increase such that d0i⇤ = di⇤+1 and d0j⇤ = dj⇤+1.707

Thus, the following lower bound holds in general for R0
ij and we can remain agnostic to the precise708

location of the new edge:709

1

2

� 1

di + 1
+

1

dj + 1

�
 R0

ij  Rij (13)

And likewise, after adding p edges:710

1

2

� 1

di + p
+

1

dj + p

�
 Rp

ij  Rij

So the bounds of our ’perturbed’ resistance distance R0
ij are determined by the initial network711

structure (Rij) and the number connections each specific vertex has. Naturally, certain node pairs712

will be more strongly affected by the addition of an edge. We can define the maximum reaction to713

perturbation across pairs as follows:714

�add := max
i,j2V

✓
Rij �

1

2

� 1

di + 1
+

1

dj + 1

�◆
(14)

This can be used to bound node resistance curvature. In an unweighted graph, we have715
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pi = 1�
1

2

X

j⇠i

Rij

p0i = 1�
1

2

X

j⇠i

R0
ij

For G and G0 respectively. Given that resistance can only increase, pi is clearly an lower bound for716

p0i. Certainly a lower bound occurs when when the resistance between each one of i’s neighbors717

maximally decreases. Thus we get the following inequality:718

pi  p0i  pi +
di
2
�add

Finally this gives the desired bound on 0
R:

R(i, j)  0
R(i, j)  R(i, j) +

�add(di + dj)

Rij ��add

719

Theorem 7. If G0
is the graph generated by edge deletion, then 0

R
 R, bounded by:720

|0
R
(i, j)� R(i, j)| 

1

Rij +�del

h 2

Rij
(2Rij +�del)(pi + pj)��del(di + dj)

i
,

where �del =
2

1��2
�mini,j2V (Rij) and �2 is the second largest eigenvalue of N .721

Proof. Now we can beg the question of how effective resistance changes when we remove an edge.722

By inverting our initial argument in above proof of 4, we know that after removing an edge our723

resistance distance can only increase. Formally, Rij  R0
ij . For the upper bound, we can once again724

make an argument using 10, this time relying on the other half of the inequality. Here we need to also725

mention the normalized Laplacian N 0 for G0, with eigenvalues �0
1 � �0

2 � ... � �0
n.726

C 0(i, j) 
2(m� 1)

1� �0
2

� 1

d0i
+

1

d0j

�

R0
ij 

1

1� �0
2

� 1

d0i
+

1

d0j

�

Again, we know that only the two unique vertices (i⇤, j⇤) that shared an edge will have affected727

degrees, s.t d0i⇤ = di⇤ � 1 and d0j⇤ = dj⇤ � 1. Moreover, from [28], we know that �2 � �0
2. So we728

can bound the R0
ij as follows:729

Rij  R0
ij 

2

1� �2
(15)

In fact, this applies to any number of edge deletions, as long as G0 stays connected. Again, we can730

define a maximum possible change in resistance distance across the graph:731

�del = max
i,j2V

(
2

1� �2
�Rij) =

2

1� �2
� min

i,j2V
(Rij) (16)

This leads to the following bounds on node and edge curvature, and completes the proof:732

pi �
di
2
�del  p0i  pi

(1� �2)
⇥
pi + pj �

�del

2
(di + dj)

⇤
 0

R(i, j)  R(i, j)

R(i, j)�
1

Rij +�del

⇥ 2

Rij
(2Rij +�del)(pi + pj)��del(di + dj)

⇤
 0

R(i, j)  R(i, j)

733
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A.2 Expressivity Proofs734

Theorem 5. Given two graphs F = (VF , EF ) and G = (VG, EG) with scalar-valued filtra-735

tion functions f, g, and their respective persistence diagrams Df , Dg, we have dB(Df , Dg) �736

inf⌘ : EF!EG supx2EF
|f(x)� g(⌘(x))|, where ⌘ ranges over all maps from EF to EG.737

Proof. Considering the calculation of persistence diagrams based on scalar-valued filtrations func-738

tions, every point in the persistence diagram Df can be written as a tuple of the form (f(eF ), f(e0F )),739

with eF , e0F 2 EF ; the sample applies for Dg . The inner distance between such tuples that occur in740

the bottleneck distance calculation can thus be written as741

k(f(eF ), f(e
0
F ))� (g(eG), g(e

0
G))k1, (17)

which we can rewrite to maxC : EF!EG{f(x) � g(C(x))} for a general map C induced by the742

bijection of the bottleneck distance. Not every map is induced by a bijection, though. Hence, if743

we maximise over arbitrary maps between the edge sets, we are guaranteed to never exceed the744

bottleneck distance.745

B Additional Proofs for Distinguishing Strongly Regular Graphs746

Theorem 6 (Expressivity of curvature notions). Both Forman–Ricci curvature and Resistance747

curvature cannot distinguish distance-regular graphs with the same intersection array, whereas748

Ollivier–Ricci curvature can distinguish the Rook and Shrikhande graphs, which are strongly-regular749

graphs with the same intersection array.750

Proof. We first show the part of the statement relating to the Forman–Ricci curvature. Given a751

distance-regular graph G with N vertices and intersection array {b0, b1, . . . , bD�1; c1, c2, . . . , cD}.752

Let i, j be adjacent nodes in G. For a regular graph, we have di = dj = b0, where b0 is a constant.753

The number of triangles between two adjacent nodes i and j in G is given by a1 = b0 � b1 � c1 [18].754

The Forman curvature of i, j is thus755

FR(i, j) := 4� 2b0 + 3|b0 � b1 � c1|. (18)

Given two strongly-regular graphs with the same intersection array, i.e. the same values of b0, b1 and756

c1, the Forman curvature yields the same value for all pairs of adjacent nodes and cannot distinguish757

them. For the resistance curvature, the claim follows as an immediate Corollary of Theorem A [6]758

and described in Koolen et al. [40]. Given the resistance between two nodes depends only on759

the intersection array and the number of nodes in the graph, then the resistance curvature cannot760

distinguish two strongly-regular graphs.761

The expressivity of Ollivier–Ricci curvature is strictly better, and it turns out that there are graphs762

with the same intersection array that we can distinguish, namely the Rook graph and the Shrikhande763

graph. Both graphs have the same intersection array {6, 3; 1, 2} but differ in their first hop764

peripheral subgraphs [22]. It is known that 2-WL cannot distinguish these graphs. Ollivier–Ricci765

curvature, however, is sensitive to these differences in peripheral subgraphs with the edge curvatures766

for the Rook graph being: [0.2, 0.2, 0.33, 0.33, 0.33, 0.2, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33,767

0.33, 0.33, 0.2, 0.2, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.2, 0.33,768

0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33], and for the Shrikhande graph they769

are [0, 0, 0.27, 0.27, 0.1, 0, 0.27, 0.27, 0.1, 0, 0.27, 0.1, 0.27, 0, 0.27, 0.1, 0.27, 0, 0.1, 0.27, 0.27,770

0.1, 0.27, 0.27, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,771

0.17, 0.17, 0.17], demonstrating that OR curvature can distinguish these graphs—unlike Resistance772

curvature, Forman–Ricci curvature and the 2-WL test.773

C Additional Stability Analysis774

Given the bounds on curvature established in Section 3.1, we explore how curvature changes ex-775

perimentally by analysing edge perturbations on Erdős–Rényi graphs. In particular, we provide776

statistics that quantify the maximal change in curvature for random graphs with varying connectivity777

parameters in response to edge additions and deletions. The experiment fixes the number of nodes in778

the ER graphs (n = 100), and generates a sample of 50 graphs for the selected values of p. For each779
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graph in the sample, we measure the curvature  of all edges and calculate the standard deviation780

� of this distribution. We then perturb the original graph by edge addition/deletion and calculate781

the new curvature 0. The following tables present the worst case deviations in curvature, which we782

define as � = |� 0
|, in units of �; in other words the maximal value of �/� over all sample783

graphs and their edges.784

Curvature
Edge Addition: Maximal Change (#) in Curvature for ER Graphs (�/�)
p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

FR 0.582 0.419 0.334 0.296 0.253 0.246 0.232 0.25 0.315
OR 1.545 1.157 0.613 0.465 0.396 0.366 0.368 0.399 0.512
R 0.689 0.417 0.296 0.251 0.221 0.232 0.227 0.243 0.321

Curvature
Edge Deletion: Maximal Change (#) in Curvature for ER Graphs (�/�)
p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

FR 0.609 0.408 0.334 0.291 0.255 0.239 0.245 0.243 0.319
OR 1.397 1.27 0.623 0.479 0.394 0.365 0.347 0.402 0.482
R 0.75 0.431 0.336 0.248 0.229 0.218 0.225 0.242 0.312

D Additional Commentary on Counting Substructures785

We find that the difference in perspective between the selected curvature notions is underscored by786

their respective performance when counting substructures. Forman curvature is an inherently local787

measure by definition, depending only on 3-cycles between adjacent nodes and their degrees. Ollivier–788

Ricci curvature, when used with a uniform measure, can bound the number of triangles within a789

locally finite graph [36] through its relation with the Watts–Strogatz clustering coefficient [65]. It790

can also be shown that quadrangles and pentagons influence the OR curvature, further enhancing the791

expressivity of this type of curvature [36].792

This is the most global perspective one can achieve using OR with uniform probability measures,793

since polygons with more than five edges do not impact the curvature valuation.794

However, by changing the probability measure used by OR, we can shift the focus towards even795

larger substructures. For example, the nth power of the transition matrix provides information on796

the number of n-paths and can therefore provide substructure information for cycles of size n [42].797

Resistance curvature, by contrast, is biased towards the largest substructures. Due to the ‘global’798

nature of the resistance distance metric, R assigns cycles of size � 5 a positive curvature. Moreover,799

in a locally finite graph, one cannot use R to establish a non-trivial bound on the number of triangles800

(consider creating an infinite cycle between two nodes).801

E Probability Measure for Ollivier–Ricci Curvature and Counting802

Substructures803

The Ollivier–Ricci curvature is of particular interest because of its flexibility. While the predominant804

probability measure µ used by the community is uniform for each node, i.e. each of the node’s805

neighbours is chosen with probability being proportional to the degree of the node. We experimented806

with different probability measures, one being based on expanding µ to the two-hop neighbourhood807

of a vertex, the other one being based on random walk probabilities. Specifically, for a node x and a808

positive integer m, we calculate µRW as809

µRW(y) :=
X

km

�k(x, y), (19)

with �k(x, y) denoting the probability of reaching node y in a k-step random walk that starts from810

node x. Subsequently, we normalise Eq. (19) to ensure that it is a valid probability distribution. In811

our experiments, we set m = 2, meaning that at most 2-step random walks will be considered. As812

shown in the main paper, this formulation leads to an increase in expressivity, and we expect that813

further exploration of the probability measures will be a fruitful direction for the future.814
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We now explore to what extent the ability of the curvature to count substructures can also be improved815

in this way. To do this, we used powers of the transition matrix as the probability measure, as it has816

been shown that the nth power provides information on the number of n-paths and can therefore817

provide substructure information for cycles of size n [42]. We find that powers of the transition matrix818

larger than 1 can perform better for counting the substructures, particularly for substructures larger819

than 3-cycles. There is also a difference between Regular and Erdős–Rényi (ER) graphs as the best820

transition power tends to be higher for ER graphs. We hypthosise that this may have something to do821

with the mixing time of the graph, as large powers should converge to the stationary distribution, and822

regular graphs are more ‘expander-like’. The best results are obtained by taking multiple landscapes823

using the transition matrix powers (up to n = 5) and then averaging them. We show that combined824

with a single layer MLP, this method can perform better than using Graph Neural Network based825

approaches and OR curvature with the uniform measure.826

Method Counting Substructures (MAE #)
Triangle Tailed Tri. Star 4-Cycle

GCN 0.4186 0.3248 0.1798 0.2822
OR Filtration 0.2321 0.2395 0.3393 0.3089
OR Filtration with transition matrix powers 0.1956 0.2095 0.3212 0.2680

Method Optimal Transition Power
ER Regular

Triangle 2 1
Tailed Triangle 4 3
Star 4 2
Chordal Cycle 2 2
4-Cycle 8 3

F Computational Complexity827

Persistence diagrams of 1-dimensional simplicial complexes, i.e. graphs, can be computed in828

O(m logm) time where m denotes the number of edges. Empirically, when calculating differ-829

ent curvature measures for different sizes of graphs, we find that Forman curvature scales well to830

large graphs, whereas OR and resistance curvatures can be used for smaller graphs and in cases that831

require a more expressive measure. Note that there are significantly faster ways to calculate resis-832

tance curvature as an approximation [64]. A majority of works on GGMs focus on small molecule833

generation, where any of these curvatures can be used with minimal pre-computation. Table 4 depicts834

the computational complexity of various curvature calculations on Erdős–Rényi graphs whilst Table 5835

and Table 6 compares the complexity to methods based on MMD. We find that calculating persistence836

diagrams, turning these to persistence landscapes, averaging these and then calculating a distance837

takes a similar amount of time compared to MMD for different sizes of graphs and for different838

numbers of graphs in the reference set. Interestingly, our approach scales better than MMD as both the839

number of graphs in the reference set increases and when the size of the graphs increases. This will840

be important for comparing distributions of large data sets such as the commonly used Zinc dataset or841

QM9. Overall, we find that our method can be easily applied in practical use cases, especially given842

that models for graph generation tyically generate graphs with well under 1000 nodes.843

Table 4: Computation time in seconds for discrete curvature on varying Erdős–Rényi graph sizes
with p = 0.3.

No. nodes FR OR R

10 0.000 0.002 0.020
50 0.001 0.038 0.700
100 0.005 0.247 6.610
250 0.054 4.720 252.850
500 0.380 59.270 6414.970
1000 2.920 1040.700 74 366.070
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Table 5: Computation time for different number of Erdős–Rényi graphs in reference set (n = 10 and
p = 0.3.) with different distribution distance measures

Number of Graphs Degree + MMD Orbit + MMD Curvature + MMD Curvature + Landscapes

10 2.2 ms 142.0 ms 2.4 ms 9.0 ms
20 3.6 ms 217.0 ms 4.2 ms 12.5 ms
50 10.9 ms 459.0 ms 12.4 ms 20.9 ms
100 34.1 ms 887.0 ms 37.9 ms 34.4 ms
200 120.0 ms 1960.0 ms 133.0 ms 80.4 ms
500 678.0 ms 6740.0 ms 727.0 ms 144.0 ms
1000 2620.0 ms 19 900.0 ms 2680.0 ms 359.0 ms

Table 6: Computation time for fixed number of Erdős–Rényi graphs in reference set with different
sizes (p = 0.3.) with different distribution distance measures

Number of Graphs Curvature + MMD Curvature + Landscapes

10 2.3 ms 9.0 ms
20 4.5 ms 12.5 ms
50 15.8 ms 20.9 ms

100 93.6 ms 34.4 ms
200 556.0 ms 80.4 ms
500 727.0 ms 144.0 ms
1000 2800.0 ms 364.0 ms

G Ethical Concerns844

We have proposed a general framework for comparing graph distributions focusing primarily on845

method and theoretical development rather than on potential applications. We currently view drug846

discovery as being one of the main application areas, where further experiments may be required, but847

we have no evidence that our method enhances biases or causes harm in any way.848
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